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ABSTRACT
We develop a theoretical foundation to characterize a novel
methodology for low energy and high performance dsp for
embedded computing. Computing elements are operated at
a frequency higher than that permitted by a conventionally
correct circuit design, enabling a trade-off between error that
is deliberately introduced, and the energy consumed. Simi-
lar techniques considered previously were relevant to deeply
scaled future technology generations. Our work extends this
idea to be applicable to current-day designs through: (i) a
mathematically rigorous foundation characterizing a trade-
off between energy consumed and the quality of solution, and
(ii) a means of achieving this trade off through very aggres-
sive voltage scaling beyond that of a conventionally designed
circuit. Through our “cmos inspired” mathematical model,
we show that our approach is better (by an exponential fac-
tor) than the conventional uniform voltage scaling approach
for comparable computational speed or performance. We fur-
ther establish through experimental study that a similar im-
provement by a factor of 3.4x to the snr over conventional
voltage-scaled approaches can be achieved in the context of
the ubiquitous discrete Fourier transform.
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1. INTRODUCTION
High performance and low energy operation are of great

importance in embedded and mobile systems. A huge class
of such power and performance constrained systems real-
ize various forms of digital signal processing or “dsp” work-
loads. Hence techniques for energy and performance effi-
ciency at various levels—circuit, architecture, algorithmic
and application—have been sought and invented in this con-
text. These techniques may be classified under two cat-
egories: (i) techniques which improve energy and perfor-
mance with no degradation of quality of solution. For ex-
ample, these techniques include using better algorithms to
replace complex operations such as multiplications with sim-
pler operations such as additions and eliminating redundant
computations. At the circuit level, techniques for energy and
performance efficiency typically seek more efficient circuit
implementations of dsp primitives. (ii) Techniques which
trade off energy for quality of solution. These are typi-
cally at the algorithmic level, where parameters such as the
number of quantization levels, and the precision of coeffi-
cients are traded off for the quality of solution [8, 13, 1,
2]. These conventional techniques for low energy and high
performance dsp utilize deterministic building blocks and
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primitives—the constituent arithmetic operations are cor-
rect all the time—with energy and performance efficiency
obtained through efficient implementation, or reduction of
the number and size of these primitives.

As a radical departure from these techniques, George et.
al [6], demonstrated how the correctness of arithmetic prim-
itives may be traded off for energy consumed, while provid-
ing an acceptable or “good enough” solution. The principle
that enables such an opportunity, is the relationship between
energy and the probability of correctness in highly scaled,
noise susceptible (future) cmos technologies. Though im-
pressive energy efficiencies were demonstrated empirically,
and though such techniques are likely to be of great value
in future noise susceptible cmos and novel devices (such as
molecular devices [15]), such techniques are not applicable
to current day technology generations based on cmos, where
the noise levels are not yet sufficient to enable such a trade
off.

With this as background and as a significant advance, we
present two key contributions (i) A rigorous theoretical foun-
dation to quantify such an energy-probability of correctness
trade off at the arithmetic level, and (ii) A practical tech-
nique to realize this trade off in current day technology gen-
erations that is inspired by the foundational model. The
probabilistic behavior that we consider is induced by ag-
gressive voltage scaling, and hence the errors are induced
due to propagation delays. A higher investment in energy
implies operating the corresponding circuit elements at a
higher voltage, and would translate into faster propagation
of signal values and hence lower probability of error.

As an example consider the 8 bit binary addition of two
numbers A and B where A = 01001010 and B = 01000110,
where the least significant bit (the “first” bit) is written on
the right and the most significant bit (the “eighth bit”) on
the left. We will use the “ripple carry technique” to perform
such an addition. As illustrated in Figure 1(i), we notice
that the addition of the second bit generates a carry, which
is propagated to the third bit, which, in turn generates a
carry, which when added to the fourth bit, generates a carry
and sets the results of the addition of the fifth bit to 1. We
shall call this a carry chain of length 3 originating at position
2. In this example, there is also a carry chain of length
1, originating at position 7. If the delay for one addition
combined with the wire delay (the delay for computing and
propagating this carry to the next significant bit position) is
d, in conventional circuit implementations of this adder, the
total delay is taken as D = 8d and the circuit operated at a
frequency 1/D. This is because, in the worst case (adding
10101011 to 01010101 for example) the carry chain is of
length 8 and originates at position 1. The total delay of 8d
determines the operating frequency f = 1/8d of the circuit,
which in turn, determines the operating voltage V , since in
cmos circuits, V ∝ 1/d. This in turn, determines the energy
consumed, where E ∝ V 2.

Now, let us consider the addition operation from the pre-
vious paragraph when the entire adder circuit is operated
at V ′ = 1

2
V and hence d′ = 2d and let the frequency of

operation be f . Since the individual carry computation and
propagation delay is doubled, in the time 1/f , any carry
can propagate to only half as many (or n/2) bit positions.
Now, since the length of the larger carry chain is 3 < 8/2,
the addition would be performed correctly with this voltage
lowering. Moreover, in this case, since energy consumed by

cmos circuits is quadratically related to the operating volt-
age, the operating energy E′ = E/4. Hence in this case,
operating voltage can be halved, and the energy consumed
can be improved by a factor of 4, without compromising the
correctness of operation. However, considering Figure 1 (ii)
where the length of carry chain is 5, if the adder is operated
at voltage V ′, the addition would be performed incorrectly,
with 01000000 as the computed result instead of 10000000,
an error magnitude of 64. However this adder achieves a
factor of 4 in energy efficiency when compared to the case
where the adder is operated at voltage V wherein the answer
is computed correctly. This illustrates our first principle:
There is a trade off between energy consumption and error
induced by propagation delay, in circuits which implement
arithmetic operations, that can be exploited to garner energy
savings

Now, let us consider the case when the inputs are 00010101
and 00001011 (Figure 1(iii)). Even though the length of the
carry chain is 5—the same length as the case described in
Figure 1(ii)—since the carry chain originates in a less signif-
icant position and though the adder is operated at voltage
V ′, the error is significantly lower in this case—a magni-
tude of 16—for the same factor of 4 in energy savings when
compared to the correct operation with voltage V . This
case illustrates a second principle: Errors in bits of a higher
value affect the quality of solution more than similar number
of errors in bits of a lower value.

Combining these two principles, we shall outline our tech-
nique introduced in this paper for trading energy for quality
of solution. Specifically, we will operate the full adders in
the more significant position with a higher supply voltage,
when compared to the full adders in the less significant po-
sitions. Thus we decrease the error rate or “probability” of
error in the more significant positions when compared to
the less significant positions. We shall refer to our approach
as the “non uniformly voltage scaled addition”. A conven-
tional (“uniform”) aggressive voltage scaling on the other
hand, would operate all full adders with the same (reduced)
supply voltage, and hence the error rate would be the same
irrespective of the bit position.

In the work cited before [6], the methodology is ad-hoc, a
mathematical model which trades off the energy investment
in each full adder to the expected magnitude of error is vital
for a systematic exploration to guide the design of arithmetic
units, and to provide an intellectual framework with sound
foundation and to avoid this ad-hoc design. To this end, we
introduce a theoretical characterization of an adder which
combines the energy consumption with the notion of the
value of a bit—in the binary representation of numbers, more
significant bits are of a higher value than less significant
bits for example—and characterize the ability to trade off
energy for quality of solution of arithmetic operations. Here,
The quality of solution is quantified through the expected
magnitude of error at the arithmetic level, and is determined
by the error of the constituent bits as well as their values,
the latter determined by their position significance.

Our theoretical model has four independent parameters,
of which, the first three are n the width of the adder, f =
1/D the frequency of operation of the adder, vi = 1/di, the
supply voltage for each individual full adders. For the pur-
pose of illustration, all of our mathematical development in
this paper is in the context of a ripple carry design. While
the theoretical model is robust enough to characterize cases
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0  1  0  0  1  0  1  0          A

0  1  0  0  0  1  1  0          B

1111

1  0  0  1  0  0  0  0

0  1  0  1  0  1  0  0          A

0  0  1  0  1  1  0  0          B

1 111

1  0  0  0  0  0  0  0

1

(i) (ii)

0  0  0  1  0  1  0  1          A

0  0  0  0  1  0  1  1          B

1 111

0  0  1  0  0  0  0  0

1

(iii)

Figure 1: Carry chains and positions for addition of different Binary numbers

where the n full adders in a n bit adder, are all operated
different supply voltages, practical considerations such as
routing and the limitation of the number of power planes
will limit the number of realizable levels of supply voltage
in any cmos based implementation. Hence, we augment our
theoretical foundation with an additional independent pa-
rameter m, the number of “bins” or distinct levels of supply
voltages. For example, in the uniformly voltage scaled case,
there is m = 1 bin, since all full adders are operated at the
same supply voltage. In future implementations, typically,
m ≤ 4 distinct levels of supply voltages are anticipated; a
restriction that we will observe throughout the rest of this
paper.

Based on this model, we derive our main result: For a
n bit addition with an operating frequency f and with the
same energy consumption the ratio of the expected magni-
tude of error between the uniform voltage scaling scheme and

the non uniform voltage scaling scheme is Ω
“
2n/(c)

”
for a

constant number of bins m: as the number of bits n → ∞
the gap (ratio) between expected error introduced by biased
voltage scaling and conventional voltage scaling for an equal
amount of energy consumed grows exponentially as Ω(2n/c).
The expectation is determined by averaging over the inputs
to the adder drawn uniformly from the set of all possible
inputs.

Moving away from the theoretical characterization of an
adder, we demonstrate that the central principle explored in
this work—the trade off between error introduced by prop-
agation delays and energy consumption, taking into consid-
eration the value associated with the corresponding circuit
elements—can be implemented using current day cmos tech-
nologies. We evaluate a ripple carry adder, with the delays
and energy consumption modeled through hspice, in three
different configurations (a) The conventional case, where the
adder is operated at the nominal voltage V and frequency f .
(b) The uniformly voltage overscaled case, where the adder
is operated at frequency f but at voltages lower than V
and (c) The biased voltage case, where some full adders are
operated at higher voltages and some full adders at lower
voltages. In the third case, considering implementation con-
straints, we use a total of four voltage levels, that is m = 4.
We consider the discrete Fourier transform dft of audio and
image data and build an implementation of dft using the
biased adders and show a factor of 3.4x snr advantage in
the context of dft for comparable energy. We envision our
circuits to be used in the context of application specific in-
tegrated circuits (asics) and hence the arithmetic structures

are used to compute dsp operations and not as memory ac-
cess units.

1.1 Related Work
Energy efficient dsp implementations is a large area of

study. We shall examine prior work in two sub-areas, which
are most relevant (i) Using voltage scaling and multiple volt-
age levels for energy efficiency (ii) Using circuit level tim-
ing speculation and voltage overscaling for energy efficiency.
The former set of techniques which are adaptive adjust the
throughput of the circuit based on the workload. Typically
throughput is adjusted by operating the circuit at varying
frequencies (and hence varying voltage and energy states)
hence gaining energy efficiency when compared to a circuit
which is operated at the peak frequency all the time. Exam-
ples of such work include [10, 11]. Non-adaptive techniques
typically operate the circuit at multiple voltages—critical
paths of the circuit being implemented at higher voltages
when compared to the non-critical paths—or rely on circuit
implementation techniques like transistor sizing for energy
efficiency [3, 9, 17, 18]. A distinguishing feature of the these
techniques is that the correctness of the circuit and the op-
erations implemented by these circuits are not traded off for
energy efficiency. Some techniques which use circuit-level
timing speculation, do allow incorrect operation of circuit el-
ements, which are detected and corrected. Examples include
techniques where, in a voltage overscaled circuit—a circuit
that is operated below the safe voltage for a given frequency
of operation—a delay latch is utilized to detect circuit er-
rors for subsequent correction [5]. In other techniques, cir-
cuit level timing errors are not corrected at the circuit level,
rather techniques borrowed from signal processing is utilized
to correct such errors [7, 14, 16]. A distinguishing feature
of these set of techniques is that circuit errors are allowed,
but detected and corrected at the circuit, architecture and
application level. By contrast, in this work the associated
critical path delay of a circuit is violated by design for en-
ergy and performance efficiency. As a radical departure from
the traditional techniques, George et. al. [6] show how cir-
cuit level errors can be ignored if (i) the application level
impact is low and (ii) if such a trade off leads to dispropor-
tionate gains in energy efficiency. However, this technique
crucially relied on deeply scaled noise-susceptible cmos de-
vices and are not applicable to current day devices. On the
other hand, our work provides a detailed theoretical model
to trade off energy consumption to probability of correctness
through voltage overscaling, while taking into account the
number of distinct voltage levels available in practical imple-

189



mentations. We realize that in itself, an observation about
the fact that a circuit that violates its critical path delay,
can be used in a computation is straight forward if not triv-
ial. However our contribution is being able to quantify and
to show the amount of utility of such a circuit (Section 3),
and through preliminary empirical observations, further es-
tablish this fact (Section 4).

2. ABSTRACTING A MODEL
We first define a model for analyzing the energy-quality

of solution trade-off for a ripple carry adder, analogous to
the model which related energy to the probability of cor-
rectness in the CMOS domain [4]. Consider any variable x,
unless mentioned otherwise, a polynomial of degree n (or
size n) will be used to refer to any polynomial X which de-
notes anxn +an−1x+ · · ·+a1x+a0x

0 where the coefficients
a0, a1, · · · , an ∈ {0, 1}. The index i of any coefficient (or
correspondingly the degree of the corresponding monomial)
will be referred to the“position”of the coefficient. The value
of this polynomial at x = 2, denoted by X(2) is defined to
be its value or equivalently, the integer it represents. The
distance between two polynomials X and Y is defined to be
|X(2)−Y (2)|. Essentially X is the binary representation of
the integer X(2) and the distance is the absolute value of
the difference between the integers that the polynomials X
and Y represent.

Consider the Boolean function C : {0, 1}3 → {0, 1} where
C(a, b, c) is defined to be (a∧b)∨(a∧c)∨(b∧c), where ∨ and ∧
represents Boolean disjunction and conjunction respectively,
and a, b, c ∈ {0, 1}. Given two polynomials X = anxn +
an−1x

n−1+· · ·+a1x+a0x
0 and Y = bnxn+bn−1x

n−1+· · ·+
b1x+b0x

0, consider the operator 
 such that X
Y is defined
to be a polynomial Z = cn+1x

n+1 + cnxn + · · ·+ c1x+ c0x
0,

where

ci =

(
0 if i = 0

C(aj , bj , cj) for 1 ≤ i ≤ n + 1, where j = i − 1

Informally, the 
 operator evaluates the carries generated
by the coefficients of the polynomials X and Y under con-
ventional binary addition.

As a slight variation of Pippenger [12], a position i said to
generate a carry if ai = bi = 1 and a position i propagates a
carry if exactly one of ai, bi equals 1. A carry chain of length
k is said to originate at position i if the ith position generates
a carry, and k subsequent positions propagate a carry. A set
of k consecutive positions {i − 1, i − 2, · · · , i − k} will be
referred to as a carry block of size k at position i, if the
(i− k)th position generates a carry and all of the remaining
(k − 1) positions propagate a carry.

We note that if the coefficients of X, Y are chosen uni-
formly at random from the set {0, 1}, the probability that
the position i propagates a carry and there is a carry block
of length k at position i is (1/2)(1/2k−1)(1/4) = 1/2k+2.

We now incorporate delay with the computation of a carry
at any position i. Let a delay vector to be a vector of
length n where each element is a non-negative integer. Con-
sider a delay vector D of length n + 1, where D denotes
〈dn, dn−1, · · · , d0〉. Given this delay vector D, and two poly-
nomials X, Y of degree n, the result of “an addition under
the delay vector D with a total delay of D”, denoted by
X
D,DY will be defined to be the polynomial Z′ such that
Z′ = c′n+1x

n+1 + c′nxn + · · ·+ c′1x+ c′0, where c′0 = 0 and for

0 ≤ i ≤ n, c′i+1 = C′(ai, bi, ĉi, D). The function C′ is defined
to be

C′(ai, bi, ĉi, d̂) =

(
C(ai, bi, ĉi) if d̂ ≥ di

0 otherwise

where ĉi = C′(aj , bj , ĉj , d̂ − di) and j = i − 1.
We note that given X and Y of degree n, and a delay vec-

tor D which denotes 〈dn, dn−1, · · · , d1, d0〉, if D ≥Pi=n
i=0 di,

then X
Y ≡ X
D,DY . Thus 
D,D operator models the
case where the addition is performed with a total delay of D

(or frequency 1/D) and the computation of carry at any posi-
tion i is associated with a delay di and the sum of the delays
in the previous positions. In the conventional case of a ripple
carry adder of size n + 1, where each full adder is operated
with the same supply voltage v, (and hence operates with

the same delay d), the delay vector D̂ which corresponds
to this degenerate case is 〈d, d, d, · · · , d〉, and hence for con-
ventional correct operation of the adder, D ≥ (n + 1)d. If
D ≥ (n+1)d, for polynomials A, B of degree n, if Z = A
B
and Z′ = A
D,DB, Z(2) = Z′(2). On the other hand if
D < (n + 1)d, it might be the case that Z(2) �= Z′(2), and
this corresponds to the conventional uniform aggressive volt-
age scaling technique of performing addition.

Given a delay vector D such that D = 〈dn, dn−1, · · · , d1, d0〉,
the cost of performing 
D,D operation (or equivalently en-
ergy cost of 
D,D), denoted as E(X
D,DY ) will be defined
as

E(X
D,DY ) =

i=nX
i=0

1

d2
i

This cost scheme is based on the relationship between
switching time, supply voltage and switching energy. Since,
for cmos devices, switching time is inversely proportional to
the supply voltage and hence d ∝ 1

v
, and switching energy

E is proportional to the square of the voltage and hence
E ∝ v2, we have E ∝ 1/d2. For a conventional ripple carry
adder with no associated error, if the corresponding delay
vector D̂ of length n + 1 is 〈d, d, d, · · · , d〉 the energy cost of

an addition under D̂ with total delay (n + 1)d is (n + 1)/d2.
We define any polynomial X to be chosen uniformly at

random if the coefficients of X are chosen uniformly at ran-
dom from the set {0, 1}. Given a delay vector D and a
total delay D, if X and Y are polynomials of degree n cho-
sen uniformly at random, the expected magnitude of er-
ror of the operation 
D,D is defined to be the expectation,
ExpErr(D, D) = Exp[|Z(2) − Z′(2)|] where Z = X
Y and
Z′ = X
D,DY .

ExpErr(D, D) =Exp[|Z(2) − Z′(2)|]

=Exp

"˛̨̨
˛̨n+1X

i=0

(ci − c′i)2
i

˛̨̨
˛̨
#

(1)

≤Exp

"
n+1X
i=0

|(ci − c′i)2
i|
#

hence

ExpErr(D, D) ≤
n+1X
i=1

pi2
i (2)
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where pi is the probability that ci �= c′i. If ExpErr(D, D) is
the expected magnitude of error of the operation 
D,D and

ExpErr(D, D̂) is the expected magnitude of error of the oper-

ation 

D,D̂, then the relative magnitude of error R(D, D̂, D)

is defined to be

R(D, D̂, D) =
ExpErr(D, D̂)

ExpErr(D, D)

We note that practical considerations such as routing and
the limitation of the number of power planes, limit the num-
ber of levels of supply voltage in any cmos based implemen-
tation. Hence, in practice, any delay vector D of length
n + 1 will be considered to contain m “bins” (where m is
some constant and divides n + 1), where (n + 1)/m succes-
sive elements are equal. That is, if o = (n+1)/m, di = dj if
�i/o� = �j/o�. For example, for an addition operation of two
polynomials of degree 5, under a delay vector D of length
6 with 3 bins, D would be of the form 〈d5, d4, d3, d2, d1, d0〉,
where d0 = d1, d2 = d3 and d4 = d5.

We consider one such delay vector D, which we refer to
as the geometric delay vector of length n + 1 with m bins,
where D denotes 〈dn, dn−1, · · · , d1, d0〉, o = (n + 1)/m and
di = d(1 − 2−j)−1 where j = �i/o� + 1. Two delay vectors

D, D̂ of equal length are said to be of equal energy if for any
polynomial X, Y of degree n, E(X
D,DY ) = E(X


D,D̂Y ).
We define a uniform delay vector of length n+1 to be a vector
D̂ = 〈d̂n, d̂n−1, · · · , d̂1, d̂0〉 where for 0 ≤ i, j ≤ n, d̂i = d̂j .
In the experiments and results discussed in Section 4, three
cases are considered: (a) the conventional correct operation
of a ripple carry adder of size n. This corresponds to the
case of X


D,D̂Y where D̂ is a uniform delay vector and

D ≥ Pn−1
i=0 d̂i, (b) uniform aggressive voltage overscaling,

which corresponds to the case of X

D,D̂Y where D̂ is a

uniform delay vector and D <
Pn−1

i=0 d̂i and (c) non uni-
form (geometric) aggressive voltage overscaling, which cor-
responds to X
D,DY where D is a geometric delay vector

with m bins and D <
Pn−1

i=0 di. In these experiments, the
comparisons of interest are (i) in the two cases (b) and (c)

above, R(D, D̂, D) when E(X

D,D̂Y ) = E(X
D,DY ) and

(ii) the energy consumption of the two cases E(X

D,D̂Y ),

E(X
D,DY ) when R(D, D̂, D) = 1.
We now theoretically quantify the relative magnitude of

error R(D, D̂, D) when the operators 
D,D and 

D,D̂ are of

equal energy, or equivalently, E(X

D,D̂Y ) = E(X
D,DY ).

3. THEORETICAL FOUNDATIONS
To quantify the relative magnitude of error R(D, D̂, D),

we first derive a lower bound on the expected magnitude of
error ExpErr(D, D̂) of addition under a uniform delay vector
and an upper bound on the expected magnitude of error
ExpErr(D, D) of addition under a geometric delay vector of
length n with m bins when E(X


D,D̂Y ) = E(X
D,DY ).

Lemma 3.1. If D = 〈dn−1, dn−2, · · · , d1, d0〉 is a geomet-
ric delay vector of length n with m bins, whereas
D̂ = 〈d̂n−1, d̂n−2, · · · , d̂1, d̂0〉 is a uniform delay vector of

length n such that D and D̂ are of equal energy, then for
0 ≤ i ≤ n − 1 and a positive constant m,

d̂i > d

„
1 − 5

6m
− 25

72m2
+

1

m2m−1

«−1

Proof. The energy cost of addition of two polynomials
X, Y of degree n− 1, under the geometric delay vector D of
length n − 1 with m bins is:

E(X
D,DY ) =

n−1X
i=0

1

d2
i

=
n

md2

mX
i=1

„
1 − 1

2i

«2

=
n

md2

mX
i=1

„
1 − 2

2i
+

1

22i

«

=
n

md2

 
m −

mX
i=1

2

2i
+

mX
i=1

1

22i

!

Summing the geometric series,

E(X
D,DY ) =
n

md2

„
m − 2 +

1

2m−1
+

1

3
− 1

3.22m

«
hence

E(X
D,DY ) <
n

d2

„
1 − 5

3m
+

1

m2m−1

«
(3)

Since in the uniform delay vector, d̂i = d̂j for 0 ≤ i, j ≤
n − 1,

E(X

D,D̂Y ) =

n−1X
i=0

1

d̂2
i

=
n

d̂2
0

(4)

From (3) and (4) and from the fact that E(X

D,D̂) =

E(X
D,DY ),

n

d̂2
0

<
n

d2

„
1 − 5

3m
+

1

m2m−1

«

hence

d̂0 > d

„
1 − 5

3m
+

1

m2m−1

«−1
2

Expanding using Taylor series,

d̂0 > d

„
1 − 5

6m
− 25

72m2
+

1

m2m−1

«−1

Given D, a geometric delay vector of length n with m
bins and D̂ a uniform delay vector such that E(X


D,D̂Y ) =

E(X
D,DY ), we now bound the expected magnitude of error

ExpErr(D, D̂) from below.

Lemma 3.2. If D is a geometric delay vector of length n
with m bins whereas D̂ is a uniform delay vector such that D
and D̂ are of equal energy, the expected magnitude of error
of 


D,D̂, is at least 2s where

s =
5n

6m
+

25n

72m2
− n

m2m−1
− 2

D = nd, and m is a positive constant.
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Proof. Let D̂ denote 〈d̂n−1, d̂n−2, · · · , d̂1, d̂0〉. Then from

Lemma 3.1, for 0 ≤ i ≤ n − 1, d̂i > td where

t >

„
1 − 5

6m
− 25

72m2
+

1

m2m+1

«−1

Let Z = X
Y and Z′ = X

D,D̂Y , where Z = cnxn +

cn−1x
n−1 + · · · + c1x + c0 and Z′ = c′nxn + c′n−1x

n−1 +
· · ·+ c′1x + c′0. If X, Y are polynomials such that an−1, bn−1

propagate a carry and there is a carry block of length n/t,
at position n − 1, then c′n �= cn. The probability that for
polynomials chosen uniformly at random, an−1, bn−1 prop-
agate a carry and there is a carry block of length n/t, at

position n− 1 is (1/2)(n/t)+2. Hence from (1), the expected
magnitude of error is at least

2n 1

2
n
t
+2

= 2s

where s = 5n
6m

+ 25n
72m2 − n

m2m−1 − 2

We now get an upper bound for the expected magnitude
of error for addition under a geometric delay vector of length
n with m bins and a total delay D = nd.

Lemma 3.3. If D is a geometric delay vector of length n
with m > 3 bins, the expected magnitude of error of 
D,D,
is at most „

n − 5n

6m
+ 1

«
2

5n
6m

where D = nd and m is a positive constant.

Proof. Let D denote 〈dn−1, dn−2, · · · , d1, d0〉. From the
definition of a geometric delay vector of length n with m
bins, if o = (n)/m, di = d(1 − 2−j)−1 where j = �i/o� + 1.

Let D̂ =
P5n/(6m)

i=n−1 di. Then

D̂ =

5n
6mX

i=n−1

di

=

n
mX

i=n−1

di +

5n
6mX

j= n
m

−1

dj

=
n

m

mX
i=2

d

„
1 − 1

2i

«−1

+
n

6m
2d

=
nd

m

 
1

3
+

mX
i=2

„
1 +

1

2i − 1

«!

=
nd

m

 
1

3
+ m − 1 +

mX
i=2

1

2i − 1

!

For m > 3,
Pm

i=2
1

2i−1
<
Pm

i=2 1/(3.2i−2).

Since
Pm

i=2 1/(3.2i−2) = 1/3(2 − 1/2m−2),

D̂ <
nd

m

„
m − 1 +

1

3
+

2

3
− 1

3.2m−2

«
hence,

D̂ < nd

Hence the sum of the delays from the 5n/(6m)th position
to the n − 1th position is less than nd. Hence for addition

under the delay vector D with total delay D, for 5n/(6m) ≤
i ≤ n− 1, if c′i �= ci then i− 1th position propagates a carry
and there exists a carry block of length q ≥ i− 5n/(6m)− 1
at position i − 1. For two polynomials X and Y chosen
uniformly at random, the probability that i − 1th position
propagates a carry and there exists a carry block of length
q ≥ i−5n/(6m)−1 at position i−1 is at most (1/2i−5n/(6m)).

Hence from (2), the expected magnitude of error is at most

nX
i= 5n

6m

2i

„
1

2i− 5n
6m

«
=

„
n − 5n

6m
+ 1

«
2

5n
6m

When D is a geometric bias vector of length n with m bins
and when E(X
D,DY ) = E(X


D,D̂Y ), we have obtained

a lower bound for ExpErr(D, D̂) and an upper bound for
ExpErr(D, D). Using this the relative magnitude of error

R(D, D̂, D) may be computed1.

Theorem 1. If D is a geometric delay vector of length n
with a constant number m > 4 of bins whereas D̂ is a uni-
form delay vector of length n such that D and D̂ are of equal
energy, then the relative magnitude of error R(D, D̂, D) is

Ω(2n/c), where c > (72m22m−1/(2m−125 − 72m)) and D =
nd.

Proof. Immediate from Lemma 3.2 and Lemma 3.3, and
the fact that the relative magnitude of error

R(D, D̂, D) =
ExpErr(D, D̂)

ExpErr(D, D)

4. EMPIRICAL RESULTS
Based on the theoretical foundations introduced in Sec-

tion 3, in this section, we present practical implementation
techniques, provide empirical results and relate the theoret-
ical foundation to the dsp domain. The erroneous behavior
and energy efficiency of the circuits considered in this work
is due to the mismatch of the critical path delay and the ac-
tual frequency with which the circuit is operated. We first
analyze the behavior of a ripple carry adder and later that
of a circuit that implements the discrete Fourier transform
(dft) built from ripple carry adders. We characterize the
energy and (erroneous) behavior of the ripple carry adder as
well as the dft in three contexts:

• Case (a) correct operation (the baseline), where the
operating frequency is less than that determined by
the critical path delay of the circuit. In the context
of a n bit ripple carry adder, if the delays of the indi-
vidual full adders is represented by the uniform delay
vector D = 〈dn−1, dn−2, · · · , d1, d0〉, where di = d, this
corresponds to the case where D > nd.

1In the reviewed version of this paper, the relative

magnitude of error was defined to be ExpErr(D, D̂) −
ExpErr(D, D). Based on reviewer comments and feedback,
rather than a difference measure, the relative magnitude of
error has been changed into a ratio measure.
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• Case (b) uniform aggressive voltage overscaling where
all of the constituent full adders are operated with
identical supply voltages, but the ripple carry adder
itself is operated with a delay less than that of its crit-
ical path delay. That is, D is less than nd.

• Case (c) non uniform voltage overscaling, where some
full adders are operated at a higher voltage than the
others, and the entire ripple carry adder is operated
with a delay less than that of its critical path delay.
Hence, again D is less than the sum of the delays of the
individual full adders. In our experiments, we consider
delay vectors with 4 bins.

In all of these cases, the metrics of interest are the energy
consumed and the error, quantified in terms of the average
magnitude of (absolute) error in the case of a ripple carry
adder, and the signal to noise ratio (snr) in the context of
the dft. The comparisons of interest are

• Case (i) the energy consumption and the average mag-
nitude of error of case (b) and case (c) above, when
compared to the baseline.

• Case (ii) for identical energy and operating frequen-
cies of case (b) and case (c), their average magnitude
of errors (and snr). This was defined to be the rela-
tive magnitude of error in the context of a ripple carry
adder in the theoretical analysis.

• Case (iii) for identical operating frequency and error
(or snr) magnitude, the energy consumption of case
(b) and case (c).

We call this relationship between error, energy and operating
frequency, the energy-error relationship.

4.1 The Energy-Error Relationship of a
Ripple Carry Adder

We consider the ripple carry adder to be composed of a
chain of full adders of length n, where n is the length of the
input operands. In our experiments, a ripple carry adder of
length 16 is considered. The behavior of an individual full
adder is modeled using hspice using TSMC 0.25μm libraries
to derive the delay and energy consumption for supply volt-
ages in the range 0.7v to 2.5v. The behavior of a ripple carry
adder is modeled using a C based behavioral simulator which
utilizes the data generated by the hspice simulations.

To study the energy-error relationship for various oper-
ating frequencies and supply voltage configurations, the av-
erage error rate of the output and the expected magnitude
of error for the three cases—case (a), case (b) and case (c)
described above—is modeled using the behavioral simulator
for varying operating frequencies. Three ranges of operating
frequencies are of interest. If D is the delay vector of a non
uniformly voltage scaled adder, and if dn−1 is the delay of the
fastest full adder and d0 is the delay of the slowest full adder,
the first range of operating frequencies of interest is between
dn−1 and 2dn−1 − ε, or equivalently, dn−1 ≤ D ≤ 2dn−1 − ε.
We shall refer to this case as the “first range of operating
frequencies”. Similarly a second range of interest is the case
where 4dn−1 ≤ D ≤ 8dn−1 and finally the range of operating
frequencies such that d0 ≤ D ≤Pn−1

i=0 di.
For these three ranges of operating frequencies, the en-

ergy and error magnitude of a 16-bit ripple carry adder is
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Figure 2: The change in the average magnitude of
error with respect to the operating delay D
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Figure 3: Average magnitude of error with respect
to the energy of operation for D = 0.8ns (in the range
dn−1 ≤ D ≤ 2dn−1 − ε)
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Figure 4: Average magnitude of error with respect
to the energy of operation for D = 2.3ns (in the range
4dn−1 ≤ D ≤ 8dn−1)
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Figure 5: A two point discrete Fourier transform
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Figure 6: Average magnitude of error with respect
to the energy of operation for D = 2.0ns (in the range
d0 ≤ D ≤Pn−1

i=0 di)

derived for various voltage scaling techniques. To compute
the average magnitude of error, this adder is operated on
10000 pairs of numbers derived from a uniform distribution.

4.1.1 Results and Discussion
In all the three ranges, we observe certain general trends.

For a specific voltage configuration, as illustrated in Fig-
ure 2, the average magnitude of error decreases with de-
creasing operating frequency. For a specific voltage con-
figuration, the average energy consumption increases with
operating delay as higher operating delays allow for more
transitions in the constituent full adders as carries propa-
gate across positions. Similarly, as illustrated in Figure 3,
Figure 4 and Figure 6, for a fixed operating frequency, the
magnitude of error decreases with increasing energy invest-
ment, since increasing the energy investment decreases the
critical path delay. For a fixed operating frequency and en-
ergy consumption, the non uniformly voltage scaled adder,
achieves a lower magnitude of error than the uniformly volt-
age scaled adder, since errors are confined to the lower or-
der bits and hence are of a lesser magnitude. A histogram
which compares the magnitude of errors and their relative
frequency of occurrence is presented in Figure 7(a) and (b),
which shows that in the non uniformly voltage scaled case,
errors of a lesser magnitude are quite frequent, whereas error
of a higher magnitude are quite rare.

Considering the first range of operating frequencies where
dn−1 ≤ D ≤ 2dn−1 − ε and referring back to Figure 3,
the non uniformly overscaled case (case (c)) achieves up to
a 2.43x reduction in energy consumption when compared
to uniformly scaled configuration (case (b)) for similar er-
ror magnitude of 8156.63 and operating frequency of 0.8ns.
When the operating frequency is in the first range, where
dn−1 ≤ D ≤ 2dn−1−ε, the ripple carry adder yields the best
energy savings over the baseline, since fastest full adders
switch only once and the rest may not have completed even
one computation. In this context, since the operating fre-
quency is much higher than that determined by the critical
path delay—the ratio of the critical path delay to the oper-
ating delay D is 23.5 in the case considered in Figure 3—the
average (absolute) magnitude of error when compared to the
baseline can be as high as about 26894.

For operating frequencies in the second range, when the
delay of operation of the circuit 4dn−1 ≤ D ≤ 8dn−1—and
is greater than the sum of the delays of the full adders in
the fastest bin in the non-uniformly overscaled case—the
non-uniformly voltage overscaled case has an energy sav-
ings of about 1.49x over the uniformly overscaled configura-
tion for similar error magnitude of 1030. Since in this case
the frequency of operation is lesser than the case considered
above—in the case considered in Figure 4, the ratio of the
critical path delay to the operating delay is about 8.5—we
note that the lowest average magnitude of (absolute) error
that can be achieved has decreased as shown in Figure 4.

Finally, for the third range of operating frequencies d0 ≤
D ≤ Pn−1

i=0 di, considering the faster operation where D =
2ns, case (c) achieves a 1.86x reduction in energy consump-
tion over case (b). Since the operating frequency is higher
than that of the representative example considered above,
for a similar error magnitude of about 1030, the energy con-
sumption of case (b) as well as case (c) is higher.

4.2 Applying the Lessons Learned From the
Adder to Audio and Image Data in dft

To demonstrate the utility of our voltage overscaling tech-
nique, we build a circuit which implements the discrete Fourier
transform. Discrete Fourier transform is a mathematical
technique that transforms a signal in time domain to the
frequency domain. The input is a sequence of n complex
numbers x0, x1, · · · , xn−1 and is transformed into the se-
quence of n complex numbers y0, y1, · · · , yn−1, where for
0 ≤ k ≤ n − 1,

yk =

n−1X
l=0

xie
−2πjkl

n (5)

We have considered a 2-point dft, where each dft oper-
ation is performed on two subsequent values in time. Hence
the dft formula reduces to

y0 = x0 + x1 and y1 = x0 − x1 (6)

and is illustrated in Figure 5
To study the energy and signal to noise ratio (snr) of dft

operations, the behavioral simulator is extended to simulate
a dft circuit and this circuit is simulated using representa-
tive data derived from audio files and images. Each simu-
lation of a dft described in this section consists of about

194



 0

 10

 20

 30

 40

 50

 0  200  400  600  800  1000

R
el

at
iv

e 
fr

eq
ue

nc
y 

(x
 1

00
0)

Magnitude of error
(b)

Non uniform scaling

 0

 10

 20

 30

 40

 50

 0  200  400  600  800  1000

R
el

at
iv

e 
fr

eq
ue

nc
y 

(x
 1

00
0)

Magnitude of error
(a)

Uniform scaling

Figure 7: Error magnitude and the relative fre-
quency for (a) the uniformly voltage scaled case and
(b) the non uniformly voltage scaled case

1000000 operations of the individual full adders, and the
frequency of operation of the circuit is confined to the third
range of operating frequencies. In the context of case (b)
and case (c) above, after the dft is computed the inverse
dft of the output is computed using a conventional correct
technique. This is compared with the original input to com-
pute the signal to noise ratio snr. Since 2′s complement
addition is present in the dft data and since the operating
frequency we consider is less, for increasing the efficiency of
simulation, the simulation is performed in the granularity of
a full adder and the internal state of a full adder as char-
acterized by the signal values of the individual gates is not
maintained.

4.2.1 Results and Discussions
Based on the insights obtained from the experiments with

the ripple carry adder, which indicate the conditions under
which the greatest energy savings of case (c) over case (b)
can be achieved for a low average magnitude of error of
case (c) over the baseline, we perform the dft experiment
to quantify the energy savings as well as the improvement
of snr of the non-uniformly voltage overscaled case over a
uniformly overscaled case.

For a operating delay of 12ns for the entire circuit which
implements the dft operation, in the context of the dft,

(a) (c)(b)

Figure 8: (a) Conventional correct operation (base-
line) (b) Non uniformly voltage overscaled case, with
saving of 21.7% in energy when compared to the
baseline (c) Conventional uniformly voltage over-
scaled case for the same energy as (b)

the non uniformly voltage overscaled case achieves a snr of
19.63dB whereas for identical operating frequency and en-
ergy consumption, the signal to noise ratio in the context of
uniform aggressive voltage overscaling is 5.79dB. Thus non-
uniform voltage overscaling yields an improvement of 3.4x
in the snr when compared to conventional uniform voltage
scaling. If the energy investment in the non-uniform voltage
scaling context is lowered such that its snr matches that of
case (b), the non uniformly overscaled technique achieves a
27.2% savings in energy consumption when compared to the
uniformly scaled case.

In Figure 8, we have presented a visual representation of
an image processed with dft and inverse dft operations.
Figure 8(a) represents the conventional correct operation
and serves as the baseline, Figure 8(b) represents the non
uniformly voltage overscaled case, which achieves a saving
of 21.7% in energy when compared to the baseline, with the
same operating frequency and a slight degradation in the
quality of the image. Finally for a 21.7% savings in energy
and the same operating frequency, Figure 8(c) represents the
conventional uniformly voltage overscaled case.

5. CONCLUSIONS AND FUTURE
DIRECTIONS

We have demonstrated the value of probabilistic design
which combines two key techniques (i) voltage overscaling
and circuit level timing speculation, and (ii) multiple sup-
ply voltages, for energy efficient computing. Our technique
combines good expected case behavior with the value of bits
(and hence the circuit elements computing them), to arrive
at solutions with “somewhat” erroneous arithmetic for en-
ergy efficient computation without any degradation in per-
formance. The salient features of this work are a thorough
theoretical characterization with energy and error guaran-
tees, and a practical implementation methodology in cur-
rent day technology generations. This work can be extended
along three key directions (i) A theoretical analysis for opti-
mal assignment of supply voltage and a technique to perform
such optimization given a circuit, the list of available supply
voltage levels, a characterization of the workload and a no-
tion of the value computed by the underlying circuit, would
be of great utility and importance. (ii) An extension of this
technique to other adder architectures and arithmetic primi-
tives and based on this, (iii) An extension of this technique to
study other dsp primitives such as the discrete cosine trans-
form and other multimedia compression and decompression
techniques would be of value.
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