
Efficient Vectorization of SIMD Programs with Non-aligned
and Irregular Data Access Hardware

Hoseok Chang
Seoul National University

599 Gwanak-ro
Gwanak-gu, Seoul, Korea
chs@dsp.snu.ac.kr

Wonyong Sung
Seoul National University

599 Gwanak-ro
Gwanak-gu, Seoul, Korea
wysung@snu.ac.kr

ABSTRACT
Automatic vectorization of programs for partitioned-ALU
SIMD (Single Instruction Multiple Data) processors has been
difficult because of not only data dependency issues but also
non-aligned and irregular data access problems. A non-
aligned or irregular data access operation incurs many over-
head cycles for data alignment. Moreover, this causes diffi-
culty in efficient code generation and hinders automatic vec-
torization. In this paper, we employ special memory access
hardware for improving the performance of SIMD proces-
sors; one is the split line buffer and the other is the packing
buffer. The former solves the non-aligned memory access
problem, while the latter simplifies irregular and stride data
access. The addition of these hardware units not only re-
quires very small changes to the instruction set architec-
ture but also contributes to the significant performance im-
provement by vectorizing more loops and reducing the over-
head cycles. We have also developed an auto-vectorization
compiler which utilizes these special hardware units. Ex-
periments have been conducted to compare the proposed
method with the conventional one, which show 50% increase
in the number of vectorized loops and 77% increase in the
total performance of an MPEG2 encoder program.

Categories and Subject Descriptors
B.3.3 [Memory Structures]: Performance Analysis and
Design Aids; D.3.4 [Programming Languages]: Proces-
sors—Optimization

General Terms
Design, Performance

Keywords
SIMD, split line buffer, packing buffer, non-aligned access,
irregular access, vectorization, compiler

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

Table 1: Statistics of SIMD memory accesses in
MPEG2 encoder with a 64-bit SIMD processor

Function Number of
aligned access

Number of non-
aligned access

ME 2.67M (20%) 10.73M (80%)
MC 0.04M (25%) 0.12M (75%)
DCT 2.63M (51%) 2.46M (48%)
IDCT 0.15M (43%) 0.41M (57%)

Quant/IQuant 0.07M (33%) 0.14M (66%)
VLC 0.01M (38%) 0.02M (62%)
Total 5.73M (29%) 13.88M (71%)

1. INTRODUCTION
The SIMD (Single Instruction Multiple Data) processor

architecture not only requires a relatively simple hardware,
but is also very effective in executing programs containing
large data-level parallelism such as multimedia applications.
In recent days, the SIMD architecture adopting partitioned
data-paths is widely employed in both personal computing
and embedded processors such as Intel Pentium 4, Texas
Instruments TMS320C64x, Intel PXA27x and ARM Cortex
[2][3][12][20]. The partitioned data-path can process multi-
ple aligned data elements using a single processor instruc-
tion. However, the data elements are not always stored in
an aligned or regular manner. Complex data access in SIMD
processors can be categorized into non-aligned and irregu-
lar access operations. In the non-aligned data access, the
start address is not on the alignment boundary, thus shift
operations are needed for alignment. The irregular data ac-
cess is more complex because the vector elements are not
in order although their addresses are usually within some
small bound. Table 1 shows the distribution of aligned and
non-aligned/irregular data access in the MPEG2 encoder
program when executed with a 64-bit SIMD processor. We
can find that 71% of SIMD memory access operations are
non-aligned or irregular. Not only additional memory ac-
cess operations but also special instructions, such as pack
and shuffle, are needed for aligning the data. Moreover,
these overhead operations add another level of complexity
for automatic vectorization.

Several auto-vectorizing compilers such as IBM’s XL com-
piler, Intel compiler, ARM’s RealView compiler, and GNU’s
gcc compiler have been introduced for efficient SIMD code
generation [4][7][17][19]. However, this software based ap-
proach cannot easily eliminate all overheads. Even manually
optimized SIMD programs contain many overhead instruc-

167

tions for data alignment. Moreover, when an SIMD compiler
is not certain about the data alignment, it usually generates
inefficient scalar codes to avoid dynamic alignment overhead.

One of the alternate approaches for improving the code
quality is to employ special hardware for automatic data
alignment. In our proposed method, we have added two
hardware units to an SIMD processor to reduce alignment
overhead; one is the split line buffer for non-aligned data,
and the other is the packing buffer for irregular data. The
split line buffer consists of one line buffer and a merge unit.
The proposed packing buffer contains a small size multi-port
memory block for which multiple addresses are provided by
a vector index register. Since the size of the packing buffer
is small, it neither requires complex hardware resources nor
increases the CPU cycle time. We have also developed a
compiler framework to utilize the small sized packing buffer.
This compiler framework also supports performance mea-
surements, for which multimedia benchmarks are used.

The rest of this paper is organized as follows. Section 2
briefly describes the related work. The non-aligned access
problem and supporting hardware are presented in Section
3. The irregular access problem and the packing buffer ar-
chitecture are explained in Section 4. The compiler frame-
work is discussed in Section 5. The performance evaluation
results are shown in Section 6. Finally concluding remarks
are made in Section 7.

2. RELATED WORKS
There have been many research works on improving the

SIMD architecture to overcome the memory access bottle-
necks. The classical pipelined vector processors employed
interleaved memory units to increase the bandwidth; how-
ever the memory units suffered from bank conflicts. Some
pipelined vector processors equipped the gather and scat-
ter unit that stores the data address sequence at a separate
buffer. This separate buffer is used for the vectorization of
irregular data access operations such as those found in the
sparse matrix computation [6]. Recently, the SIMdD (Single
Instruction Multiple disjoint Data) architecture contains a
multi-port memory unit which allows accessing disjoint data
[18]. Although the SIMdD supports non-aligned and irreg-
ular data access efficiently, it is based on costly multi-port
memory. The other memory architectures such as multi-
bank scratch-pad memory and dual-bank cache memory are
studied in [8][5]. The multi-bank memory units perform
non-aligned and stride access efficiently, while the dual-bank
cache can efficiently support only non-aligned access. A de-
coupled architecture named as MediaBreeze was proposed in
[22]. The MediaBreeze contains an execute processing unit
and an access processing unit. While the execute processing
unit is carrying out the SIMD arithmetic operations, the ac-
cess processing unit separately conducts the data access and
alignment.

Many compiler algorithms have been studied for reduc-
ing the memory access overhead problems. In [10], several
strategies are proposed to minimize the number of shift oper-
ations needed to remove the alignment offset of vector data.
In [25], the runtime variation of the alignment offset is con-
sidered. The alignment of array access in a loop can be
simplified by employing loop transformation methods. The
loop peeling transformation is a popular method for han-
dling non-aligned data access [15]. In order to auto-vectorize
interleaved data access, another proposed method is to gen-

memory unit

A[0] A[1] A[2]
A[8] A[9] A[10]

A[3]
A[11]

A[4] A[5] A[6]
A[12] A[13] A[14]

A[7]
A[15]

A[0] A[1] A[2]
A[8] A[9] A[10]

A[3]
A[11]

A[4] A[5] A[6]
A[12] A[13] A[14]

A[7]
A[15]

2 aligned LOAD operations

2 SHIFT
operations

A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] 1 OR
operation

A[2] A[3] A[4]

0 0 0

A[5]

0

A[6] A[7] 0

0 0 A[8]

0

A[9]

alignment boundary

1 VALIGN
instruction

Figure 1: Example of non-aligned access

Merge unit

Select & shift

Vector data

Cache
memory

Cache line
Cache line

Cache line Cache line

Split line buffer

Figure 2: Single-bank cache with a split line buffer

erate overhead instructions when the access stride is powers
of 2 [14]. In addition, most of SIMD processors provide
pack, permutation and shuffle instructions to arrange data
within vector registers in various patterns. The methods for
generating pack or permutation instructions are presented
in [14][21]. Although these compiler algorithms reduce the
overhead of complex data access, the performance is not
always satisfactory due to the inherent hardware related re-
strictions on data access.

3. NON-ALIGNED DATA ACCESS AND
HARDWARE SUPPORT

Non-aligned data access is very frequent in multimedia
application programs. The frequency of non-aligned access
increases as the width of SIMD ALU lanes widens. In most
programs, non-aligned data access is much more frequent
than irregular data access.

In simple SIMD processors, a non-aligned data read re-
quires an extra load followed by data manipulation opera-
tions, which include shifting, masking, and merging of two
vector data. An example of non-aligned data access is shown
in Fig. 1.

Non-aligned data access causes difficulties for efficient auto-
vectorization. The alignment of array access in a loop can
be decided by the base address of the array and the offset

168

Cache
memory

Odd bank

Merge unit

2X2 switch

Select & shift

Cache
memory

Cache line Cache line

Cache line Cache line

Vector data

Cache line Cache line

Even bank

Figure 3: Dual-bank cache with non-aligned access
support

value obtained from the induction variable analysis. If the
alignment of a data access is known at compile time, the
compiler can generate overhead instructions when needed.
However, in many cases, the alignments information is not
available at compile time. For example, if the array to be
accessed is passed from a caller function, the base address
cannot be known. In this case, even if the data is actually
aligned, the compiler should generate overhead instructions
handling the alignment offset dynamically. Since dynamic
offset compensation is much more complex, many vector-
ization candidate loops are not auto-vectorized. Therefore,
the hardware support for non-aligned access is critical for
efficient auto-vectorization.

In order to support non-aligned access in hardware, a ‘se-
lect and shift’ unit is needed for arranging the vector data.
The cache memory structure equipping a ‘select and shift’
unit with a split line buffer is shown in Fig. 2. The aligned
vector data always resides within a cache line, however, the
non-aligned vector may be laid across the cache line bound-
ary. To handle the cache line split situation, the split line
buffer is used [26]. When the vector data spans through two
cache lines, the split line buffer stores one cache line tem-
porarily while the other one is being accessed. Then, those
two cache lines are merged to produce the desired vector
data. Although the split line buffer does not alter the exist-
ing cache structure much, it needs additional cycles in case
of the cache line split.

The other hardware architecture for solving the non-aligned
access problem is the dual-bank cache, the structure for
which is shown in Fig. 3 [5][11]. The dual-bank cache is
composed of odd and even memory banks. If the desired
vector spans across the cache line boundary, the addresses
for even and odd banks are calculated. The even/odd bit in
the address indicates the first bank that holds the beginning
part of the vector. The other bank stores the remaining part
of the vector. The two banks are accessed in parallel and the
two outputs are merged into a vector in the merge unit. The
dual-bank cache has a performance advantage when both
cache lines are hit because of simultaneous access of two
cache lines. As the cache line size increases, the possibility
of cache line split becomes lower; this applies both for the
split line buffer cache and the two-bank cache. The cache

0

0.1

0.2

0.3

0.4

0.5

0.6

8 16 32 64 128 256

Ca
ch

e l
ine

 bo
un

da
ry

cro
ss

rat
e

cache line size (bytes)

Figure 4: Cache line boundary cross rate according
to the cache line size

line boundary cross rate in the MPEG2 encoder is shown in
Fig. 4. The rate drops rapidly when the cache line is longer
than 16 bytes. Since the additional overhead of sequential
load in the split line buffer cache is not significant when the
cache line boundary cross rate is low, we have employed the
split line buffer cache in our proposed mechanism.

4. IRREGULAR DATA ACCESS AND HARD-
WARE SUPPORT

The signal flow diagram of Chen-Wang DCT is displayed
in Fig. 5 (a) [24]. There exists a significant amount of
data parallelism in it because each step of DCT contains
common arithmetic operations. However, the data access
is irregular, thus several special instructions are needed for
preparing vectors in desired patterns and extra registers are
also required for storing intermediate results. Irregular ac-
cess is also shown in table-based arithmetic, in which the
access pattern of data is dependent on the input. Due to
the large overhead of arranging such access, it is very diffi-
cult to vectorize basic blocks containing irregular access in
conventional SIMD processors.

In order to vectorize irregular data access, we adopt a
small multi-port memory unit with an index register which
is shown in Fig. 6. For an irregular data access in an ar-
ray, we store the array indexes into the index register, and
conduct a SIMD load with the input operands of the base
register and the index register. The address of each data
element is generated by adding the base address and the in-
dex value. Then, the calculated addresses are sent to the
multi-port memory and the desired vector is obtained. The
multi-port memory needs to be integrated into the conven-
tional memory system to obtain a high performance gain
with a small capacity. This hardware support is named as
the packing buffer. The size of the packing buffer needs not
be large. About the size of 128 bytes is enough for MPEG2
video encoding.

The packing buffer can be managed in two different ways;
one is as an on-chip memory block and the other is as cache.
When the packing buffer is used as on-chip memory, a dy-
namic memory management scheme is needed. The dy-
namic memory management software, which includes copy
and copy-back functions, is supported at the developed SIMD

169

x[0]

x[8]

x[16]

x[24]

x[32]

x[40]

x[48]

x[56]

blk[0]

blk[32]

blk[16]

blk[48]

blk[8]

blk[40]

blk[24]

blk[56]

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

step #1 step #2 step #3 step #4

(a) Simplified signal flow diagram of Chen-Wang
DCT in vertical way

for (i = 0; i < 8; i ++) {
…
blk[0] = (x[0]+x[8])>>8;
blk[8] = (x[32]+x[56])>>8;
blk[16] = (x[16]+x[24])>>8;
blk[24] = (x[48]+x[40])>>8;
…

}

(b) C source code from 8×8 Chen-
Wang DCT

Figure 5: Example of irregular data access

r0
r1
r2

scalar register
(base address)

index register
(offsets)

memory vector register

+ + + +

vr[2] vr[3]vr[0] vr[1]

multi-bank
memory

ir[2] ir[3]ir[0] ir[1]

dataaddr.

x[7]
x[3]
x[0]
x[8]

x+7
x+3
x+0
x+8

Figure 6: Index register-based 4-port memory

compiler framework. Although this scheme needs an extra
software overhead, its operation at runtime is simple and
efficient because it provides a separate address space to the
packing buffer and there is no need of concerning the co-
herency problem.

When the packing buffer operates as cache, it needs a tag
memory block and tag-comparing logic in addition to the
multi-port memory with the index register. Because of this,
it can be called the packing cache. The structure of the
cache memory system including the packing cache is shown
in Fig. 7. When an irregular data access is requested, the
base address and the index values are sent to the packing
cache and then the corresponding upper bits are compared
with tags. In order to simplify the tag compare logic, the
cache line in the packing cache needs to be large enough to
cover the whole range of the index. If each index is i-bits,
the cache line needs to be 2i+1 bytes to make room for entire
indexed data. For example, when the index offset is repre-
sented in a 6-bit unsigned integer, the packing buffer should
contain at least 64 data elements, which corresponds to 128
bytes for 16 bit data. The packing cache structure has a co-
herency problem with the cache memory. For coherency, the
packing cache is accessed even in ordinary memory access,
and the data is served only when the desired data already
exists in the packing cache. The packing cache does not
need copy or copy-back functions, which are automatically
conducted. Although the packing cache can be more stable
in dynamic program execution environments, it needs extra
tag comparison for every memory access. Thus it is desired
to inhibit this cache when not needed.

5. COMPILER FRAMEWORK
A compiler framework that supports the split line and

the packing buffers has been developed based on the GCC
v.4.2 [8]. The vectorizer of GNU’s GCC v4.2 are depicted
in Fig. 8. An inner-most loop that has a larger, or equal,
loop count than the number of SIMD ALU lanes becomes
a vectorization candidate loop. The vectorization steps are
composed of two phases. The first contains the vectorization
analysis step that examines dependence and access pattern
to filter out loops that cannot be vectorized. If a loop passes
the vectorization analysis phase, the loop is converted into
SIMD codes in the vectorization transform phase.

The first step of the vectorization analysis phase is to find
a candidate loop and analyze the data access pattern which
can be found with the induction variable analysis. Next,
the compiler tests the scalar variables in a loop and finds
the reduction operations such as accumulation or summa-
tion of unit data. After that, the data dependency test is
conducted to find dependency relations among loop itera-
tions that might prohibit vectorization. The next step is to
analyze the memory access patterns. Generally, most of the
array indexes and pointer offsets are derived from the in-
duction variables in the loops. The stride and the alignment
of memory accesses are evaluated by the induction variable
analysis. The alignment analysis step can be skipped be-
cause the designed memory system supports non-aligned ac-
cess as efficiently as the aligned one. In conventional SIMD
processors with non-aligned access support, even though the
non-aligned access instructions allow aligned addresses also,
the compiler should maximize the usage of aligned load in-
structions for obtaining good performance.

170

Merge unit

Select & shift

Vector data

Cache memory

Cache line
Cache line

Cache line Cache line

Split line buffer

tag
memory

Vector data

multi-port cache memory

tag
memory

To processor

tag offset
0~3

tag

tag + 1

offset

Cache line

ir[0~3]

base addr.

+

address

packing cache

Figure 7: Cache memory system for non-aligned and irregular data access���������� ��	 �	�
�� ��
������ ���� ����������
������ ������ ������
������ ���� ��� � �����������
������ ���� ��� � ��������
������ ���� ��� � ���������
������ �������������� ����� ��	 � ��	� ��!
"#�� �� ������� ������$��� �� ��������

Figure 8: Automatic vectorization part in GCC v4.2

The examples in Fig. 9 illustrate several vectorization
techniques for handling non-aligned data access. The orig-
inal C code in Fig. 9 (a) shows that the array ‘in’ is ac-
cessed in a non-aligned manner, and the alignment offset is
varying because it is a function of the index for the outer
loop, ‘j.’ Non-aligned access can be removed by a special
data layout or program restructuring. Fig. 9 (b) shows a
code that eliminates non-aligned access by using multiple
versions of coefficients. The constant versioning is one of
frequently used manual assembly techniques. Although this
needs more memory space, it shows a much better perfor-
mance. Fig. 9 (c) shows a vectorized program using the
dynamic loop peeling technique. Both prologue and epi-
logue codes are included. The loop peeling is also employed
in many SIMD compilers. Both the constant versioning and
the loop peeling are used in commercial performance opti-
mized libraries [1]. If non-aligned access is supported by
hardware, the vectorization is the simplest and best among
the cases as examplified in Fig. 9, which shows that the
loop can be fully vectorized without employing advanced
loop transformations.

With the proposed packing buffer, the compilers can even
vectorize loops containing irregular data access. The ex-

for (j = 0; j < 1000; j ++) {
for (i = 0; i < 128; i ++) {
out[j] += in[j + i] * c[i];

}
}

(a) Original C code

c_v[0] = {c[0], c[1], …, c[127], 0, 0, 0, 0};
c_v[1] = {0, c[0], c[1], …, c[127], 0, 0, 0};
c_v[2] = {0, 0, c[0], c[1], …, c[127], 0, 0};
c_v[3] = {0, 0, 0, c[0], c[1], …, c[127]};

for (j = 0; j < 1000; j +=4) {
for (i = 0; i <= 128; i += 4) {

out[j] = mac(out[j], in[j + i:j + i + 3],
c_v[j % 4][i: i + 3]);

out[j + 1] = mac(out[j + 1], in[j + i:j
+ i + 3], c_v[j % 4][i: i + 3]);

out[j + 2] = mac(out[j + 2], in[j + i:j
+ i + 3], c_v[j % 4][i: i + 3]);

out[j + 3] = mac(out[j + 3], in[j + i:j
+ i + 3], c_v[j % 4][i: i + 3]);
}

}

(b) Vectorized by constant versioning

for (j = 0; j < 1000; j ++) {
for (i = 0; (i + j) % 4 != 0; j ++) {
out[j] += in[j + i] * c[i];

}
for (; i < 128; i += 4) {

out[j] = mac(out[j], in[j + i:j + i + 3],
c[i: i + 3]);
}
for (; i < 128; j ++) {
out[j] += in[j + i] * c[i];

}
}

(c) Vectorized by dynamic loop peeling

for (j = 0; j < 1000; j ++) {
for (i = 0; i < 128; i += 4) {

out[j] = mac(out[j], in[j + i:j + i + 3],
c[i: i + 3]);
}

}

(d) Vectorized with hardware support of non-
aligned access

Figure 9: Vectorization of FIR filter kernel

171

generating index register

+

x 1

+

x 0

+

load load

+

x 7

+

x 4

+

load load

+

x 5

+

x 6

+

load load

ir[2] ir[3]ir[0] ir[1] ir[2] ir[3]ir[0] ir[1]

mov ir, #0x0426
vload v0, x, ir
mov ir, #0x1735
vload v1, x, ir
vadd v2, v0, v1

……

clustering statements

blk[0] = x[0] + x[1];
blk[1] = x[4] + x[7];
blk[2] = x[2] + x[3];
blk[3] = x[6] + x[5];

C source code
Generated code

Figure 10: Vectorization flow for irregular data access

ample of irregular access vectorization is described in Fig.
10. Firstly, the compiler searches for the statements that
contain the identical operations. Secondly, if the searched
statements uses the same operand array with a common
base address, these statements can be clustered and trans-
lated to SIMD codes. The packed data are addressed by the
elements of the index register. The compiler needs to gen-
erate instructions that manage the index register, where the
index register values are obtained by the induction variable
analysis.

The start and the end addresses of data needed for the
packing buffer are also calculated. In previous on-chip mem-
ory management works [13][23], a data peeling algorithm is
used to accommodate arrays larger than the on-chip mem-
ory size. In our case, data peeling is not employed because
the range of irregular access is small.

The examples in Fig. 11 show vectorization results for the
Chen-Wang DCT code in Fig. 5 (b) which contains irregular
data access. In a conventional SIMD case, the operand vec-
tors need to be rearranged with pack and shuffle instructions.
The pack instruction merges two vectors into one and the
shuffle instruction changes the order of the elements within
a vector. In the case of the packing buffer or the packing
cache, the rearrangement is conducted using the index reg-
ister instructions. The contents of the packing buffer are
controlled by ’fetch’ and ’evict’ instructions. In the pack-
ing cache, the contents are controlled by cache mechanism,
and the miss penalty is close to the copy cost in the pack-
ing buffer case. The conventional SIMD processor consumes
171.4% more cycles for the displayed part of the inner-most
loop when compared with the SIMD equipping the pack-
ing buffer or the packing cache. In terms of the register
usage, the conventional SIMD uses 8 vector registers, while
the packing buffer or cache case needs only 3 vector registers
plus one index register. The reduced register usage gives ad-
vantages in lowering the register spill cost and function call
overheads.

6. EXPERIMENTAL RESULTS
The SIMD processor for the performance evaluation is de-

signed with the proposed hardware support. The proces-
sor is based on ARMv4 architecture and includes a 128-bit
SIMD ALU and 16 128-bit vector registers. The SIMD in-

Table 2: Instruction set of proposed SIMD architec-
ture

Category Instruction

Arithmetic

Logical operation VOR, VXOR, VAND,
VNAND

Shift operation VSRA, VSLL, VSRL,
VROR

Compare VCMPEQ, VCMPGT
Computation VADD, VSUB , VABS,

VMUL
Multiply & accu-
mulate

VMAC

Reduction opera-
tion

VSUM

Memory Load/store VLD, VLDSH, VST,
VSTSH

Special VALIGN, VPACK,
VUNPACK, VSHUF

struction set is shown in Table 2. All SIMD instructions
except for SIMD memory instructions take one cycle delay.

DSP kernels and an MPEG2 encoder are used as bench-
marks. The DSP kernels include a 16-tap FIR filter, 12th
order IIR filter, 16×16 2D-DCT and 1024-point FFT. These
benchmarks contain complex data access patterns. The FIR
filter includes non-aligned access for input data. The IIR fil-
ter needs both non-aligned and stride access. The 2D-DCT
benchmark uses the Chen-Wang algorithm [24], and the ac-
cess pattern is irregular. The FFT benchmark is based on
the Cooley-Tukey algorithm [9], and it contains stride and ir-
regular access. The MPEG2 encoder benchmark is included
in the MediaBench [16]. The MPEG2 encoder benchmark
consists of motion estimation, motion compensation, DCT,
IDCT and so on.

The memory access cycles for each cache memory are
shown in Table 3. We assume that the external memory
is a 166MHz, 32-bit wide SDRAM module and the proces-
sor runs at 500MHz. Due to the burst operation mode of
external SDRAM, the miss cycle counts are not linear to the
line size. Note that, in the case of the split line buffer, max-
imum two misses can be occurred in one non-aligned vector
access.

172

LOOP
…
vload v0, x, #0
vload v1, x, #32
vload v2, x, #16
vload v3, x, #48
vpackl v4, v0, v1
vpackl v5, v2, v3
vpackl v6, v4, v5
vshuf v6, #0x0213
vload v0, x, #8
vload v1, x, #56
vload v2, x, #24
vload v3, x, #40
vpackl v4, v0, v1
vpackl v5, v2, v3
vpackl v7, v4, v5
vshuf v6, #0x0312
vadd v0, v6, v7
vshr v0, v0, #8
vstore blk, v0
…
b LOOP

(a) Compiled code using con-
ventional SIMD instructions

fetch x
LOOP
…
mov ir, #0x00201030
vload v0, x, ir
mov ir, #0x08381828
vload v1, x, ir
vadd v2, v0, v1
vshr v2, v2, #8
vstore blk, v2
…
b LOOP
evict x

(b) Compiled code using pack-
ing buffer instructions

LOOP
…
mov ir, #0x00201030
vload v0, x, ir
mov ir, #0x08381828
vload v1, x, ir
vadd v2, v0, v1
vshr v2, v2, #8
vstore blk, v2
…
b LOOP

(c) Compiled code using pack-
ing cache instructions

Figure 11: Compiled code example of Chen-Wang DCT

Table 3: Memory access cycles according to the
cache memory type

Split line buffer cache
(32B line)

Packing buffer (128B
line)

Hit 1 cycle (2 cycles for
line split)

1 cycle

1 miss 36 cycles 108 cycles (entire line
fetch from L1 cache)

2 misses 60 cycle N/A

Table 4 shows the performance results for DSP kernels.
The conventional SIMD processor is assumed to contain or-
dinary 16Kbytes cache memory without the non-aligned and
irregular access supports. With the conventional SIMD pro-
cessor, one non-aligned vector access requires two aligned
vector access and one merge (VALIGN) operation. More-
over, loops containing irregular access are not vectorized.
The FIR benchmark needs non-aligned access for input data.
Therefore, the split line buffer case shows much better per-
formance than the reference. The IIR benchmark contains
non-aligned and stride access. The stride access is well sup-
ported by the packing buffer. As a result, the performance
with the split line and packing buffers is better than that
with the split line buffer only. In the 2D-DCT benchmark,
almost all vector data access operations are irregular, hence,
the split line buffer shows a small speed-up compared to the
conventional SIMD, but the packing buffer achieves a large
improvement. The bit-reverse shuffling part in the FFT
benchmark is very difficult to vectorize and shows a high
cache miss rate of 27.4%. By adopting the packing buffer,
the shuffling operations can be vectorized with index register
based memory access instructions. In addition, the packing
buffer reduces the cache miss rate of the shuffling part into
19.8%. Since multimedia workloads contain low temporal lo-
cality but high spatial locality, the packing buffer with long
line size shows good performance.

Table 4: Performance of DSP kernels
Conven-

tional
SIMD

With split
buffer

With split
and

packing
buffer

FIR
Cycles 70,674 39,703 39,703
Speed-up 1 1.78 1.78

IIR
Cycles 126,142 43,235 33,562
Speed-up 1 2.92 3.76

2D-
DCT

Cycles 73,268 63,442 38,696
Speed-up 1 1.15 1.89

FFT
Cycles 243,664 243,664 205,752
Speed-up 1 1 1.18

The performance of the MPEG2 encoder is shown in Fig.
12. We assume that the cache memory is 16 Kbytes and
the packing cache is 1 Kbytes with 128 bytes line size. With
the split line buffer, the performance is greatly increased and
shows the speed-up of 155%. The performance enhancement
is mainly from the motion estimation part. The motion esti-
mation is memory access intensive, and 80% of the memory
access operations are non-aligned. The performance with
the split and the packing buffers shows the speed-up of 177%
when compared to the conventional SIMD. Since the pack-
ing buffer is efficient for irregular data access, the DCT part
also shows improved performance.

The effects on the number of vectorized loops according
to the memory access hardware supports are shown in Table
5. This table clearly shows that more loops are vectorized
by employing the memory access hardware support. This is
due to reduced overheads for non-aligned and irregular data
access.

The performance according to the width of SIMD ALU is
shown in Fig. 13. The capacity of the L1 cache is 16 Kbytes
and that of the packing buffer is 1 Kbytes. The performance
increase according to the width of SIMD ALU is dependent

173

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

0
100
200
300
400
500
600
700
800
900

1,000

conventional SIMD with split buffer with split buf. &
packing cache

Cy
cle

 co
un

t (m
illi

on
s)

ETC DCT/IDCT ME/MC Speed-up

Speed-up

Figure 12: Performance of MPEG2 encoder accord-
ing to the cache configuration

0

1

2

3

4

5

6

7

8

0

5

10

15

20

25

30

35

40

2-way SIMD 4-way SIMD 8-way SIMD 16-way SIMD

Cy
cle

 co
un

t (B
illi

on
s)

Conventional SIMD With split buffer
With split & packing buffers Speed-up of conventional SIMD
Speed-up with split buffer Speed-up of with split & packing buffers

Speed-up

Figure 13: Performance of MPEG2 encoder accord-
ing to the width of SIMD ALU

on the memory type. As the width of SIMD ALU widens,
the chance of non-aligned access and the overhead of align-
ment also grow. Hence, the performance of the conventional
SIMD architecture almost saturates in the 8-way SIMD con-
figuration, while the split line and the packing buffer cases
exhibit increased performance even in the 16-way SIMD pro-
cessor.

7. CONCLUDING REMARKS
The vectorization efficiency of an SIMD compiler is usu-

ally bounded by the memory related bottlenecks, which are
the overheads for preparing aligned vector data. Although
improved performance can be achieved by the careful re-
structuring of programs or the data layout, which are usu-
ally conducted in manual assembly programming, current
SIMD compilers have difficulties in performing these com-
plex tasks.

In our proposed mechanism, an efficient memory system
with the split line buffer and the packing buffer/cache is
designed for reducing the non-aligned and irregular data ac-
cess overhead. The split line buffer efficiently supports non-
aligned data access, which is very frequent in signal process-

Table 5: Number of vectorized loops
Number
of vector-
ization
candidate
loops

Number of vectorized loops
Conven-
tional
SIMD

Split
line
buffer

Split
line &
packing
buffers

ME 20 10 19 19
MC 7 3 7 7
DCT 5 4 4 5
IDCT 3 2 2 3

(I)QUANT 7 4 4 4
etc 17 7 7 7

total 59 30 43 45

ing, while the packing buffer/cache reduces the overhead of
irregular and stride data access.

We showed that the GCC v4.2 compiler can be easily mod-
ified for our SIMD processor equipping the memory access
hardware support. Due to this hardware support, the vec-
torization analysis steps become simpler and the compiler
can exploit more data-level parallelism. An MPEG2 encod-
ing application was tested with the proposed architecture
and the designed SIMD compiler. The 128-bit SIMD pro-
cessor with the split line and the packing buffer units shows
a speed-up of 1.77 when compared to the SIMD processor
with a conventional memory system.

8. ACKNOWLEDGMENTS
This work was supported in part by the Samsung Elec-

tronics Inc. and in part by the Ministry of Education, Sci-
ence and Technology (MEST), Republic of Korea, under the
Brain Korea 21 Project.

9. REFERENCES
[1] Intel Integrated Performance Primitives for Intel

Pentium Processors and Intel Itanium Architectures.
Intel Corporation.

[2] TMS320C64x Technical Overview. Texas Instruments,
2000.

[3] Cortex-A8 Technical Reference Manual. ARM, 2007.

[4] Realview Compilation Tools: NEON Vectorizing
Compiler Guide. ARM, 2007.

[5] M. Alvarez, E. Salami, A. Ramirez, and M. Valero.
Performance Impact of Unaligned Memory Operations
in SIMD Extensions for Video Codec Applications. In
Proceedings of IEEE International Symposium on
Performance Analysis of Systems & Software, pages
62–71, 2007.

[6] M. C. August, G. M. Brost, C. C. Hsiung, and A. J.
Schiffleger. Cray X-MP: The Birth of a
Supercomputer. IEEE Computer, 22(1):45–52.

[7] A. J. C. Bik, M. Girkar, P. M. Grey, and X. Tian.
Automatic Intra-Register Vectorization for the Intel
Architecture. International Journal of Parallel
Programming, 30(2):65–98.

[8] H. Chang, J. Cho, and W. Sung. Performance
Evaluation of an SIMD Architecture with a
Multi-Bank Vector Memory Unit. In Proceedings of
IEEE Workshop on Signal Processing Systems Design
and Implementation, 2006.

174

[9] J. W. Cooley and J. W. Tukey. An Algorithm for the
Machine Calculation of Complex Fourier Series.
Mathematics of Computation, 19(90):297–301, 1965.

[10] A. E. Eichenberger, P. Wu, and K. O’Brien.
Vectorization for SIMD Architectures with Alignment
Constraints. SIGPLAN Notices, 39(6):82–93.

[11] E. J. Fluhr and S. B. Levenstein. Method and
Apparatus for Efficiently Accessing Both Aligned and
Unaligned Data from a Memory. US Patent 7302525,
2007.

[12] G. Hinton, D. Sager, M. Upton, D. Boggs,
D. Carmean, A. Kyker, and P. Roussel. The
Microarchitecture of the Pentium 4 Processor. Intel
Technology Journal, 5(1):1–13, 2001.

[13] M. Kandemir, J. Ramanujam, M. J. Irwin,
N. Vijaykrishnan, I. Kadayif, and A. Parikh. A
Compiler-Based Approach for Dynamically Managing
Scratch-Pad Memories in Embedded Systems. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 23(2):243–260, 2004.

[14] A. Kudriavtsev and P. Kogge. Generation of
Permutations for SIMD Processors. In Proceedings of
the 2005 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded
Systems, Chicago, Illinois, USA. ACM.

[15] S. Larsen, E. Witchel, and S. P. Amarasinghe.
Increasing and Detecting Memory Address
Congruence. In Proceedings of the 2002 International
Conference on Parallel Architectures and Compilation
Techniques. IEEE Computer Society.

[16] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems. In
Proceedings of Thirtieth Annual IEEE/ACM
International Symposium on Microarchitecture, pages
330–335, 1997.

[17] J. Lorenz, S. Kral, F. Franchetti, and C. W.
Ueberhuber. Vectorization Techniques for the Blue
Gene/L Double FPU. IBM Journal of Research and
Development, 49(2/3):437–446, 2005.

[18] D. Naishlos, M. Biberstein, S. Ben-David, and
A. Zaks. Vectorizing for a SIMdD DSP Architecture.
In Proceedings of the 2003 International Conference
on Compilers, Architecture and Synthesis for
Embedded Systems, San Jose, California, USA. ACM.

[19] D. Nuzman and A. Zaks. Autovectorization in GCC -
Two Years Later. In Proceedings of the 2006 GCC
Developers Summit, pages 145–58, 2006.

[20] N. C. Paver, B. C. Aldrich, and M. H. Khan. Intel
Wireless MMX Technology: A 64-Bit SIMD
Architecture for Mobile Multimedia. In Proceedings of
International Conference on Acoustics, Speech, and
Signal Processing, 2003.

[21] G. Ren, P. Wu, and D. Padua. Optimizing Data
Permutations for SIMD Devices. SIGPLAN Notices,
41(6):118–131.

[22] D. Talla, L. K. John, and D. Burger. Bottlenecks in
Multimedia Processing with SIMD Style Extensions
and Architectural Enhancements. IEEE Transactions
on Computers, 52(8):1015–1031, 2003.

[23] S. Udayakumaran and R. Barua. Compiler-Decided
Dynamic Memory Allocation for Scratch-Pad Based
Embedded Systems. In Proceedings of the 2003
International Conference on Compilers, Architecture
and Synthesis for Embedded Systems. ACM.

[24] Z. Wang. Fast Algorithms for the Discrete W
Transform and for the Discrete Fourier Transform.
IEEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP-32(4):803–816, 1984.

[25] P. Wu, A. E. Eichenberger, and A. Wang. Efficient
SIMD Code Generation for Runtime Alignment and
Length Conversion. In Proceedings of the International
Symposium on Code Generation and Optimization.

[26] K. X. Zhang. Buffer for a Split Cache Line Access. US
Patent 6862225, 2005.

175

