
Proving the Absence of Run-Time Errors
in Safety-Critical Avionics Code

Patrick Cousot
École normale supérieure, 45 rue d’Ulm, 75230 Paris cedex 05, France

Patrick.Cousot@ens.fr, www.di.ens.fr/ cousot

ABSTRACT
We explain the design of the interpretation-based static an-
alyzer Astrée and its use to prove the absence of run-time
errors in safety-critical codes.

Categories and Subject Descriptors
D.2.4 [Software]: Software Engineering—Software/Program
Verification; F.3.1, F.3.2 [Theory of Computation]: Log-
ics and Meanings of Programs—Specifying and Verifying
and Reasoning about Programs, Semantics of Programming
Languages

General Terms
Reliability, Languages, Verification

Software engineering has focussed on methods for de-
signing larger and larger computer applications but software
quality has not followed this dramatic progression. Poor
software quality is not acceptable in safety and mission crit-
ical applications. An avenue is therefore opened for formal
methods which are product-based (as opposed to develop-
ment process-based). Abstract interpretation [3, 5] is a for-
mal method for software verification which is having signif-
icant industrial applications, in particular in the context of
avionics [8, 15, 26, 30].

We explain program correctness proofs by static analysis
and the design of a static analyzer by abstract interpretation
of a program semantics. This is illustrated with the Astrée
abstract-interpretation-based static analyzer which, after six
years of academic development, is progressing towards in-
dustrial acceptance for the validation of software intensive
applications such as safety-critical avionics code.

The Astrée static analyzer [8, 1, 2, 9, 16] aims at for-
mally proving the absence of runtime errors in C programs
(such as buffer overruns, pointer misuses, arithmetic over-
flows, etc including additional user requirements). It is spe-
cialized for synchronous, time-triggered, real-time, safety
critical, embedded software as found in earth transportation,
nuclear energy, medical instrumentation and aerospace ap-
plications. Such programs have no recursion, no dynamic
memory allocation and no library call (the only undefined
function is the synchronization on the clock) but otherwise
may have all the difficulties found in the analysis of C pro-
grams (including pointer arithmetics).

Copyright is held by the author/owner(s).
EMSOFT’07, September 30–October 3, 2007, Salzburg, Austria.
ACM 978-1-59593-825-1/07/0009.

The analysis performed by Astrée is static that is based
on source code inspection only (as opposed to dynamic anal-
ysis involving a recording of program execution for online or
later offline inspection or replay). In theory, static analysis
is an exhaustive exploration of a semantic model of the full
program execution space. The hard problems are to fully
automate the analysis and to scale up to industrial applica-
tions, a general grand challenge for all formal methods.

Astrée always terminates (even if actual executions do
not), is efficient (requiring typically one to two hours of
computations per 100 000 LOCs) and does scale up (to mil-
lions of LOCs). A parallel implementation enhances the per-
formances (although slow communication costs may rapidly
surpass the computing power gained by increasing the num-
ber of processors) [25].

The static analysis overestimates the program trace se-
mantics that is set of all run-time execution traces of the
program with unknown dynamic inputs (which ranges may
be limited by an optional configuration file) for an execu-
tion duration which may be bounded or not (as indicated in
the configuration file). None of the actual executions of the
program being omitted, abstract-interpretation-based static
analyzers have no false negatives hence are sound by de-
sign. As opposed to bug-finders, static analyzers will never
omit to signal an error that can appear at runtime in some
execution environment [11].

Astrée is designed according to the theory of abstract
interpretation [3, 5].

The correctness proof has two phases. In the first anal-
ysis phase, the program trace semantics is computed itera-
tively. From a purely mathematical point of view, the set of
all execution traces can in principle be formally constructed
starting from initial states, then extending iteratively the
partial traces from one state to the next one according to
the program transition steps until termination on final or
error states or passing to the limit for infinite traces (corre-
sponding to non-terminating executions). The verification
phase then checks that none of these execution traces can
reach a state in which a runtime error can occur.

In general this set of traces of interest is neither computer-
representable nor computable (by undecidability). Abstract
interpretation exploits the facts that an overapproximation
of the program set of traces is sound: when considering more
possibilities, no actual execution can ever be omitted. The
theory is used to design sound approximations of the mathe-
matical structures involved in the formal description of this
set of traces. This includes an iterator for approximating
the step by step iterative computation of traces [5] and ab-

7

http://www.di.ens.fr/~cousot
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/


stract domains representing the effect of program steps and
passage to the limit (widening/narrowing [5]).

The first abstraction underlying Astrée is trace parti-
tioning [17]. It collects at each program point a set of trace
suffixes leading to that program point. This is therefore a
reachability analysis enriched by some history of the com-
putations leading to each state. It follows that information
about the execution order and the concrete data flows and
control paths is not completely lost. The partitioning cri-
terion is based on data and control and corresponds to a
case analysis starting and finishing on demand, according to
partitioning directives inserted in the program. Further ana-
lyzes have been developed to automate the insertion of these
partitioning directives directly by the analyzer according to
criteria dictated by the program properties to be proved.

Further abstractions are needed to get computer-repre-
sentable and computable overapproximations of the parti-
tioned sets of trace suffixes leading to a program point.

A classical general-purpose non-relational abstraction is
involved in the interval abstract domain [4]. The interval
abstraction collects for each program point and each numer-
ical variable a lower bound and an upper bound of the values
of this variable along all states of all execution traces of the
program. Interval analysis is non-relational in that knowing
an overapproximation of the interval of variation of the nu-
merical values computed by the program does not provide
any information on how these values do relate at runtime.

Most other general-purpose and domain-specific abstrac-
tions are relational and allow e.g. for the discovery of invari-
ant relations between values computed by the program (e.g.
values of program variables at a program point on a subset
of the traces).

An example is the octagon abstract domain [19, 20, 23]
to discover invariants of the form ± x ± y ≤ c where x
and y denotes values computed by the program and c is a
numerical constant discovered by the analysis. For floats,
relational analyses must take rounding errors into account
which is challenging but was solved in [21].

Another example of relational abstraction is the decision
tree abstract domain [2, Sect. 6.2.4] to make different ab-
stractions according to the values of variables taking finitely
many values (e.g. booleans).

A last example of relational abstraction between values
at different time instants is the symbolic abstract domain to
abstract a set of traces by a linear symbolic expression relat-
ing initial and final values of numerical variables along the
traces (and again, cumulating rounding errors for floating
point computations) [24].

All these abstract domains are parameterized (e.g. max-
imal height of decision trees, maximal size of symbolic for-
mulæ) to balance the cost/precision ratio. Some parameter-
izations have been automated (such as the determination of
the packs of variables for which octagonal relations should
be computed) according to criteria dictated by the program
properties to be proved.

Besides these general-purpose abstractions, Astrée has
domain specific abstractions which are required to cope specif-
ically with (synchronous) control command/applications.

The control of physical devices require floating-point com-
putations which are subject to rounding errors which cumu-
late over time but must be proved to be bounded (e.g. by
linear or exponential functions of the time). The arithmetic-
geometric progression abstract domain is used for that pur-

pose and more generally to approximate a set of traces by a
time-dependent bound for the range of each variable (com-
putation time can be bounded for some applications as spec-
ified in the configuration file). Another example is the fil-
ter abstract domain [13] to handle the digital filters used to
smooth the variations of input data.

Following a fundamental result of abstract interpreta-
tion [7], Astrée uses infinitary abstract domains (using fi-
nite symbolic representations of infinite mathematical ob-
jects) as opposed to finite abstractions which are provably
less expressive. A counterpart is that the finite (and rapid)
convergence of iterative computations must enforced using
widening/narrowing convergence acceleration techniques [4,
5].

The use of many independent abstractions is necessary to
master the design complexity of static analyzers. They can
be easily extended or simplified by including or eliminating
abstract domains. Typically, about twenty to thirty abstract
domains are used in Astrée. A counterpart of this inde-
pendent abstractions design principle is that the cooperation
between abstract domains must be organized [6]. An exam-
ple is the reduced product [6]: information provided by an
abstract domain (e.g. congruence information) can enhance
the precision of another abstract domain (e.g. reduction of
the bounds in interval analysis). The cooperation between
abstract domains in Astrée is described in [10]. It ensures
interdomain reductions while preserving the convergence of
widening under extension by new abstractions.

Because Astrée overapproximates possible executions it
is incomplete that is subject to false positives or false alarms.
It may signal a potential error for an abstract execution cor-
responding to no actual concrete execution of the program.
Astrée was designed to be able to tune the precision of
the analysis (by parametrization, [automated] analysis di-
rectives and addition of new abstract domains). This re-
quires the analysis of the origin of alarms (either a program
error for true alarms or an imprecision in the analysis for
false alarms). This analysis is presently manual and should
be automated [28, 27].

Thanks to the ability to reach 0 false alarm at a reason-
able cost, Astrée is now in industrial use for safety critical
control/command programs in avionics [12, 29].

Such programs are generally mostly generated automat-
ically from high-level specifications languages like Scade

TM

or Simulink
TM

whence avoid tricky uses of pointer arith-
metic and union. The initial memory model of Astrée was
therefore simple with variables, arrays, structures, pointers
and aliases excluding untyped operations such as pointer
arithmetics and overlapping unions. This simple memory
model does not cover manually written, less critical appli-
cations, such as telecommunications. For this family of ap-
plications, Astrée has been extended to cope with pointer
arithmetic and union [22].

As the scope of application of Astrée widens, we are
faced with new challenges including complex data struc-
tures, modular analysis and parallel programs.

References
[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret,

L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
Design and implementation of a special-purpose static
program analyzer for safety-critical real-time
embedded software, invited chapter. T. Mogensen,
D. Schmidt, and I. Sudborough (Eds.), The Essence of

8

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/


Computation: Complexity, Analysis, Transformation.
Essays Dedicated to Neil D. Jones, LNCS 2566, pp.
85–108, Springer, 2002.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software.
Proc. ACM SIGPLAN ’2003 Conf. PLDI, pp. 196–207,
San Diego, 7–14 June 2003. ACM Press.

[3] P. Cousot. Méthodes itératives de construction et
d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique de
programmes (in French). Thèse d’État ès sciences
mathématiques, University of Grenoble, 21 Mar. 1978.

[4] P. Cousot and R. Cousot. Static determination of
dynamic properties of programs. Proc. 2nd Int. Symp.
on Programming, pp. 106–130, Paris, 1976. Dunod.

[5] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. 4th POPL,
pp. 238–252, Los Angeles, 1977. ACM Press.

[6] P. Cousot and R. Cousot. Systematic design of
program analysis frameworks. 6th POPL, pp. 269–282,
San Antonio, 1979. ACM Press.

[7] P. Cousot and R. Cousot. Comparing the Galois
connection and widening/narrowing approaches to
abstract interpretation, invited paper. M. Bruynooghe
and M. Wirsing (Eds.), Proc. 4th Int. Symp.
PLILP ’92, Leuven, LNCS 631, pp. 269–295, Springer,
26–28 Aug. 1992.

[8] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. The Astrée
Static Analyzer. http://www.astree.ens.fr/.

[9] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. The Astrée
analyser. M. Sagiv (Ed.), Proc. 14th ESOP ’2005,
Edinburg, LNCS 3444, pp. 21–30, Springer, 2–10 Apr.
2005.

[10] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. Combination of
abstractions in the Astrée static analyzer, invited
paper. M. Okada and I. Satoh (Eds.), 11th ASIAN 06,
Tokyo, 6–8 Dec. 2006. LNCS, Springer. To appear.

[11] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. Varieties of
static analyzers: A comparison with Astrée, invited
paper. M. Hinchey, H. Jifeng, and J. Sanders (Eds.),
Proc. 1st TASE ’07, pp. 3–17, Shanghai, 6–8 June
2007. IEEE Press.

[12] D. Delmas and J. Souyris. Astrée: from research to
industry. G. Filé and H. Riis-Nielson (Eds.), Proc.
14th Int. Symp. SAS ’07, Kongens Lyngby, LNCS
4634, Springer, 22–24 Aug. 2007.

[13] J. Feret. Static analysis of digital filters. D. Schmidt
(Ed.), Proc. 30th ESOP ’2004, Barcelona, LNCS 2986,
pp. 33–48, Springer, Mar. 27 – Apr. 4, 2004.

[14] J. Feret. The arithmetic-geometric progression
abstract domain. R. Cousot (Ed.), Proc. 6th Int. Conf.
VMCAI 2005, Paris, LNCS 3385, pp. 42–58, Springer,
17–19 Jan. 2005.

[15] É. Goubault, M. Martel, and S. Putot. Asserting the
precision of floating-point computations: a simple
abstract interpreter. D. Le Métayer (Ed.), Proc. 11th

ESOP ’2002, Grenoble, LNCS 2305, pp. 209–212,
Springer, 8–12 Apr. 2002.

[16] L. Mauborgne. Astrée: Verification of absence of
run-time error. P. Jacquart (Ed.), Building the
Information Society, ch. 4, pp. 385–392. Kluwer Acad.
Pub., 2004.

[17] L. Mauborgne and X. Rival. Trace partitioning in
abstract interpretation based static analyzer. M. Sagiv
(Ed.), Proc. 14th ESOP ’2005, Edinburg, LNCS 3444,
pp. 5–20, Springer, 2–10 Apr. 2005.

[18] A. Miné. The Octagon abstract domain library.
http://www.di.ens.fr/~mine/oct/.

[19] A. Miné. A new numerical abstract domain based on
difference-bound matrices. O. Danvy and A. Filinski
(Eds.), Proc. 2nd Symp. PADO ’2001, Århus, LNCS
2053, pp. 155–172, Springer, 21–23 May 2001.

[20] A. Miné. A few graph-based relational numerical
abstract domains. M. Hermenegildo and G. Puebla
(Eds.), Proc. 9th Int. Symp. SAS ’02, Madrid, LNCS
2477, pp. 117–132, Springer, 2002.

[21] A. Miné. Relational abstract domains for the detection
of floating-point run-time errors. D. Schmidt (Ed.),
Proc. 30th ESOP ’2004, Barcelona, LNCS 2986, pp.
3–17, Springer, Mar. 27 – Apr. 4, 2004.

[22] A. Miné. Field-sensitive value analysis of embedded C
programs with union types and pointer arithmetics.
Proc. LCTES ’2006, pp. 54–63, ACM Press, June 2006.

[23] A. Miné. The octagon abstract domain. Higher-Order
and Symbolic Computation, 19:31–100, 2006.

[24] A. Miné. Symbolic methods to enhance the precision
of numerical abstract domains. E. Emerson and
K. Namjoshi (Eds.), Proc. 7th Int. Conf. VMCAI
2006, Charleston, LNCS 3855, pp. 348–363, Springer,
8–10 Jan. 2006.

[25] D. Monniaux. The parallel implementation of the
Astrée static analyzer. K. Yi (Ed.), Proc. 3rd

APLAS ’2005, Tsukuba, LNCS 3780, pp. 86–96,
Springer, 3–5 Nov. 2005.

[26] F. Randimbivololona, J. Souyris, and A. Deutsch.
Improving avionics software verification
cost-effectiveness: Abstract interpretation based
technology contribution. Proceedings DASIA 2000 –
DAta Systems In Aerospace, Montreal. ESA
Publications, 22–26 May 2000.

[27] X. Rival. Abstract dependences for alarm diagnosis.
K. Yi (Ed.), Proc. 3rd APLAS ’2005, Tsukuba, LNCS
3780, pp. 347–363, Springer, 3–5 Nov. 2005.

[28] X. Rival. Understanding the origin of alarms in
Astrée. C. Hankin and I. Siveroni (Eds.), Proc. 12th

Int. Symp. SAS ’05, London, LNCS 3672, pp. 303–319,
Springer, 7–9 Sep. 2005.

[29] J. Souyris. Industrial experience of abstract
interpretation-based static analyzers. P. Jacquart
(Ed.), Building the Information Society, ch. 4, pp.
393–400. Kluwer Acad. Pub., 2004.

[30] S. Thesing, J. Souyris, R. Heckmann,
F. Randimbivololona, M. Langenbach, R. Wilhelm,
and C. Ferdinand. Abstract interpretation-based
timing validation of hard real-time avionics software.
Proc. Int. Conf. DSN 2003, San Francisco, pp.
625–634. IEEE Press, 22–25 June 2003.

9

http://www.astree.ens.fr/
http://www.di.ens.fr/~mine/oct/

