
Scheduling Multiple Independent Hard-Real-Time Jobs on
a Heterogeneous Multiprocessor

Orlando Moreira
NXP Semiconductors

Research
Eindhoven, Netherlands

orlando.moreira@nxp.com

Frederico Valente
Universidade de Aveiro

Aveiro, Portugal
fmvalente@ua.pt

Marco Bekooij
NXP Semiconductors

Research
Eindhoven, Netherlands

marco.bekooij@nxp.com

ABSTRACT
This paper proposes a scheduling strategy and an auto-
matic scheduling flow that enable the simultaneous execu-
tion of multiple hard-real-time dataflow jobs. Each job has
its own execution rate and starts and stops independently
from other jobs, at instants unknown at compile-time, on
a multiprocessor system-on-chip. We show how a combi-
nation of Time-Division Multiplex (TDM) and static-order
scheduling can be modeled as additional nodes and edges on
top of the dataflow representation of the job using Single-
Rate Dataflow semantics to enable tight worst-case tempo-
ral analysis. We also propose algorithms to find combined
TDM/static order schedules for jobs that guarantee a re-
quested minimum throughput and maximum latency, while
minimizing the usage of processing resources. We illustrate
the usage of these techniques for a combination of Wireless
LAN and TD-SCDMA radio jobs running on a prototype
Software-Defined Radio platform.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Sys-
tems]: Real-time and Embedded Systems

General Terms
Algorithms, Design, Theory

Keywords
Real-Time, Multi-processor, Dataflow, Scheduling

1. PROBLEM STATEMENT
In order to deliver high quality output, streaming media

applications have tight real-time requirements, which typi-
cally defined in terms of minimum guaranteed throughput
and maximum latency.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT'07 September 30 – October 3, 2007, Salzburg, Austria
Copyright 2007 ACM 978-1-59593-825-1/07/0009 ...$5.00.

Embedded platforms for the streaming media domain are
expected to handle several streams at the same time, each
with its own rate. Typically, functionality can be divided in
minimal groups of communicating tasks that are started and
stopped independently by an external source. We refer to
such groups of tasks as jobs. The number of use-cases (i.e.
combinations of simultaneously executing job instances that
the device must support) can be high.

This domain includes Software-Defined Radio [3], where
an embedded multiprocessor system is used to do baseband
processing of several radio standards. Typically, several ra-
dio baseband processing jobs may be active at the same
time, and they may start/stop execution at different times,
according to the demands of the user.

We assume that the radio jobs are implemented as
dataflow graphs, be it Single-Rate, Multi-Rate or Cyclo-
static dataflow [4]. Multi-Rate Dataflow was first introduced
in [13] under the name of Synchronous Dataflow. All of
these have comparable expressive power, and all of them can
be analyzed for real-time behavior by using the same tech-
niques, since it has been shown that both Multi-Rate and
Cyclo-Static Dataflow can easily be converted to Single-Rate
Dataflow [19], by using a pseudo-polynomial algorithm.

We assume a Multiprocessor Systems-On-Chip (MPSoC)
hardware platform, since it can provide a good balance be-
tween cost, power efficiency and flexibility. Systems of this
type are typically heterogeneous, as the usage of application-
specific coprocessors can dramatically improve performance
at low area cost.

On an MPSoC, jobs share computation, storage, and com-
munication resources, in order to allow maximum flexibility
at the lowest cost. This poses a particularly difficult prob-
lem for the scheduling of real-time applications: resource
sharing leads to uncertainty about resource provision and,
therefore, to difficulties in computing minimum throughput
and maximum latencies.

In this paper, we assume an MPSoC designed to facili-
tate worst-case analysis by following the rules presented in
[1]. These rules are not necessary but sufficient rules, that
is, while predictable systems can be designed without follow-
ing them, compliance guarantees that the resulting platform
is amenable to temporal analysis techniques. According to
these rules, every processor has its own local dedicated mem-
ory and caches are not used. Communication between pro-
cessors is strictly done by posted writes. The inter-processor
communication infrastructure provides guaranteed through-
put connections. We also assume a heterogeneous system,

57



and that all the processing cores can support Time Divi-
sion Multiplex (TDM) scheduling. In this paper, we assume
a fully heterogeneous multiprocessor, where each task has a
single implementation and can only run in one of the proces-
sors. This assumption fits the prototype SDR baseband chip
which we use in our example section. The approach can be
rather trivially extended to deal with multiple homogeneous
processing elements by allowing the computed schedule to
be allocated at configuration time to one of many identi-
cal processor elements, by using an online resource allocator
such as the one proposed in [17].

The problem we are addressing in this paper is finding
a scheduling strategy and schedules that allow a heteroge-
neous MPSoC to handle a dynamic mix of hard-real-time
jobs. As the key contributions of this paper we show that
for solving this problem a combination of run-time and static
order scheduling is desirable and we present techniques for
the computation of TDM scheduler settings and static-order
of actors per job per processor, in such a way that timing
requirements are met.

The rest of the paper is organized as follows. In section
2, we provide some information on our dataflow modeling
and real-time analysis techniques. In section 3, we motivate
and describe our choice of scheduling strategy. In section 4
we show our approach to the scheduling problem that arises
from our chosen scheduling strategy. In section 5 we focus
on the sub-problem of finding the TDM slices times. In sec-
tion 6 we discuss phase coupling issues. In section 7 we show
an example from a Software-Defined Radio application, and
present results. Section 8 compares our approach and con-
tributions to the state-of-the-art. Section 9 concludes the
paper and discusses future work.

2. SINGLE RATE DATAFLOW GRAPHS
In this section we introduce the Single-Rate Dataflow

model, its timing analysis properties and its usage in
modeling streaming job implementations, with timing and
scheduling information included. This is necessary since
constraint-checking based on this model enables us to com-
pute schedules that meet the real-time requirements of the
jobs. This section includes mostly reference material that
can be found elsewhere [13], [19], [16], except for the section
on the modeling of combined TDM and static-order schedul-
ing which improves on modeling techniques described in [2]
and [16].

2.1 Notation and Relevant Properties
A Single-Rate Dataflow (SRDF) graph is a directed graph

G = (V, E). Nodes, referred to as actors, represent time con-
suming entities; edges represent FIFO queues that direct
values from the output of an actor to the input of another.
Data is transported in discrete chunks, referred to as to-
kens. When an actor is activated by data availability, it
is said to be enabled. In SRDF an actor is enabled when
the number of tokens in each of its input edge is one. An
enabled actor can be fired. An actor fires by consuming a
token in each input edge, and producing one token in each
output edge. Between the begining and end of the firing,
an arbitrary amount of time can elapse. During the execu-
tion of a dataflow graph, all the actors may fire an infinite
amount of times. Each firing of an actor is also referred to
as an iteration of the actor.

We are interested in applications that process data

streams, which typically involve computations on indefi-
nitely long data sequences. Therefore, we are only interested
in SRDF graphs that can be executed in a non-terminating
fashion. Consequently, we must be able to obtain sched-
ules that can run infinitely using a finite amount of physical
memory.

Edges have a valuation d : E → N0; d(ai, aj) is called the
delay of edge (ai, aj) and represents the number of initial to-
kens in (ai, aj). In the graphical representation of an SRDF
graph, the delay is represented by a number of dots on the
edge equal to its value.

If an SRDF graph has any cycle where the sum of delays
on its edges is 0, then the graph is said to be deadlocked. A
deadlocked graph eventually gets to a state where it cannot
make any progression if implemented within finite memory.
A SRDF graph is deadlock-free if all its cycles traverse at
least one initial token. A deadlock-free SRDF graph can be
scheduled periodically using a finite amount of memory [19].

We represent the set of processors in the MPSoC as
Π = {p1, p2...pn}. In this paper, we assume actors are
uniquely assigned to execute on a particular processor. This
is represented by the valuation π : V → Π, where π(a) rep-
resents the processor to which actor a is assigned. Actors
have a valuation t : V → N, where t(a) is the execution
time of actor a. To an SRDF graph extended with π and t
valutation we refer as a timed SRDF.

The cycle mean of a cycle c in a timed SRDF graph is
defined as

μc =

P
ai∈V (c) t(ai)P
e∈E(c) d(e)

(1)

where V (c) is the set of all nodes traversed by cycle c and
E(c) is the set of all edges traversed by cycle c.

The Maximum Cycle Mean (MCM) μ of a timed
SRDF graph G is defined as:

μ(G) = max
c∈C(G)

P
ai∈V (c) t(ai)P
e∈E(c) d(e)

(2)

where C(G) is the set of cycles in graph G.
The inverse of the MCM of a timed SRDF graph pro-

vides a fundamental upper bound to its minimum guaran-
teed throughput [18]. Many algorithms of polynomial com-
plexity have been proposed to find the maximum cycle mean
(see [9] for an overview).

In [16], we have shown how a latency constraint can be
converted into a throughput constraint for a dataflow model,
as long as the best-case temporal behavior of the source of
the system is characterized. Because of this, for the rest of
this paper we will assume, without loss of generality, that
only throughput constraints need to be met.

2.2 Dataflow Model of a Job
The timed SRDF graph that serves as input to the sched-

uler is a description of the job where every actor corresponds
to a data-triggered non-blocking segment of a computational
task. The t(a)s of actors correspond to the worst-case exe-
cution times of these task segments executing on a dedicated
processor (i.e., resource sharing is not taken into account).
Resource constraints such as the latency and throughput
of the communication channels and bounds on FIFO buffer
sizes can be modeled by adding more actors and edges to
this dataflow graph [14], [16]. In this paper, we will just

58



omit the constraints on inter-processor communication la-
tency and throughput and buffer sizes that should be be
added to the model for conservative throughput analysis, in
order to simplify the explanations.

2.2.1 Modeling TDM Scheduling
In [2], it has been shown that the effect of TDM scheduling

can be modeled by replacing the worst-case execution time
of the actor by its worst-case response time under TDM
scheduling. The response time of an actor ai is the total
time it takes to fire ai , when resource arbitration effects
(scheduling, preemption, etc) are taken into account. This
is counted from the moment the actor meets its enabling
conditions to the moment the firing is completed. Assuming
that a TDM wheel period P is implemented on the processor
and that a time slice with duration S is allocated for the
firing of ai, such that S ≤ P , a time interval longer than
t(ai) passes from the moment an actor is enabled by the
availability of enough input tokens to the completion of its
firing. This is due to what can be seen as two different
effects of TDM arbitration. The first of this is the scheduling
time, i.e. the time it takes until the TDM scheduler grants
execution resources to the actor. In the worst-case, ai gets
enabled when its time slice has just ended, which means that
the scheduling time is the time it takes for the slice of ai to
start again. This amounts to P − S time units. The second
effect has to do with the fact that the time slice may be
too small for the firing of ai to be executed in a single slice.
The time ai will take to fire, in the worst-case, is equal to

� t(ai)
S

� · P − (t(ai) mod S). The total worst-case response
time of ai is then given by the sum of these two values:

r(ai) = (P − S) · � t(ai)

S
� + t(ai) (3)

Furthermore, if the t(ai)s of all actors are replaced by
worst-case response times, r(ai)s, which take into account
the fact that the actual time from enabling of an actor itera-
tion to finish is affected by TDM arbitration, MCM analysis
of the timed SRDF graph thus obtained will yield the min-
imum guaranteed throughput of such an implementation,
assuming all times are conservative and all resource con-
straints modeled.

2.2.2 Modeling Static-Order Scheduling
A static-order schedule of a set of actors A =

{a0, a1, ..., an} mapped to the same processor (i.e. i, j ∈ A :
π(i) = π(j)), is a sequence of execution so = [ak, al...am]
that generates extra precedence constraints between the ac-
tors in A such that from the start of the execution of the
graph, ak must be the first to execute, followed by al and
so on, up to am. After am executes, the sequence is reset,
and execution order restarts from ak for the next iteration
of the graph.

Any static order imposed to a group of SRDF actors ex-
ecuting in the same processor can be represented by adding
edges with no tokens between them. From the last to the
first actor in the static order an edge is also added, with
a single initial token. This construct reflects the fact that,
the graph execution being iterative, when the static order
finishes execution for a given iteration, it re-starts it from
the first actor in the static order for the next iteration.

Notice that the new edges represent a series of sequence
constraints enforced by the static order schedule and do not

represent any real exchange of data between the actors. In
the dataflow diagrams that follow, for ease of read, every
time there is more than one edge from the same source to
sink, only one edge with the lowest d(i, j) is represented,
as it imposes the tightest sequence constraint between the
actors.

2.2.3 Mixing Static-Order and TDM
Lets assume that instead of attributing a TDM slice to

each actor we attribute a TDM slice to a group of actors
and we statically order these actors. The reasons why we
may want to do this are exposed in section 3. For now we
will focus only on how such a mixed schedule can be modeled
for the purpose of worst-case analysis.

Consider a set of actors {a1, a2, a3}, belonging to the same
job, and mapped to the same processor p. Consider that a
static order of execution so = [a1, a2, a3] has been imposed
on them, and that this static order execution is allocated
to a time slice of S time units within a time wheel with a
period P .

Since the actors are guaranteed to be mutually exclusive
because of the static order, it turns out that whenever one
of them is activated none of the remaining others is. Thus,
we can conservatively assume that the TDM scheduling will
affect the response time of each actor in the same way as it
would if the time slice were allocated exclusively to it. We
can therefore model the mix of the two schedulers by adding
to the scheduling analysis graph the edges that represent the
imposed static order and replacing the execution times by
the response times under TDM.

There are situations, however, where this approximation
is too conservative. Consider, for instance, the case where
the inputs of node a2 are all local, i.e., are produced either
by a1 or a3. Then, whenever a1 finishes execution, a2 can
immediately start execution, because all its inputs must be
available, since a2 is mutually exclusive with all the actors
on whose input it depends. It does not have to wait for the
worst-case where the actor gets enabled in the instant when
its time wheel is just over. In this case, we can subtract
P − S from its response time, as given by Equation 3.

In fact, we can go further than that, by observing that
there is never a wait caused by scheduling time between two
actors running on the same time slice with a pre-defined
static order. We can separate the response time in two
terms, one, a scheduling time related term rS(ai) = P − S
and another term which accounts for the time since the ex-
ecution starts until it finishes, rx(ai) = (P − S) · (� t(ai)

S
� −

1) + t(ai). An actor a ∈ A in the original SRDF must now
be represented by two actors: one, as, that has an execution
time of rs(a) and receives inputs external to the processor
and then forwards them to another actor, ax, that has an
execution time rx(a) and receives all inputs internal to the
processor, plus the input from as. This is represented in
Figure 1. One other way to look at it is to think that any
path expressions involving an edge (ai, aj) across processors
will “see” a response time r(aj) = rx(aj) + rs(aj), while if
π(ai) = π(aj), the expression r(aj) = rx(aj) is taken in-
stead.

3. SCHEDULING STRATEGY
Although static-order scheduling is a popular strategy for

scheduling dataflow graphs [19], it cannot singly solve our
problem. Since jobs start and stop independently, a static-

59



A

BD

P1

P2

A

B
x

D

P1

P2

B
s

Figure 1: Splitting node response time to obtain
tighter throughput analysis.

order schedule would have to be computed at design time
for every combination of jobs that can be active simultane-
ously. This problem is aggravated by the fact that, when a
transition occurs from a job-mix to another, remaining jobs
must not experience any discontinuity caused by the change
of configuration. Secondly, as different jobs can have very
different rates, a static schedule could only be realized if
the faster jobs where almost completely latency-insensitive,
which is certainly not the case with jobs such as Wireless
LAN and, even if this were the case, the length of the static
order schedule and the amount of buffering of inputs re-
quired could easily become prohibitive.

Since we assume that task to processor assignment is
given, fully dynamic global scheduling is not needed. One
could think of simply using local TDM schedulers per pro-
cessor and relying on FIFO communication for actor syn-
chronization. This is actually the approach we suggested
in [17] for a homogeneous MPSoC. The main problem with
such a strategy is that the bounds on the worst-case response
times of actors executing on independent TDM slices com-
pletely overlook the fact that, within a job, we have more
information about the interdependence of actors. For in-
stances, a set of actors may be mutually exclusive – in an
SRDF graph this happens when the actors belong to the
same single-delay cycle – and allocating a different slices to
each of these task wastes resources, since, if all share the
same slice, each task can use the whole slice when enabled.
As we assume static processor allocation, we know that ac-
tors allocated to the same processor are already forced to
execute in mutual exclusion.

To illustrate this, we compute the worst-case latency from
input to output for three groups of three actors, where all
three actors belong to the same job and are allocated to
the same processor. These are shown in figure 2. In two of
the cases, there are direct dependencies amongst them. In
the third case no such dependencies exist. Edges without
a source receive their input tokens from actors executing in
other processors, which are not depicted.

Assume that each actor has an execution time of t = 1.
Figure 3 shows two different schedules, both valid for all of
the three cases, assuming a TDM wheel period P = 4. In
schedule 3(a) each actor gets its own time slice of S = 1
duration. In schedule 3(b), the actors are statically ordered,
and a slice of S = 3 duration is allocated to the statically
scheduled group. Both schedules require exactly the same
amount of processing resources (3/4 of the time wheel), but
worst-case response times are much smaller for the combined
scheduling strategy.

If the actors in Figure 2(a) are scheduled according to the
schedule in Figure 3(a), the output of B will be produced,
in the worst-case, after A and B have both executed once.
A will take r(A) = 4 to execute, because in the worst-case

A CB

(a)

A

C

B

(b)

A

B

C

(c)

Figure 2: Three job fragments.

A

B C

(a) TDM

A

C

B

(b) Combined

Figure 3: Two schedules of three actors.

A has to wait for 3/4 of the wheel to turn to get its slice,
and then take 1/4 of the wheel to process. Now B has to
execute once. That takes r(B) = 4− 1, since B can execute
sooner that waiting for a full turn after A has completed –
we know that B is not allocated to the same slice as A. The
output of B will therefore be generated after r(A)+r(B) = 7
units of time. The output of C will still have to wait for the
response time of C, which will be again less than one period,
since the slice allocated to C will certainly be reached before
the slice of B, which just finished. Therefore r(C) = 3,
and C will produce output after r(A) + r(B) + r(C) = 10
time units. On the other hand, the combined TDM/static-
order schedule 3(b) takes as worst-case the time from the
end of the slice allocated to the group to the next end of the
slice allocated to the group, since the 3 actors all execute
in sequence within one slice. Therefore, A ends execution
at time 2, the output in B is produced at time 3 and the
output of C has a response time of 4.

For job 2(b), the TDM schedule in figure 3(a) will yield a
response time of 4 + 3 = 7 for both external outputs, while
the combined schedule will yield the same values as for job
2(a).

For job 2(c), the combined schedule imposes an arbitrary
order between 3 independent actors, and thus creates extra
scheduling dependencies. However, the worst-case produc-
tion times, assuming all external inputs are available, are
still 2,3,4, for the outputs of A, B and C, respectively, while
for the TDM schedule, the worst-case production times are
4, 4 , 4. Note however, that in this case the combined sched-
ule imposes an extra dependency on the arrival of the input
of A to the production of B’s output, which did not exist
before. If the input of B is ready before the input of A, this
particular schedule may be quite inefficient. However, this is
a problem of choosing the “right” static-order. The results
of this example are summarized in Table 3.

60



TDM Comb.
Job a Job b Job c All

Out A 4 4 4 2
Out B 7 7 4 3
Out C 10 7 4 4

Table 1: TDM vs Combined scheduling.

The point we want to make is that the combination of
TDM slicing with static order schedule allows, when applica-
ble, the determination of much tighter bounds on worst-case
response times for the same amount of allocated resources
than TDM. Since at compile-time we know only about one
single job, it is at this level that static-order can be used to
shorten worst-case bounds on response times.

Because of this, we use different scheduling methods to
schedule among tasks within a job (intra-job scheduling)
and to reserve resources among jobs (inter-job scheduling)
such that each running job can meet its timing requirements
independently of any starts/stops of other jobs.

Intra-job scheduling is handled by means of static order,
i.e., per job and per processor, a static ordering of actors is
found that respects the Real-Time requirements while trying
to minimize processor usage, while inter-job scheduling is
handled by means of local TDM schedulers: per job and per
processor a slice time duration S is defined.

An admission controller is needed to start jobs upon the
arrival of a start request. It is similar to the one we suggested
in [17], in that it must check if enough memory, communi-
cation and computing resources (enough time in the TDM
wheel of the processor) are available for the requirements of
the job. If not, the start of the job is refused.

4. THE SCHEDULING PROBLEM
Our objective is to schedule each job in such a way that

we guarantee real-time constraints and minimize processing
resource usage, such that resources can be shared with other
running jobs, both increasing the probability of starting the
job on an already running system, and the probability that
jobs requested to start later will find enough resources to
start. We need to define the period P (p) of the time wheel
for each processor p in the multiprocessor, the slice time
S(p,j) attributed to job j on processor p and, a static-order
schedule so(p, G) per processor p and job G.

4.1 Temporal Requirements
We define maximum production period μD as the

maximum acceptable period between consecutive executions
of an SRDF actor for a given job graph G.

We wish to find a schedule such that, if G = (V, E) is
the input job graph, d(i, j) the delay for all edges (i, j) ∈ E,
π(v) and t(v), respectively, the processor assignment and the
execution time, for all actors in V , the graph G′ = (V ′, E′),
obtained by modeling all scheduling decisions represented by
P (p), S(p, j) and so(p, j) in G should be such that μ(G′) ≤
μD — this is equivalent to defining μ−1

D as the minimum
average throughput of the system.

4.2 Optimization Criterion
For each job, the schedule should use as few cycles per

period as possible, as this will increase the percentage of
the processor available to other jobs. A good measure of

the amount of processing resources used by a job G on a
processor p is the processor utilization U(p, G), which can
be defined, for TDM, as the ratio between the time reserved
on the processor for the job and the total amount of cycles
per time wheel period:

U(p, G) =
S(p, G)

P (p)
. (4)

The variable P (p) is set per processor as a fixed system
parameter as will be described in section 4.4. For a het-
erogeneous multiprocessor, we try to reduce the utilization
of all processors. This is done in a weighted way, since it
is possible that certain processors are more required than
others, and thus their utilization should be kept lower. We
introduce a processor cost coefficient c(p). Our optimiza-
tion criterion is the minimization of the weighted sum of
the utilizations:

minimize
X

p∈Π

U(p, G) · c(p) (5)

This function still disregards the fact that, although the
resources of a processor may be more scarce than of another,
if the “cheaper” processor is fully occupied, several jobs may
become impossible to start – e.g. a second instance of an
already running job. This could be accounted for by an opti-
mization criterion that makes the cost of a processor increase
with utilization, but that would yield a complex, non-linear
objective function. Instead, we solve the problem by adding
a constraint per processor on the maximum utilization per
job, Û(p), and we enforce that U(p, G) ≤ Û(p).

4.3 Phase decoupling
The problem of trying to find P (p), S(p, G) and so(p, G),

subject to the afore-mentioned constraints and optimization
criterion, all at once, is complex. Besides, P (p) should be a
system-wide parameter: since jobs must be able to execute
together, the same time wheel period must be shared by all.

Per job, we split the problem in two: finding the
slice times S(p, G), and finding the static order schedules
so(p, G).

4.4 Setting Time Wheel Periods
Assuming a constant processor utilization, it becomes ev-

ident, when one inspects Equation 3, that, when the time
wheel period decreases, the worst-case response time of an
actor becomes closer to its execution time. This seems to
imply that the time wheel period should be as small as pos-
sible, while still allowing partitioning among the maximum
amount of job instances one wishes the platform to be able
to run simultaneously. However, this neglects the overhead
caused by the context-switching time at the change of time
slice: since the context-switching time is constant, a smaller
time wheel period implies a higher absolute number of con-
text switches and, thus, a lower utilization of the processors.
We can chose P (p) in such a way that we guarantee that the
overhead of context-switching does not exceed an arbitrary
percentage pcc(p) of the processing cycles of p. If cc(p) is
the cost of a context-switch for processor p and nj(p) is the
maximum number of job instances we wish to run simulta-
neously, and since per each period each job gets one time
slice, it comes that the number of cyles per period spent on
context switch is cc(p) · nj(p) and the value of P (p) should
be set such that:

61



P (p) ≥ cc(p) · nj(p)

pcc(p)
(6)

On the other hand, since any actor in a timed SRDF graph
must be able to execute once per μD of its job to meet the
temporal constraints, the time wheel period must be such
that allows this for all jobs, and therefore P (p) ≤ μD(G)
for any job G the system must run. If the two inequalities
are not compatible, one must accept a higher percentage of
context-switching overhead.

4.5 Finding Static-Order Schedules
The first thing to notice about the static order sched-

ules is that the only precedence constraints that need to be
respected are the ones inside one iteration. This is because
the static order imposes an execution order with no iteration
overlap per processor (but notice that between two different
processors there may still be iteration overlap). Therefore,
for the purpose of the static-order schedule, only edges in
the input graph that have the delay equal to 0 need to be
taken into account.

To give an idea of how the static order of actors on a
processor influences the temporal behavior, we will give an
example. Figure 4 depicts the timed SRDF model of a job.
Assume that π(A) = π(B) = π(C) = p1 and π(D) = p2.
Assume also that t(A) = t(B) = t(C) = t(D) = 1 and that
μD = 3. The MCM of the job is μ = 3, because of the ACD
cycle.

Now inspect the two static-order schedules in 4.5. Both
of them respect the precedence constraints defined by the 0-
delay edges, but while the schedule depicted in 5(a) has an
MCM of 3, from cycles ACD and ACB, the schedule depicted
in 5(b) exceeds μD since the cycle ABCD has μc = 4, due
to the extra dependency caused by the static order on p1.

A

B C D

Figure 4: A job.

This reflects the fact that our particular scheduling prob-
lem is a constraint satisfaction problem: after each schedul-
ing decision, a set of constraints that includes the original
data dependencies of the input graph and the constraints

A

B

C D

P1

P2

(a)

A

C

B

D

P2

P1

(b)

Figure 5: Two schedules for the same job.

imposed by the partial schedule can be checked by running
an MCM algorithm to see if the MCM is beneath μD.

Our static-order scheduler performs full-backtracking on
top of a multiprocessor-wide ready-list scheduler. Every
time a scheduling decision is taken, an MCM algorithm is
used to do constraint checking on the graph obtained by
modeling the scheduling decisions on top of the input graph.
For MCM computation, we implemented the Howard algo-
rithm [6], since it is one of the fastest, according to the
benchmark provided in [9] and, being a policy-improvement
algorithm, it is easy to write an incremental version of it:
at each step we start the search of the MCM for the new
model graph by the MCM cycle which was the solution in
the previous step.

The static order scheduler can be used before or after Slice
Time attribution. If it is used before, then the original t(i)s
are used for MCM computation. If it is used after, or if a
maximum value for the slice time is required, the response
time model, computed as described in Section 2.2.1, is used
instead.

5. FINDING THE SLICE TIMES
In order to show how to solve the problem of choosing

an adequate slice time for each group of actors belonging
to the same job running on the same processor, we will first
show how to compute the amount of time slack that is avail-
able to each actor, with respect to the timing requirements.
We encapsulate this knowledge in the concepts of deadline
extension and deadline extension pool, that we describe in
some detail below.

5.1 Deadline Extension
The deadline extension of an actor is an amount by which

its t(i) can be increased, while still guaranteeing that the
MCM of the job is kept below or equal to a maximum desired
production period μD.

5.1.1 Deadline Extension Pools
Given a desired production period μD and a timed SRDF

job G, with μ(G) ≤ μD, we define the deadline extension
pool ΔD(c) of cycle c ∈ Cycles(G) as the maximum time
that can be added to the sum of execution times of c that
keeps μ(G) ≤ μD. This is given by:

ΔD(c) = max x : μD ≥ (
X

c

t(i) + x)/
X

c

d(i, j). (7)

We can see that x is maximum in the upper limit of the
inequality. Thus it must be that:

μD = (
X

c

t(i) + ΔD(c))/
X

c

d(i, j). (8)

Therefore, ΔD(c) is

ΔD(c) = (μD −
X

c

t(i))/
X

c

d(i, j))
X

c

d(i, j), (9)

and if we now substitute (1) in (9):

ΔD(c) = (μD − μ(c))
X

c

d(i, j). (10)

What the deadline extension pool of a cycle tells us is how
much the execution of a cycle as a whole can be delayed while

62



still guaranteeing the desired throughput, if other cycles are
not delayed. We are more interested in computing the max-
imum deadline extension per actor as it can help us finding
scheduler settings.

5.1.2 Maximum Deadline Extension of an Actor
We define the maximum deadline extension ˆδ(i) of actor

i as the maximum amount by which the execution of i can
be delayed while still guaranteeing the desired throughput,
if we assume that all other nodes are not delayed.

If an actor i belongs to a single cycle c, then it is clear that

its ˆδ(i) will be equal to the ΔD(c) of that cycle. However, in
general, i will belong to multiple cycles, and the maximum
deadline extension available to i will depend on the “slowest”
cycle to which it belongs. Therefore, the deadline extension

pool ˆδ(i) of actor i is given by

δ̂(i) = min
c∈C(i)

ΔD(c) = min
c∈C(i)

((μD − μ(c))
X

c

d(i, j)), (11)

where C(i) is the set of cycles in G to which actor i belongs.
Equation (11) seems to imply that we need to know all

the cycles in the graph to compute the δ̂(i)’s. This would
cause a severe algorithmic complexity problem. If i has a
self-cycle, which we assume to be normally true for actors
that represent tasks, then we know that its maximum exe-
cution time that keeps the MCM of the graph below μD is
equal to μD, while the lowest value is 0. Therefore, we may
use binary search with an MCM computation algorithm to
find the Maximum Deadline Extension for each actor in the
graph.

We will show that there is a simpler way to compute these
values. If we substitute the cycle mean expression 2 in ex-
pression 11, we obtain:

δ̂(i) = min
c∈C(i)

((μD −
P

c t(i)P
c d(i, j)

)
X

c

d(i, j)), (12)

and by manipulating this we obtain

δ̂(i) = min
c∈C(i)

(μD

X

c

d(i, j) −
X

c

t(i)), (13)

and as we can factorize the sum operator

δ̂(i) = min
c∈C(i)

X

c

(μDd(i, j) − t(i)). (14)

If we create a valuation w for edges (i, j) ∈ E such that:

w(i, j) = μD · d(i, j) − t(i) (15)

then equation (14) is the definition of the shortest path from
i to i over a cycle.

Lemma 1. The maximum deadline extension δ̂(i) of actor
i is given by σ(i, i) when all edges (i, j) ∈ E have a valuation
w(i, j) = μDd(i, j) − t(i) and

σ(i, j) = min
p∈P (i,j)

X

(m,n)∈p

w(m, n), (16)

where P (i, j) is the set of paths from node i to node j in G.

The proof of this lemma is left out for lack of space. It is
available in [15].

We can therefore calculate the maximum deadline exten-
sion for all actors by running the Floyd-Warshal all-pairs

shortest-path algorithm [7], which has a polynomial com-
plexity of O(|V |3).

Deadline extension pools provide an excellent way of
studying time slack, and can be used by the designer di-
rectly to estimate possible values for slice times.

5.2 Optimizing Sums of Deadline Extensions
One way to distribute time slack amongst actors is to find

a sum of feasible deadline extensions that is optimal in some
sense, which is equivalent to decreasing the weights given by
Equation 15 while keeping all cycles at positive length. It is
an instance of the inverse shortest-path problem, which has
been studied in detail in [5].

The problem of maximizing the sum of deadline exten-
sions is an inverse shortest-path problem where the actors’
deadline extensions have to be chosen in such a way that no
cycle has a negative shortest-path for the weights given in
Equation 15, i.e., such that the MCM of the graph doesn’t
become higher that the desired production period μD. We
present the formulation of the problem as a linear program,
based on the observation that, for every actor v ∈ V and
every edge (u, y), it must hold, by the definition of short-
est path that σ(v, y) ≤ σ(v, u) + w(u, t). If the weights
w(u, y) = μD · d(u, y) − t(u) − δ(u), the linear program is:

Maximize
P

∀v∈V δ(v)
subject to
∀(u, y) ∈ E, ∀v ∈ V , σ(v, y) ≤ σ(v, u) + μD · d(u, y)

−t(u) − δ(u)
∀v ∈ V , σ(v, v) ≥ 0
∀v ∈ V , δ(v) ≥ 0

This is a linear programming problem with a polynomial
bound on the number of linear constraints, which is known
to have polynomial complexity [12]. Extra linear constraints
can be added that force two actors to have the same deadline
or to give different weights to each deadline extension in the
objective function. It is also possible to set the deadline
extension of a node to 0, or add a weight to each δ(v) in the
objective function.

5.3 Finding Slice Times
The linear program presented in the previous section gives

a general way to distribute slack amongst the actors in an
SRDF, such that timing requirements can be met. It cannot
be used directly to compute time slices. The problem is that
if we replace t(v) + δ(v) by the r(v) expressions as given in
section 2.2.1, we obtain a non-linear program. This is in
part due to the ceil function in the rx(t) expression. We can
linearize the problem by making a conservative (meaning
overestimating) approximation of the response time by re-

placing � t(v)
S(p,G)

� for t(v)
S(p,G)

+ 1. We thus obtain the formula

rx(v) ≤ t(v)
S(p,G)

· P (p), which is linear.

In the case of an edge across different processors, the re-
sponse time expression includes both vx and vs nodes, and it
becomes r(v) = rx(v)+rs(v). With our approximation, this

becomes r(v) ≤ t(v)
S(p,G)

·P (p)−P (p) + S(p, G), which is still

non-linear as our variable S(p, j) appears both in the numer-
ator and the denominator. We can however, make another
conservative approximation. In the inequality, as S(p, G)

63



becomes smaller, the t(v)
S(p,G)

· P (p) becomes bigger. We can

linearize the expression by dropping the +S(p, j) term. We
also make a variable substitution: N(p) = P (p)/S(p, G) (we
drop the job parameter G, since when solving the slice time
problem this can be kept implicit). An extra constraint
is that N(p) ≥ U(p)−1. Instead of maximizing the total
amount of used time slack, we maximize the sum of N(i),
weighted by the processor costs as defined in section 4.2. We
obtain the following linear program:

Maximize
P

∀v∈V N(π(v)) · c−1(π(v))
subject to
∀(u, y) ∈ E : π(u) = π(y),
∀v ∈ V , σ(v, y) ≤ σ(v, u) + μD · d(u, y)

−N(π(u)) · t(u)
∀(u, y) ∈ E : π(u) 	= π(y),
∀v ∈ V , σ(v, y) ≤ σ(v, u) + μD · d(u, y)

−N(π(u)) · t(u) + P (π(y))
∀v ∈ V , σ(v, v) ≥ 0

∀p ∈ Π, N(p) ≥ Û(p)−1

Notice that N(p) = U−1(p, j).

6. PHASE ORDERING
It is not trivial to chose in which order to perform the

determination of the slice times and the computation of the
static-order schedule, since these two steps are strongly in-
terdependent. If one determines the slice times first, the de-
termination is based on partial constraints since the sched-
ule is yet to be derived. It may be that there is no valid
static-order schedule that meets the tighter scheduling con-
straints caused by replacing the original execution times by
the larger response times due to the chosen time slicing.

We prefer to determine the static-order schedule first, us-
ing response times based on the maximum allowed utiliza-
tion per processor, Û(p), and only afterwards try to find
slice times that are compatible with that static-order sched-
ule. This has the advantage that, provided there is a feasible
static-order schedule, there is always a solution. However,
it may be that the static-order schedule chosen is not opti-
mal in the sense that does not allow for the lowest possible
utilization that meets all the constraints.

We thus approach the problem first as a constraint satis-
faction problem, to which the static order scheduler delivers
a feasible solution, if there is one, and then try to optimize
this solution by reducing utilization.

7. EXAMPLE
We will now show how to apply these scheduling tech-

niques to an actual application, in the domain of Software-
Defined Radio. Assume a multiprocessor system designed
for baseband decoding. It includes a general-purpose core,
an ARM, to handle control and generic functionality, a
vector-processor core, the EVP [3], to handle detection, syn-
chronization and demodulation, and an application-specific
Software Codec processor that takes care of the baseband
coding and decoding functions. All these processors are in-
terconnected via an Æthereal Network-On-Chip [11]. The

platform is used to handle several radio standards (Wireless
LAN, TD-SCDMA, UMTS, DVP-H, DRM). In our exam-
ple we will assume that we want to derive scheduler set-
tings such that we are able to run Wireless LAN (WLAN)
802.11a and TD-SCDMA simultaneously, with independent
start and stop, and allow for up to 2 job instances to be
active at a time, including configurations with two WLAN
instances and two TD-SCDMA instances.

Figure 6 depicts the timed data-flow model of a WLAN
802.11a job. Execution times (indicated under the actor
names) are given in nanoseconds. The different shading of
nodes indicates the different cores to which the actors are
assigned. Nodes with names starting by “Src” model the
source (inputs from an external RF unit), the nodes “Laten-
cyHeader” and “LatencyPayload” and their adjacent edges
are used to convert latency into throughput constraints,
as described in [16]. For space reasons, the Synchroniza-
tion step is represented in Multi-Rate Dataflow syntax: 5
“CFESync” nodes process the output of 5 “Src” nodes in a
chain of sources and synchronization nodes. The number of
“PayloadDemode” actors and respective sources may vary
between 1 and 255. We only depict the case where there is
only one “PayloadDemode” actor. Source and Latency ac-
tors are not scheduled. This graph has a required maximum
production period of μD(WLAN) = 40000ns.

Src1

2400

Src2

800

Detect

220

Hdemode

920

Src3

2400

FFEnCE

680

CFEnSync

355

Src4

1600

Src5

2400

Src7

4000

Src6

4000

HDecode

920

PDemode

920

PDecode

920

MacCRC

500

MacAnalyse

1000

BuildHeader

500

CodeHeader

920

LatencyHeader

20000

AckCode

920

AckMode

920

LatencyPayload

20000

SIFS

16000

ModHeader

920

5:1

5:1

1:5

1:5

Figure 6: A Wireless LAN 802.11a job.

Src1

275000

Src2

12500

DASS

19000

JD1

27500

Src3

100000

MI

42000

CE

33000

Src4

287500

DecCRC1

25000

JD2

15500

DecCRC2

25000

TFCI

2000

TPC

1000

Latency2

285500

Latency3

395000

Latency1

285680

Figure 7: A TD-SCDMA job.

Figure 7 depicts the timed data-flow graph model of a
TD-SCDMA job. The “Rx” nodes represent the source, and

64



Weights Utilization (%)
EVP SwC ARM EVP SwC ARM

1 1 1 44.9 44.9 20.9
2 1 1 27.6 44.9 44.9
2 2 1 27.6 44.9 44.9
1 2 1 44.9 27.6 44.9

Table 2: WLAN scheduling results.

Weights Utilization (%)
EVP SwC ARM EVP SwC ARM

1 1 1 44.9 15 13
100 1 1 42.4 15 13
1000 1 1 32.8 15 44.9

Table 3: TD-SCDMA scheduling results.

the “Latency” nodes and adjacent edges are used to convert
latency into throughput requirements. The required maxi-
mum production period is μD(TD-SCDMA) = 675000ns.

We start by choosing time wheel periods. For the EVP
and the Software codec, we assume a worst-case context-
switch time of 50ns. We want to support two jobs at a
time and we would like to spend less than 10% of our time
context-switching, so we set our wheel time to 1000ns. For
the ARM, context switching takes more time. We assume a
worst-case of 100ns, yield a period of 2000ns. Therefore, for
P (EV P ) = P (SWC) = 1000 and P (ARM) = 2000.

As we want to be able to run two WLAN or two TD-
SCDMA jobs simultaneously, we set the maximum uti-
lization per processor, Û(p), at 0.45 (half processor minus
context-switching).

For both jobs, we first computed static-order schedules
and then time slice extensions. In both cases, a static-order
schedule that meets the timing constraints (including the

Û(p) limitation on usage per processor) was found. These
schedules were used to calculate slice time optimizations.
We varied the values of the costs of the three processors
to search for trade-offs. It turns out that the results tend
heavily towards allocating all slack to a particular processor.
A change in weights typically forces a drastic change from
allocating slack to one processor to another.

In the case of the WLAN – the results are shown in Table
2 – the slice allocation allowed us to decrease the utiliza-
tion of one processors from 45% to 27.6%. The table pretty
much exhausts the possible trade-offs. It suggests that it
makes sense to keep a table with several configurations and
allow the admission controller to chose different TDM set-
tings for a job instance taking into account the current level
of resource utilization.

The results for the TD-SCDMA are shown in Table 3. One
thing to notice is that the optimal slice times for the ARM
and the Software Codec are obtained for equal weights. In-
creasing the weights of either ARM or Software Codec by
any amount, didn’t further decrease their slice times. By
comparing the results in the first and the second entries of
this table, we observe one of the problems with our linear
programming formulation: the optimized value of N(ARM)
in the first entry does not allow a smaller slice time than the
much lower value obtained in the second entry; it does how-
ever prevent the slice time for the EVP to be decreased from
449 to 424. This example does not allow many trade-offs:

to allow a decrease from 449 to 329 on the EVP, we had
to increase its weight to 1000. Moreover, this came at the
cost of changing the utilization of the ARM from 1.3% to
44.9%. The bottom line is that, although not perfect, our
slice time optimization allows a decrease of the utilization to
1.5% for the Software Codec and 1.3% for the ARM, from
the imposed maximum 45%.

8. RELATEDWORK
Much work has been published on the scheduling of

dataflow graphs with real-time requirements. The level of
dynamicity we allow in the start and stop of jobs is what
basically differentiates our problem from other multiproces-
sor real-time scheduling problems. We will review proposed
approaches that could be adapted to solve our problem.

The most viable alternative to our solution is to use pre-
compiled resource allocation configurations, such as in CPA
[20]. For each job-mix, a separate optimal static schedule
is derived at compile-time and stored in a look-up table.
During operation, when there is a request to start a job,
the run-time system checks which jobs are active and se-
lects the appropriate configuration. This approach is not
without problems. First, a different configuration has to be
stored for each combination of jobs, which means that the
number of configurations grows exponentially with the num-
ber of jobs. Second, if a job is not known at design time, it
will force a whole new set of configurations to be compiled
later. Third, it is difficult to assure continuity of execution
of already running jobs during reconfiguration. For continu-
ity, a configuration should be generated for each transition
from a job-mix to another which easily becomes infeasible.

We calculate scheduling budgets per job at compile-time.
During run-time two distinct temporal phases alternate:
configuration phase and steady-state execution phase. Dur-
ing configuration phases, resources are allocated to jobs;
during steady-state resource allocation is fixed. In this, our
strategy can be compared with semi-static techniques [8],
where system execution is divided in phases and resource al-
location is redone at the beginning of each phase. But while
in semi-static systems phases are periodical, in our case re-
configuration phases are triggered by a request to start or
stop a job.

Our strategy has similarities with other time-multiplexing
strategies such as gang scheduling [10]. Our jobs corre-
spond roughly to a gang, i.e. a group of tasks (actors in
our case) with data dependencies. There is, however, an
important difference: in gang scheduling, time-multiplexing
is global, i.e., the temporal slots are uniform across all pro-
cessors, and synchronized context-switching is required. In
our case, time-multiplexing is local to each individual pro-
cessing element. Our strategy has several advantages over
gang scheduling: it does not require global synchroniza-
tion of context switches, which hinders design scalability;
it leaves less unused resources because its time-sharing is
more fine-grained; and it also allows for a different schedul-
ing mechanism per processor.

In previous work, [17], we have shown how an online re-
source manager can be built to reserve resources per job at
start time, while keeping already running jobs unaffected. In
[16], we proposed the combination of TDM and static-order
scheduling to address dynamic job-mixes but did not specify
any flow. A recent paper [21] describes a method similar to
ours, that mixes static-order and TDM scheduling. It does

65



not address different start/stop times. To account for the
effect of TDM on the response times, symbolic simulation of
the dataflow graph is performed, while keeping track of the
state of the TDM wheels. For this to yield conservative re-
sponse times, all possible states for a worst-case, self-timed
schedule need to be simulated, which seems to imply that
conservative resultes require that simulation continues un-
til the same token positions and the same position on all
TDM arbiters is reached simultaneously, which can lead to
an exponential blow-up. This work also differs from ours in
that the static-order schedule is determined by a ready-list
scheduler with no backtracking and no timing constraints,
and slice minimization is done using binary search on top of
the symbolic simulation.

9. CONCLUSION
We have presented a scheduling strategy and a scheduling

flow to solve the problem of running multiple jobs with dif-
ferent rates and different start/stop times. The scheduling
strategy involves a combination of static-order scheduling
per job per processor, and TDM scheduling to arbitrate be-
tween different jobs in each processor. We have shown how
the combination of TDM with static-order scheduling is de-
sirable and can be modeled for the purpose of temporal anal-
ysis. We have shown how the temporal analysis model can
serve as a basis for a scheduling flow. We have proposed al-
gorithms to estimate the temporal slack that can be allowed
per actor for a timed SRDF, and how to exploit this time
slack by decreasing slice times. This flow solves a practical
problem arising in real-time streaming platforms (Software-
Defined Radio, Car-Radio, Digital TV) and is unique in that
it is able to find both TDM settings and static order sched-
ules per job per processor, to handle a dynamic job-mix on
a multiple processor and provide hard real-time guarantees
for all admitted jobs.

Although we show this flow exclusively using Time-
Division Multiplex for inter-job scheduling, this does not
present an essential limitation of the techniques: any bud-
get scheduler can be used, although changes must be made
to the dataflow model and to the computation of scheduler
settings.

There are several open issues we wish to address in future
work. One is optimizing the static-order schedule for lower
slice times; another is improving the slice minimization: the
linearization in the current approach becomes an issue when
the execution times are of the same order of magnitude as
P , as the overhead of approximating P − S by P becomes
too high. The current approach allows communication and
buffer capacity constraints to be taken into account, but
it is also interesting to search for scheduling settings that
optimize for low communication requirements and/or small
buffer sizes.

10. REFERENCES
[1] M. Bekooij et al. Predictable embedded

multiprocessor system design. In Proc. Int’l Workshop
SCOPES, LNCS 3199. Springer, Sept. 2004.

[2] M. Bekooij et al. Dataflow analysis for real-time
embedded multiprocessor system design. In Dynamic
and Robust Streaming in and between Connected
Consumer Electronic Devices, volume 3, pages 81–108.
Springer, 2005.

[3] K. Berkel et al. Vector processing as an enabler for
software-defined radio in handheld devices. EURASIP
Journal on Applied Signal Processing, (16), 2005.

[4] G. Blisen et al. Cyclo-static dataflow. In IEEE
Transactions on Signal Processing, volume 44, pages
397–408, 1996.

[5] D. Burton. the inverse shortest path problem, 1993.

[6] J. Cochet-Terrasson et al. Numerical computation of
spectral elements in max-plus algebra. In Proc. IFAC
Conf. on Syst. Structure and Control, 1998.

[7] T. Corman et al. Introduction to Algorithms.
McGraw-Hill, 2001.

[8] D. Culler et al. Parallel Computer Architecture: a
hardware/software approach. Morgan Kaufmann, 1999.

[9] A. Dasdan. Experimental analysis of the fastest
optimum cycle ratio and mean algorithms. ACM
Transactions on Design Automation of Electronic
Systems, 9(4):385–418, Oct. 2004.

[10] D. Feitelson. Job scheduling in multiprogrammed
parallel systems. Technical report, IBM Research
Report RC, 1994.

[11] K. Goossens et al. Guaranteeing the quality of service
in networks on chip.

[12] L. Kachyian. Polynomial algorithms in linear
programming. USSR Computational Mathematics and
Mathematical Physics, 20:53–72, 1980.

[13] E. Lee and D. Messerschmitt. Synchronous data flow.
In Proceedings of the IEEE, 1987.

[14] A. Moonen, M. Bekooij, and J. van Meerbergen.
Timing analysis model for network based
multiprocessor systems. In Proc. Workshop of
Circuits, System and Signal Processing (ProRISC),
pages 91–99, Veldhoven, The Netherlands, 2004.

[15] O. Moreira. Self-timed scheduling analysis for
real-time applications. Technical report, Technical
University of Eindhoven, 2006.

[16] O. Moreira and M. Bekooij. Self-timed scheduling
analysis for real-time applications. EURASIP Journal
on Advances in Signal Processing, 2007.

[17] O. Moreira, M. Bekooij, and J. Mol. Online resource
management for a multiprocessor with a
network-on-chip. In Proc. ACM Symposium on
Applied Computing, March 2007.

[18] R. Reiter. Scheduling parallel computations. Journal
of the ACM, 15(4):590–599, October 1968.

[19] S. Sriram and S. Bhattacharyya. Embedded
Multiprocessors: Scheduling and Synchronization.
Marcel Dekker Inc., 2000.

[20] M. Strik et al. Heterogeneous multiprocessor for the
management of real-time video and graphics streams.
IEEE Journal of Solid-State Circuits,
35(11):1722–1731, 2000.

[21] S. Stuijk et al. Multiprocessor resource allocation for
throughput-constrained synchronous dataflow graphs.
In Proc. Design Automation Conference (DAC), 2007.

66



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


