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ABSTRACT

The increasing levels of system integration in Multi-Processor
System-on-Chips (MPSoCs) emphasize the need for new de-
sign flows for efficient mapping of multi-task applications
onto hardware platforms. Even though data-flow graphs are
often used for pure data-streaming, many realistic applica-
tions can only be specified as conditional task graphs (CTG).
The problem of allocating and scheduling conditional task
graphs on processors in a distributed real-time system is
NP-hard. The first contribution of this paper is a complete
stochastic allocation and scheduling framework, where an
MPSoC virtual platform is used to accurately derive input
parameters, validate abstract models of system components
and assess constraint satisfaction and objective function op-
timization. The optimizer implements an efficient and ex-
act approach to allocation and scheduling based on problem
decomposition. The original contributions of the approach
appear both in the allocation and in the scheduling part of
the optimizer. For the first, we propose an exact analytic
formulation of the stochastic objective function based on the
task graph analysis, while for the scheduling part we extend
the timetable constraint for conditional activities. The sec-
ond contribution of this paper is the introduction of a soft-
ware library and API for the deployment of conditional task
graph applications onto Multi-Processor System-on-Chips.
With our library support, programmers can quickly develop
multi-task applications which will run on a multi-core ar-
chitecture and can easily apply the optimal solution found
by our optimizer. The proposed programming support man-
ages OS-level issues, such as task allocation and scheduling,
as well as task-level issues, like inter-task communication
and synchronization.
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1. INTRODUCTION

As technology scales toward deep sub-micron, the integra-
tion of a complete system consisting of a very large number
of IP blocks on the same silicon die is becoming technically
feasible, so embedded system designs which include more
than one processor are becoming more and more common
[27, 30, 24]. Future multi-processor system-on-chip (MP-
SoCs) hosting a huge number of processors will guarantee
high computational power thanks to their massive paral-
lelism, but at the cost of a more complicated parallel pro-
gramming paradigm. If we consider that software running
on multiprocessor must be high performance, real-time, and
low power, moreover that consumer applications are charac-
terized by tight time-to-market constraints and extreme cost
sensitivity, incoming MPsoC platforms will lead to several
and interesting challenges in software development: there is
a clear need for new deployment technologies which address
multi processing issues in embedded systems.

Even though data-flow graphs are often used for pure data-
streaming applications, many realistic applications can only
be specified as conditional task graphs. The problem of allo-
cating and scheduling conditional task graphs on processors
in a distributed real-time system is NP-hard.

Moving from these considerations, in this paper we present
a novel framework for developing, allocating and scheduling
conditional multi-task graphs on multi-processor systems-
on-chip. We target a general template for distributed mem-
ory embedded systems where the communication architec-
ture is becoming a critical component. Interaction of multi-
ple traffic patterns on the system bus causes congestion and
hence unpredictable communication latencies. Neglecting
this behaviour in high level optimization tools for allocation
and scheduling might lead to unacceptable deviations of real
performance metrics with respect to predicted ones and to
the violation of real-time constraints.

Moreover, the abstraction gap between high level optimiza-
tion tools and standard application programming models
can introduce other unpredictable and undesired behaviours.
In optimization tools many simplifying assumptions are gen-
erally considered and neglecting these assumptions can gen-



erate unpredictable system-level interactions of many con-
current execution flows. In the application developing phase,
programmers must be conscious about simplified assump-
tions taken into account in optimization tools. For instance,
a communication or synchronization sub-optimal task imple-
mentation leads to reduced throughput and/or latency and
has also energy implications, due to the higher occupancy
condition for system resources.

Our allocation and scheduling framework is based on prob-
lem decomposition and deploys techniques mutuated from
the Artificial Intelligence and the Operations Research com-
munity: the allocation subproblem is solved through Integer
Programming while the scheduling one through Constraint
Programming. More interestingly, the two solvers can inter-
act with each other by means of no-good generation, thus
building an iterative procedure which has been proven to
converge producing the optimal solution.

We propose two main contributions in this field: the first
concerns both the allocation and scheduling components.
The objective function we consider in the allocation com-
ponent depends on the allocation variables. Clearly, having
conditional tasks, the exact value of the communication cost
cannot be computed. Therefore our objective function is the
expected value of the communication cost. We propose here
to identify an analytic approximation of this value. The ap-
proximation is based on the Conditional Task Graph analy-
sis for identifying two data structures: the activation set of a
node and the coexistence set of two nodes. The approxima-
tion turns out to be exact and polynomial. Concerning the
scheduling, we propose an extension of the time-table con-
straint for cumulative resources, taking into account condi-
tional activities. The propagation is polynomial if the task
graph satisfies a condition called Control Flow Uniqueness
which is quite common in many conditional task graphs for
system design.

The other main contribution of this paper is the introduc-
tion of a new methodology for multi-task application devel-
opment. We propose a software library and APIs for the de-
ployment of conditional task graph applications onto Multi-
Processor System-on-Chips. With our library support, pro-
grammers can quickly develop multi-task applications which
will run on a multi-core architecture and can easily apply
the optimal solution found by our optimizer. The proposed
programming support manages OS-level issues, such as task
allocation and scheduling, as well as task-level issues, like
inter-task communication and synchronization. We carried
out its implementation with both high flexibility and per-
formance in mind. Finally, we deploy an MPSoC virtual
platform to validate the results of the optimization steps
and to more accurately assess constraint satisfaction and
objective function optimization. In multi-processor systems,
we believe this validation phase is critical in order to check
modelling assumptions and make sure that second-order ef-
fects and/or modelling approximations impair optimizer-
predicted performance (e.g., a required throughput) only
marginally below 10%.

2. RELATED WORK

The synthesis of system architectures has been extensively
studied in the past. Mapping and scheduling problems on
multi-processor systems have been traditionally tackled by
means of Integer Linear Programming (ILP). In general,
even though ILP is used as a convenient modelling formal-

ism, there is consensus on the fact that pure ILP formula-
tions are suitable only for small problem instances, i.e. task
graphs with a reduced number of nodes, because of their
high computational cost. An early example is represented
by the SOS system, which used mixed integer linear pro-
gramming technique (MILP) [25]. A MILP model that al-
lows to determine a mapping optimizing a trade-off function
between execution time, processor and communication cost
is reported in [4].

The complexity of pure ILP formulations for general task
graphs has led to the deployment of heuristic approaches.
Heuristic approaches provide no guarantees about the qual-
ity of the final solution, and many times the need to bound
search times limits their applicability to moderately small
task sets. In [8] a retiminig heuristic is used to implement
pipelined scheduling, while simulated annealing is used in
[23]. A comparative study of well-known heuristic search
techniques (genetic algorithms, simulated annealing and
tabu search) is reported in [3]. Unfortunately, busses are im-
plicit in the architecture, unlike in [10]. A scalability analysis
of these algorithms for large real-time systems is introduced
in [17]. Many heuristic scheduling algorithms are variants
and extensions of list scheduling [9]. In general, scheduling
tables list all schedules for different condition combinations
in the task graph, and are therefore not suitable for control-
intensive applications.

Constraint Logic Programming (CP) is an alternative ap-
proach to Integer Programming for solving combinatorial
optimization problems [19]. The work in [28] is based on
Constraint Logic Programming to represent system synthe-
sis problem, and leverages a set of finite domain variables
and constraints imposed on these variables. Both ILP and
CP techniques can claim individual successes but practical
experience indicates that neither approach dominates the
other in terms of computational performance. The devel-
opment of a hybrid CP-IP solver that captures the best
features of both would appear to offer scope for improved
overall performance. However, the issue of communication
between different modelling paradigms arises. One method
is inherited from the Operations Research and is known as
Benders Decomposition [5]: it is has been proven to con-
verge producing the optimal solution. There are a number
of papers using Benders Decomposition in a CP setting [31]
[11] [16] [15].

[26] presents an approach leverages a decomposition of the
problem in the context of MPSoC systems. The authors
tackle the mapping sub-problem with IP and the scheduling
one with CP. The work considers only pipelined streaming
applications and does not handle conditional task graphs.
In order to solve the problem of allocating and scheduling a
general conditional task graph onto a MPSoC, the introduc-
tions of more complex problem models and cost functions,
such as more complex subproblem relaxations and Benders
cuts are needed.

In the system design community, the problem of allocat-
ing and scheduling a conditional multi-task application is
extremely important and many researchers have worked ex-
tensively on it, mainly with incomplete approaches: for in-
stance in [33] a genetic algorithm is devised on the basis
of a conditional scheduling table whose (exponential num-
ber of) columns represent the combination of conditions in
the CTG and whose rows are the starting times of activi-
ties that appear in the scenario. The number of columns



is indeed reasonable in real applications. The same struc-
ture is used in [18], which is the only approach that uses
Constraint Programming for modelling the allocation and
scheduling problem. Indeed the solving algorithm used is
complete only for small task graphs (up to 10 activities).
Besides related literature for similar problems, the Opera-
tions Research community has extensively studied stochastic
optimization in general. The main approaches are: sampling
[2] consisting in approximating the expected value with its
average value over a given sample; the I-shaped method [20]
which faces two phase problems and is based on Benders
Decomposition [5]. The master problem is a determinis-
tic problem for computing the first phase decision variables.
The subproblem is a stochastic problem that assigns the sec-
ond phase decision variables minimizing the average value of
the objective function. A different method is based on the
branch and bound extended for dealing with stochastic vari-
ables, [22].

The CP community has recently faced stochastic problems:
in [32] stochastic constraint programming is formally intro-
duced and the concept of solution is replaced with the one
of policy. In the same paper, two algorithms have been pro-
posed based on backtrack search. This work has been ex-
tended in [29] where an algorithm based on the concept of
scenarios is proposed. In particular, the paper shows how to
reduce the number of scenarios, maintaining a good expres-
siveness.

3. TARGET ARCHITECTURE

Our mapping strategy targets a general template for a
message-oriented distributed memory architecture. The spe-
cific platform instance, conforming to the template, only
determines the annotated values in the application task
graph (cost for communication and execution times), which
is an input to our framework. Therefore, the allocation and
scheduling methodology we propose is not affected by spe-
cific design choices (e.g., the kind of processing unit, the
bus architecture). The characteristics of the architectural
template targeted by our optimization framework include:
(i) support for message exchange between the computation
tiles, (ii) availability of local memory devices at the com-
putation tiles and of remote (i.e., non-local to the tiles, ac-
cessible through the system bus) storage devices for those
program data that cannot be stored in local memories. The
remote storage can be provided by a unified memory with
partitions associated with each processor or by a separate
private memory for each processor core connected to the
system bus. This assumption concerning the memory hier-
archy reflects the typical trade-off between low access cost,
low capacity local memory devices and high cost, high ca-
pacity memory devices at a higher level of the hierarchy. The
architecture of the Cell processor closely matches the tem-
plate we are targeting, because of its synergistic processing
elements with local storage and of its support for message-
based stream processing[7].

We deployed the model of an instance of this architec-
tural template in order to prove the viability of our approach
(see Fig. 1). The computation tiles are supposed to be ho-
mogeneous and consist of ARM cores (including instruction
and data caches) and of tightly coupled software-controlled
scratchpad memories for fast access to program operands
and for storing input data. We used an AMBA AHB bus
as system interconnect. A DMA engine is attached to each
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Figure 1: Message-oriented distributed memory ar-
chitecture.

core, as presented in [13], allowing efficient data transfers
between the local scratchpad and non-local memories reach-
able through the bus. The DMA control logic supports mul-
tichannel programming, while the DMA transfer engine has
a dedicated connection to the scratch-pad memory allowing
fast data transfers from or to it. In order to communicate
each others, cores use non-cachable shared memory. For
the synchronization among the processors, semaphore and
interrupt facilities are used:

1. acore can send interrupt signals to each other using the
hardware interrupt module mapped on in the global
addressing space;

2. several cores can synchronize using the semaphore
module that implements test-and-set operations.

Finally, each processor core has a private on-chip memory,
which can be accessed only by gaining bus ownership. In
principle, it could be also an off-chip memory. In any case,
it has a higher access cost and can be used to store program
operands that do not fit in scratch-pad memory. Optimal
memory allocation of task program data to the scratch-pad
versus the private memory is a specific goal of our optimiza-
tion framework, dealing with the constraint of limited size
of local memories in on-chip multi-processors. The software
support is provided by a real-time operating system called
RTEMS [1]. Our implementation thus supports: (i) either
processor or DMA-initiated memory-to-memory transfers,
(ii) either polling-based or interrupt-based synchronization,
and (iii) flexible allocation of the consumerSs message buffer
to the local scratchpad or the non-local private memory.

4. HIGH-LEVEL APPLICATION

Our methodology requires to model the conditional multi-
task application to be mapped and executed on top of the
target hardware platform as a task graph with precedence
constraints. A real-time requirement is specified, consisting
of a minimum required throughput for the overall applica-
tion. The target application to be executed on top of the
hardware platform is the input to our algorithm. It is rep-
resented as a Conditional Task Graph. A CTG is a triple
(T, A, C), where T is the set of nodes modeling generic tasks



(e.g. elementary operations, subprograms, ...), A the set of
arcs modeling precedence constraints (e.g. due to data com-
munication), and C' is a set of conditions, each one associ-
ated to an arc, modeling what should be true in order to
choose that branch during execution (e.g. the condition of a
if-then-else construct). A node with more than one outgoing
arc is said to be a branch if all arcs are conditional, a fork if
all arcs are not conditional; mixed nodes are not allowed. A
node with more than one ingoing arc is an or-node if all arcs
are mutually exclusive, it is instead an and-node if all arcs
are not mutually exclusive; mixed nodes are not allowed.
Since the truth or the falsity of conditions is not known in
advance, the model is stochastic. In particular, we can asso-
ciate to each branch a stochastic variable B with probability
space (C, A, p), where C is the set of possible branch exit
conditions ¢, A the set of events (one for each condition)
and p the branch probability distribution (in particular p(c)
is the probability that condition c is true).

We can associate to each node and arc an activation func-
tion, expressed as a composition of conditions by means of
the logical operators A and V. We call it f;(X(w)), where
X is the stochastic variable associated to the composite ex-
periment By X Bi X ... X By (b = number of branches) and
w € D(Bo) x D(B1) X ... x D(By) (i-e. w is a scenario).
Computation, storage and communication requirements are
annotated onto the graph. In detail, the worst case execu-
tion time (WCET) is specified for each node/task and plays
a critical role whenever application real-time constraints (ex-
pressed here in terms of deadlines) are to be met.

Each node/task also has three kinds of associated memory
requirements: Program Data: storage locations are re-
quired for computation data and for processor instructions;
Internal State; Communication queues: the task needs
queues to transmit and receive messages to/from other tasks,
eventually mapped on different processors. Each of these
memory requirement can be allocated either locally in the
scratchpad memory or remotely in the on-chip memory.
Finally, the communication to be minimized counts two
contributions: one related to single tasks, once computa-
tion data and internal state are physically allocated to the
scratchpad or remote memory, and obviously depending on
the size of such data; the second related to pairs of commu-
nicating tasks in the task graph, depending on the amount
of data the two tasks should exchange.

S. MODEL DEFINITION

As already presented and motivated in [6], the problem
is split into the resource allocation master problem and the
scheduling sub-problem. The intuition behind our approach
is to decompose the problem and exploit the structure of
each component to chose the best algorithm to solve it.

5.1 Allocation Problem Model

The allocation problem can be stated as the one of as-
signing processing elements to tasks and storage devices to
their memory requirements. First, we state the stochas-
tic allocation model, then we show how this model can be
transformed into a deterministic model through the use of
existence and co-existence probabilities of tasks. To com-
pute these probabilities, we propose two polynomial time
algorithms exploiting the CTG structure. For the lack of
space we do not explain these algorithms here, but they can
be found in [21].

5.1.1 Stochastic integer linear model

Suppose n is the number of tasks, p the number of pro-
cessors, and n, the number of arcs. We introduce for each
task and each PE a variable T;; such that T;; = 1 iff task ¢
is assigned to processor j. We also define variables M;; such
that M;; = 1 iff task ¢ allocates its program data locally,
M;; = 0 otherwise. Similarly we introduce variables S;; for
task ¢ internal state requirements and C); for arc » commu-
nication queue. X is the stochastic variable associated to
the scenario w. The allocation model, where the objective
function is the minimization of bus traffic expected value, is
defined as follows:

minz = E(busTraffic(M, S, C, X (w)))

p
s.t. Y Ty=1  Vi=0,.,n-1 (1)

Sij < Ty (2)
Vi=0,.,n—1,j=0,.,p—1

M;; < Ty (3)
Vi=0,.,n—1,j=0,.,p—1

Crj < Ty (4)
Varc, = (tiytg),r =0,..,na —1,7=0,.,p—1

Crj < Tk, (5)
Varc, = (tiytg),r =0,..,na —1,7=0,.,p—1

— ng—1

Z [$:Si; + miMij;] + Z ¢rCrj < Capj (6)

1=0 r=0
Vi=0,.,p—1

Constraints (1) force each task to be assigned to a single
processor. Constraints (3) and (4) state that program data
and internal state can be locally allocated on the PE j only
if task ¢ runs on it. Constraints (5) and (6) enforce that the
communication queue of arc r can be locally allocated only
if both the source and the destination tasks run on proces-
sor j. Finally, constraints (7) ensure that the sum of locally
allocated internal state (s;), program data (m;) and commu-
nication (¢,) memory cannot exceed the scratchpad device
capacity (Cap;). All tasks have to be considered here, re-
gardless they execute or not at runtime, since a scratchpad
memory is, by definition, statically allocated. Some symme-
tries breaking constraints have been added to the model.
The bus traffic expression is composed by two contributions:
one depending on single tasks and one due to the communi-
cation between pairs of tasks.

busTraffic =

Z?;ol taskBusTraffic, + commBusTraffic,

arcp=(t;,ty)

where

wskustragios = f1(X (W) [m,(1 — P Mij) + 31(1 -y

commpustragier = fi(X (@) (X (@) [CT(1 - ]
In the taskBusTraffic expressmn if task i executes (thus
fi(X(w)) = 1), then (1 — >2¥7) M;;) is 1 iff the task i pro-

gram data is remotely allocated The same holds for the
internal state. In the commBusTraffic expression we have a
contribution if both the source and the destination task ex-
ecute (fi(X(w)) = fr(X(w)) = 1) and the queue is remotely
allocated (1 — Z?;S Crj =1).



5.1.2  Transformation in a deterministic model

In most cases, the minimization of a stochastic functional,
such as the expected value, is a very complex operation (even
more than exponential), since it often requires to repeat-
edly solve a deterministic subproblem [20]. The cost of such
a procedure is not affordable for hardware design purposes
since the deterministic subproblem is by itself NP-hard. One
of the main contributions of this paper is the way to reduce
the bus traffic expected value to a deterministic expression.
Since all tasks have to be assigned before running the ap-
plication, the allocation is a stochastic one phase problem:
thus, for a given task-PE assignment, the expected value
depends only on the stochastic variables. Intuitively, if we
properly weight the bus traffic contributions according to
task probabilities we should be able to get an analytic ex-
pression for the expected value.

Now, since both the expected value operator and the bus
traffic expression are linear, the objective function can be
decomposed into task related and arc related blocks:

E(busTraffic) =

St E(taskBus Traffic;) + D arer—(t; 1) E(commBusTraffic,)

Since for a given allocation the objective function de-

pends only on the stochastic variables, the contri-

butions of decision variables are constants: we call
-1 -1

them KT; = fmz(l — Z?:o Mij) + Si(]. — Z?:O Sij)? and

KC, = [c,«(l -
of scenario w.
The expected value of each contribution to the objective
function is a weighted sum on all scenarios. Weights are
scenario probabilities.

;’;é er)] . Let us call p(w) the probability

E(taskBusTraffic;) = Z p(w)fi(X(W)KT; = KT; Z p(w)

weN we;

E(commBusTraffic,) = Y cq () fi(X(w)) fx(X (w))KC»
KC: Zweﬂimﬂk p(w)

where r is the index of arc (t;,t;) and €
{w | task 7 executes} is the set of all scenarios where task 4
executes. Now every stochastic dependence is removed and
the expected value is reduced to a deterministic expression.
Note that Zweﬂi p(w) is simply the existence probability of
node/task ¢ while }: o o p(w) is the coexistence prob-
ability of nodes i and k. To apply the transformation we
need both those probabilities; moreover, to achieve an effec-
tive overall complexity reduction, they have to be computed
in a reasonable time. We developed two polynomial cost
algorithms to compute these probabilities.

5.2 Scheduling Problem Model

The scheduling subproblem has been solved by means of
Constraint Programming. Since the objective function de-
pends only on the allocation of tasks and memory require-
ments, scheduling is just a feasibility problem. Therefore
we decided to provide a unique worst case schedule, forcing
each task to execute after all its predecessors in any scenario.
Tasks using the same resources can overlap if they are on al-
ternative paths (under two mutually exclusive conditions).
Tasks have a five phases behavior: they read all communi-
cation queues (INPUT), eventually read their internal state
(RS), execute (EXEC), write their states (WS) and finally
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write all the communications queues (OUTPUT). Each task
is modeled as a group of not breakable activities; the adopted
schema and precedence relations vary with the type of the
corresponding node (or/and, branch/fork). For the lack of
space we do not explain these relations here, but they can
be found in [21].

Each activity duration is an input parameter and can vary
depending on the allocation of internal state and program
data. The processing elements are unary resources: we mod-
eled them defining a simple disjunctive constraint proposed
in [18].

The bus, as in [26], is modeled as a cumulative resource, ac-
cording with the so called “additive model”, which allows an
error less than 10% until bandwidth usage is under 60% of
the real capacity. Computing the bus usage in presence of
alternative activities is not trivial, since the bus usage varies
in a not linear way and every activity can have its own bus
view (see fig 2).

MUTUAL EXCLUSION
RELATIONS

ACTIVITY T5
BUS VIEW

==

ACTIVITY T4 ‘ ‘
BUS VIEW

T3(2)

‘ T2(1) ‘
[ TI() | t

—— MUTUAL EXCLUSION

Figure 2: Activity bus view

Suppose for instance we have the five tasks of figure 2;
activities T1, T2, T3 have already been scheduled: the bus
usage for each of them is reported between round brackets,
while all the mutual exclusion relations are showed on the
right. Let’s consider activity T4, which is not mutually
exclusive with any of the scheduled tasks. As long as only
T1 is present, the bus usage is 1. It becomes 1 + 2 = 3
when also activity T3 starts, but when both T1, T2 and
T3 execute the bus usage remains 3, since T2 and T3 are
alternative. Thus the bus usage at a given time is always
the maximum among all the combinations of not alternative
running tasks. Furthermore, let’s consider activity Tb5:
since it is mutually exclusive with all tasks but T2, it only
sees the bus usage due to that task. Therefore the bus view
at a given time depends on the activity we are considering.
We modeled the bus creating a new global timetable
constraint for cumulative resources and conditional tasks
in the not preemptive case. The global constraint keeps a
list of all known entry and exit points of activities: given
an activity A, if Ist(A) < eet(A) then the entry point of A
is Ist(A) and eet(A) is its exit point (where Ist stands for
latest start time and so on).

Let A be the target activity: algorithm A3 (see below)
scans the interval [est(A), finish) checking the bus usage
at all entry points (as long as good = true). If it finds an
entry point with not enough bandwidth left it starts to scan
all exit points (good = false) in order to determine a new
possible starting time for activity A. If such an instant is
found its value is stored (lastGoodT'ime) and the finish line
is updated (step 4.2.2.2), then A3 restarts to scan other
entry points, and so on. When the finish line is reached
the algorithm updates est(A) or fails. A3 has O(a(c + b))
complexity, where a is the number of activities, b the one
of branches, ¢ the number of conditions. The algorithm



can be easily extended to update also let(A): we tried to
do it, but the added filtering is not enough to justify the
increased propagation time.

algorithm: Propagation of the cumulative resource constraint with
alternative activities (A3)

. time = est(a), finish = eet(a)
. latestGoodTime = time
good = true

While
= [(good = false A time > lst(a)) V (good = true A time >= finish)]:

SIS

4.1. if busreq(a) + usedBandwith > busBandwidth:
4.1.1. time = next exit point
4.1.2. good = false
4.2, else:
42.1. time = next entry point
4.2.2. if good = false:
4.221. lastGoodTime = time
42.2.2. finish = max(finish, time + mindur(a))
4.2.23. good = true
5. if good = true: est(a) = lastGoodTime
6. else: fail

end

A3 is able to compute the bandwidth usage seen from each
activity in O(b+ c¢) by taking advantage of a particular data
structure we introduced, named Branch Fork Graph (BFG).
For lack of space we suggest the reader look at [21]. The
BFG makes it possible to compute bus usage in a very ef-
ficient way, by making direct use of the graph structure: if
we only took into account the exclusion relations it would
be an NP-hard problem. To have a polynomial time algo-
rithm however the graph should satisfy a particular condi-
tion (called “Control Flow Uniqueness”) which states that
each “and” node must have a main ingoing arc, whose acti-
vation implies the activation of the other ingoing arcs. This
is not a very restrictive condition since it is satisfied by ev-
ery graph resulting from the natural parsing of programs
written in a language such C++ or Java.

5.3 Benders Cuts and Subproblem Relaxation

Each time the master problem solution is not feasible for
the scheduling subproblem a cut is generated which forbids
that solution. Moreover, all solutions obtained by permuta-
tion of PEs are forbidden, too. Unfortunately, this kind of
cut, although sufficient, is weak; this is why we decided to
introduce another cut type, generated as follows: (1) solve
to feasibility a single machine scheduling model with only
one PE and tasks running on it; (2) if there is no solution
the tasks considered cannot be allocated to any other PE.
The cut is very effective, but we need to solve an NP-hard
problem to generate it; however, in practice, the problem
can be quickly solved. With the objective to limit iteration
number (which strongly influences the solution method effi-
ciency) we also inserted in the master problem a relaxation
of the subproblem. This forbids the allocator to store in a
single processor a set of non mutually exclusive tasks whose
duration exceeds the time limit, and to assign memory de-
vices in such a way that the total length of a track is greater
than the deadline.

5.4 Computational Efficiency

We tested the method on two set of instances with a time
limit for the solution process was 30 minutes: instances of
the first group are only slightly structured, i.e. they have
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very short tracks and quite often contain singleton nodes;
a second group of instances is completely structured (one
head, one tail, long tracks).

The results of the tests on the first group are summarized in
table 1. Instances are grouped according to the number of
activities (acts); beside this, the table reports also the num-
ber of processing elements (PEs), the number of instances
in the group (inst.), the instances which were proven to be
infeasible (inf.), the mean overall time (in seconds). The so-
lution times are of the same order of the deterministic case
(scheduling of Task Graphs), which is a very good result,
since we are working on conditional task graphs and thus
dealing with a stochastic problem.

For a limited number of instances the overall solving time
was high: the last column in the table shows the number of
instances for which this happened, mainly due to the master
problem (A), the scheduling problem (S) or the number of
iterations (I). The solution time of these instances was not
counted in the mean; in general it was greater than than
thirty minutes.

acts PEs inst. inf. time A/S/I
1012 2 6 0 0.0337 0/0/0
13-15 2 8 1 0.5251  0/0/0
16-18 2-3 12 0 0.1091 0/0/0
1921 23 14 1 01216 0/0/0
22-24  2-3 23 4 0.2336  0/0/0
25-27 2.3 16 3 17849  0/0/0
28-30  2-3 13 2 0.3331  0/1/0
31-33 3-4 4 2 0.3008 0/0/0
34-36 3-4 13 4 0.6840 0/0/0
37-39 3-4 7 0 1.5670  0/0/0
40-42 3-4 6 3 2.9162  0/0/0
4345 34 6 1 53670 0/0/0
46-48  4-5 11 0 3.2719  1/2/0
49-51 4-5 11 1 1.9950 1/1/0
52-54  5-6 6 0 8.0000 1/1/0
55-67 6 8 0 22810 1/4/0

Table 1: Results of the tests on the first group of
instances (slightly structured)

Although this extremely high solution time occurs with

increasing frequency as the number of activities grows, it
seems it is not completely determinated by that parameter:
sometimes even a very small change of the deadline or of
some branch probability makes the computation time ex-
plode.
In some cases, when the scheduler is the cause of inefficiency,
this happens because of search heuristic: for some input
graph topologies and parameter configurations the heuris-
tic does not make the right choices and the solution time
dramatically grows. Perhaps this could be avoided by ran-
domizing the solution method and by using restart strategies
[14].

The results of the second group of instances (completely
structured) are reported in table 2. In this case the higher
number of arcs (and thus of precedence constraints) reduces
the time windows and makes the scheduling problem much
more stable: no instance solution time exploded due to
the scheduling problem. On the other hand the increased
number of arcs makes the allocation more complex and the
scheduling problem approximation less strict, thus increas-
ing the number of iterations and their duration. In two cases
we go beyond the time limit. We also ran a set of tests to
verify the effectiveness of the cuts we proposed in section 5.3



acts PEs inst. inf. time A/S/1
20-29 2 7 2 0.5227 0/0/0
30-39 2-3 6 0 1.7625 0/0/0
40-49 3 3 0 0.4380 0/0/0
50-59 3-4 7 0 1.1403 0/0/1
60-69  4-5 4 0 10.1598 0/0/0
70-79  4-5 4 0 88.9650 0/0/0
80-90  4-6 7 0 202.4655 0/0/1

Table 2: Result of the tests on the second group of
instances (completely structured)

with respect to the basic cuts removing only the solution just
found: table 3 reports results for a 34 activities instance re-
peatedly solved with a decreasing deadline values, until the
problem becomes infeasible. The iteration number greatly
reduces. Also, despite the mean time to generate a cut grows
by a factor of ten, the overall solving time per instance is
definitely advantageous with the tighter cuts.

mean time to gen. a cut

basic case: 0.0074
with relaxation based cuts (RBC): 0.0499
n. of iter. exec. time

deadline basic RBC case RBC result
8557573 2 3 1.18 0.609  opt. found
625918 1 1 0.771 0.765  opt. found
590846 1 1 0.562 0.592 opt. found
473108 19 6 6.169 1.186  opt. found
464512 190 14 201.124 9.032 opt. found
454268 195 24 331.449 10.189 opt. found
444444 78 15 60.747 6.144 opt. found
433330 9 4 4.396 1.657  opt. found
430835 5 3 3.347 1.046  opt. found
430490 5 3 3.896 1.703  opt. found
427251 3 2 2.153 0.188 inf.

Table 3: Number of iterations without and with
scheduling relaxation based cuts

Finally, to estimate the quality of the chosen objective

function (bus traffic expected value), we tested it against an
easier, heuristic technique of deterministic reduction. The
chosen heuristic simply optimizes bus traffic for the scenario
when each branch is assigned the most likely outcome; de-
spite its simplicity, this is a particularly relevant technique,
since it is widely used in modern compilers ([12]).
We ran tests on three instances: we solved them with our
method and the heuristic one (obtaining two different alloca-
tions) and we computed the bus traffic for each scenario with
both the allocations. The results are shown in table 4, where
for each instance are reported the mean, minimum and max-
imum quality improvement against the heuristic method.
Note that on the average our method always improves the
heuristic solution; moreover, our solution seems to be never
much worse then the other, while it is often considerably
better.

quality improvement

instance activities scenarios mean min max
1 53 10 4.72%  -0.88% 13.08%
2 57 10 2.59% -0.11%  8.82%
3 54 24 12.65% -0.72% 39.22%

Table 4: Comparison with heuristic deterministic
reduction

6. EFFICIENT APPLICATION
DEVELOPMENT SUPPORT

As already pointed out in previous sections, in optimiza-
tion tools many simplifying assumptions are generally con-
sidered and the neglecting of these assumptions in software
implementation can generate unpredictable and not desired
system-level interactions and make the overall system error-
prone. In this section we describe our new application de-
velopment support. We propose an entire innovative frame-
work to help programmers in software implementation. It
is mainly composed by a generic customizable application
template and a set of high-level APIs, which handle all
the main possible issues in embedded parallel programming.
Our programming support’s facilities tackle both OS-level
issues, such as task allocation and scheduling, as well as
task-level issues, like inter-task communication and synchro-
nization. The main goal of our development framework is
the exact and reliable application’ execution after the opti-
mization step, and at the same time guarantees about high
performance and constraint satisfaction.

6.1 Customizable Application Template

One of the main features of our development framework
is the generic customizable application template. Thanks
to this template, software developers can easily and quickly
build their application infrastructure starting from a high
level task and data flow graph. Once programmer has de-
fined the high level features of the target application (in
terms of tasks, tasks’ dependencies and data communication
flows) he can intuitively translate this representation into C-
code using our facilities and library. More in details, users
can specify the number of tasks included in the target appli-
cation, their nature (e.g. branch, fork, or-node, and-node)
and their precedence constraints (e.g. due to data commu-
nication), thus quickly drawing its CTG. Once programmer
has build this application skeleton, he can focus onto the
functionalities of the tasks, thus giving the main effort of
his work only to the more specific and critic sections of the
application.

6.2 OS-level and Task-level APIs

We implemented a series of APIs by which users can eas-
ily reproduce optimizer solutions, thus indirectly neglecting
optimizer’s abstractions and, at the same time, obtaining
the needed application constraint satisfaction.

Once the target application has been implemented using
our generic customizable template, programmer can al-
locate both tasks, program data and queues to the right
hardware resources. Task can be quickly associated to the
right core, program data and queues stored into the right
memory resource, only easily configuring the init task of
our template which at the booting time of the application
will allocate and launch all these activities.

In order to reproduce the exact scheduling from the opti-
mizer, we implemented a scheduling support APIs. Using
this facility, programmer has only to specify the desired
scheduling for every core, subsequently our middleware will
handle it, using the system calls offered by the OS.

After the boot of the application, our framework sets to
active only the first task in scheduling list, while the other
ones are set to sleep state. In this way, we guarantee not
desired task’ preemption by the OS scheduler which can
introduce more latency and errors in the reproduction of



the optimal scheduling order. After task has finished its
execution, the active task is set to sleep releasing thus the
cpu, while the subsequent task in the scheduling list is
waked up changing its state to active.

PRODUCER ROD| QUEUE
TASK ‘ BUFFER | SEI

Figure 3: The structure of a queue.

Software support for efficient messaging is also provided

by our set of high-level APIs. The communication and
synchronization library abstracts low level architectural
details to the programmer, such as memory maps or explicit
management of hardware semaphores or interrupt signaling.
Messages can be directly moved between scratch-pad
memories. The structure of queue is shown in Fig. 3.
A queue for the communication between a producer task
and a consumer one is composed by a data queue and two
semaphores. In order to send a message, a producer core
writes in the message queue stored in its local scratch-pad
memory, without generating any traffic on the interconnect.
After the message is ready, the consumer can transfer it
to its own scratchpad or to a private memory space. Data
can be transferred either by the processor itself or by a
direct memory access controller, when available. In order
to allow the consumer to read from the scratchpad memory
of another processor, the scratchpad memories should be
connected to the communication architecture also by means
of slave ports, and their address space should be visible by
the other processors.
As far as synchronization is concerned, when a producer
intends to generate a message, it locally checks an integer
semaphore which contains the number of free messages
in the queue. If enough space is available, it decrements
the semaphore and stores the message in its scratch-pad.
Completion of the write transaction and availability of
the message is signaled to the consumer by remotely
incrementing its local semaphore. This single write op-
eration goes through the bus. Semaphores are therefore
distributed among the processing elements, resulting in
two advantages: the read/write traffic to the semaphores
is distributed and the producer (consumer) can locally poll
whether space (a message) is available, thereby reducing
bus traffic. Furthermore, our semaphores may interrupt
the local processor when released, providing an alternative
mechanism to polling. In fact, if the semaphore is not
available, the polling task registers itself on a list of tasks
waiting for that semaphore and suspends itself. Other
tasks on the processor can then execute. As soon as the
semaphore is released, it generates an interrupt and the
corresponding interrupt routine reactivates all tasks on the
wait list.

If one task has got more than one input or output queue,
our optimizer can specify the optimal reading/writing se-
quence from/to them. We aimed our framework in order to
address this issue. This is a very important feature, since
an optimal queue-usage ordering can boost performance and
parallelism. Let’s see for example Fig. 4 to better under-

Figure 4: Optimal queue usage ordering: example.

stand this statement. Fig. 4 shows a case in which six tasks
are allocated to two different cores. Task T1 has to commu-
nicate with both T2 and T3, allocated to its own core, and
with T4 allocated to a different processor. At starting time
on CPU1 will be scheduled T1 and on CPU2 T4. While
T1 will immediately start its execution, T4 has to wait data
from T1 thus keeping CPU2 stalled. The T4’s waiting time
depends on the queue-fill ordering of T1: it will be shorter
if T1 will give a high priority to queue C3. These options
and optimizations can be selected by means of our high-level
APIs.

7. METHODOLOGY

In this section we explain how to deploy our optimiza-
tion framework in the context of a real system-level design
flow. Fig. 5 shows a pictural overview of the overall applica-

e

Characterization ||Application \| Optimization
Phase PilEs Phase

Application
Development
Support

Optimal SW
Application Platform
Implementation Execution

Figure 5: Application development methodology.

tion development methodology flow proposed. Our approach
consists of using a virtual platform to pre-characterize the
input task set, to simulate the allocation and scheduling so-
lutions provided by the optimizer and to detect deviations
of measured performance metrics with respect to predicted
ones. The target application is pre-characterized and ab-
stracted as a Conditional Task Graph. The task graph is an-
notated with computation time, amount of communication
and storage requirements. However, not all tasks will run
on the target platform: in fact, the application contains con-
ditional branches (like if-then-else control structures) which
will prevent the execution of some of them. Therefore, an
accurate application profiling step is needed, from which we
have a probability distribution on each conditional branch
that intuitively gives the probability of choosing that branch
during real future execution.

We model task communication and computation separately
to better account for their requirement on bus utilization,
although from a practical viewpoint they are part of the



same atomic task. The initial communication phase con-
sumes a bus bandwidth which is determined by the hard-
ware support for data transfer (DMA engines or not) and
by the bus protocol efficiency (latency for a read transac-
tion). The computation part of the task instead consumes
an average bandwidth defined by the ratio of program data
size (in case of remote mapping) and execution time. A less
accurate characterization framework can be used to model
the task set, though potentially incurring more uncertainty
with respect to optimizerSs solutions.

The input task parameters are then fed to the optimiza-
tion framework, which provides optimal allocation of tasks
and memory locations to processor and storage devices re-
spectively, and a feasible schedule for the tasks meeting the
real-time requirements of the application.

After the optimization phase, we can build the optimal im-
plementation of our target application using both the opti-
mizer solution for the hardware platform (i.e. optimal al-
location and scheduling) and the application development
support (i.e. Customizable Application Template and OS-
level and Task-level APIs).

8. EXPERIMENTAL RESULTS

We have performed two kinds of experiments, namely (i)
comparison of simulated throughput with optimizer-derived
values, and (ii) prove of viability of the proposed approach
for real-life demonstrators (GSM, Software Radio).

8.1 Validation of optmizer solutions

We have deployed the virtual platform to implement the
allocations and schedules generated by the optimizer, and we
have measured deviations of the simulated throughput from
the predicted one for 30 problem instances. A synthetic
benchmark has been used for this experiment, allowing to
change system and application parameters (local memory
size, execution times, data size, etc.). We want to make
sure that modelling approximations are not such to signifi-
cantly impact the accuracy of optimizer results with respect
to real-life systems.

The results of the validation phase are reported in Fig.6
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Figure 6: Difference in execution time

and Fig.7. Fig.6 shows the differences in execution time be-
tween the predicted one by the optimizer and the real one
by the cycle accurate simulator. It can be noticed that the
differences are marginal and we can point out that all the
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Figure 7: Probability for throughput differences

deadline constraints are satisfied. Fig.7 shows the probabil-
ity for throughput differences between optimizer and simu-
lator results. The average difference between measured and
predicted values is 4.8%, with 2.41 standard deviation. This
confirms the high level of accuracy achieved by the devel-
oped optimization framework, thanks to the calibration of
system model parameters against functional timing-accurate
simulation and to the control of system working conditions.

8.2 Demonstrators

The GSM application has been used to prove the viability
of our approach. The source code has been parallelized into
10 task (see Fig.8), and each task has been pre-characterized
by the virtual platform to provide parameters of task models
to the optimizer. The time taken by the optimizer to come
to a solution was 0.2 seconds. The validation process of the
solution on the virtual platform running two cores showed
an accuracy by 5.1% on throughput requirement.

Figure 8: GSM encoder case study.

Our optimization framework was then applied to a Soft-
ware Radio application. Fig.9 shows the obtained task
graph. The target application computation kernel was par-
titioned into 10 stages, and the accuracy on throughput es-
timation was 6.33% with a solution found in 0.25 seconds.

9. CONCLUSIONS

We target allocation and scheduling of conditional multi-
task applications on top of distributed memory architectures
with messaging support. We tackle the complexity of the
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Figure 9: Software Radio application case study.

problem by means of decomposition and no-good genera-
tion, and introduce a software library and API for the reli-
able software deployment. Moreover, we propose an entire
innovative framework to help programmers in software im-
plementation and deploy a virtual platform to validate the
results of the development framework and to check mod-
elling assumptions of optimizer, showing a very high level
of accuracy. Our methodology can potentially contribute to
the advance in the field of software optimization and devel-
opment tools for highly integrated on-chip multiprocessors.
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