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ABSTRACT

Most recent embedded systems use caches to improve their
average performance. Current timing analyses are able to
compute safe timing guarantees for these systems, if tasks
are running to completion. If preemptive scheduling is en-
abled, the previously computed timing guarantees no longer
hold. At each program point, a preempting task might com-
pletely change the cache content. This observation has to
be considered by timing analyses, which inevitably increases
their complexity. Additionally, these cache-interferences in-
fluence the overall performance of such systems. The posi-
tion of a task’s data determines the portion of the cache the
task will occupy, and by this, the cache-interferences of the
different tasks. In this paper, we present a novel method
that computes an optimal taskset placement with respect
to the above criteria. This means, our method modifies the
starting addresses of the tasks such that the number of per-
sistent task sets is maximized for each task. We show that
the problem of finding an optimal placement is NP-hard
and present a heuristic to approximate an optimal solution.
Finally, we demonstrate by means of simulations that our
method is able to improve the overall performance especially
of heterogeneous and complex tasksets.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Performance attributes;
B.3.3 [Memory Structures|: Performance Analysis and
Design Aids—formal models, worst-case analysis

General Terms
Algorithms, Performance

Keywords

cache analysis, predictability, task placement

1. INTRODUCTION

An embedded system usually runs several tasks. In a non-
preemptive schedule, each task is running to completion.
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Therefore, it is possible to optimize and analyze each task
independently from all others. In [3, 14] it has been shown,
that such analyses can achieve safe and precise timing guar-
antees. The interference of the tasks can be neglected.

Preemptive systems offer a higher degree of freedom. A
running task may be interrupted to ensure that a higher
priority task meets its deadline. Many tasksets that are
schedulable using a preemptive system (neglecting context-
switch costs) are not schedulable under a non-preemptive
one.

This higher variability comes at the cost of increased com-
plexity. Timing analyses have to consider that at each pro-
gram point of an analyzed task, the current cache and pipe-
line state may switch to a completely different one caused by
preemption. Especially in the presence of timing anomalies
[10], the costs caused by context switches cannot be easily
predicted. But not only timing analyses for single tasks,
also the performance of the whole system is subject to a
more complex behavior. This complexity is mainly caused
by the interference of tasks on the cache, where periods,
priorities, dependencies between tasks and, of course, the
memory placement influence the performance.

In this paper, we propose a new method to analyze and
optimize the overall performance of an embedded system
with preemptive scheduling during compile time. To achieve
these goals, we modify the placement of instructions in the
memory to reduce the number of cache misses and to classify
instructions as persistent or as endangered with respect to
preemption. This information can then be used to derive
safe timing guarantees which is this far considered infeasible
or imprecise in practice for preemptive scheduling. Hereby,
we have to stress the fact that we do not try to ensure or
enforce persistence of cache-lines up to the next occurrence
of a task, but only during preemption of a task.

Our method exploits the fact that different memory arrange-
ments lead to different performances. In a first step we col-
lect information which might influence the performance like
periods, sizes of tasks and data and so on, whereas we do
not require that each task fits inside the cache. In the sec-
ond step, we build an objective function out of this data
and compute or approximate an optimal task distribution
scheme. This scheme determines the start-address for each
task’s data. In the last step, we arrange the tasks according
to our solution from the second step.



The code remains untouched, our approach only modifies
the absolute positions in memory and herewith the posi-
tions in cache. The optimization function gives us the means
to define cache-blocks of hard real-time tasks as more im-
portant than those of soft real-time tasks. Since we are
completely aware of the cache behavior, we can a priori de-
termine, which cache blocks are persistent during one run of
a task and which cache blocks are not. Hereby precise tim-
ing analysis with respect to preemption becomes a reachable
goal.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses related work. After demonstrating the in-
fluence of different task placements and introducing our as-
sumptions about the used system and taskset in Section 3,
we describe our task placement method in detail in Section 4.
Section 5 evaluates our approach by means of simulations.
Finally, Section 6 concludes this paper.

2. RELATED WORK

The problem to handle cache-interferences within a preemp-
tive systems has been addressed by several authors with very
diverse approaches. Targeting the problem of timing guar-
antees we have to mention the cache-partitioning approach
by Mueller [8], the combined timing and scheduling analysis
by Schneider [12] and the analysis of useful cache blocks to
compute context-switch costs by Lee et al. [6].

In [8] Mueller proposed a simple method to avoid interfer-
ences of tasks on the cache by assigning each task a small
segment of the cache to work with. Although there is no
interference on the cache, the performance of each task will
suffer by the strongly decreased available cache size. Ad-
ditional branches have to be added and for data arrays, a
wrapper function has to be applied. This implies signifi-
cant code changes, which again in addition to the increased
number of cache misses impairs the performance. Other
approaches like [15] concerning cache partitioning exhibit
mainly the same disadvantages.

Schneider [12] proposes a combined scheduling and timing
analysis. This analysis assumes preemption at each program
point to compute safe results. However, just because pre-
emption is assumed everywhere, the analysis roughly over-
estimates a task’s worst case execution time.

In [6] Lee et al. determine useful cache blocks to compute
context switching costs. Their approach computes for each
program point those cache-sets that may be accessed later
and that could be evicted by an preempting task. The costs
that arise from a context switch are then the time needed to
reload these cache-blocks. In the presence of timing anoma-
lies however, this approach must be considered unsafe.

For the optimization of the overall performance, we have to
mention two approaches:

Suh et al. [13] set up an analytical cache model to analyze
and optimize the cache-miss behavior of task sets. Given
a round-robin schedule, cache-miss-rate curves for each task
and the cache size, the authors are able to predict the overall
cache-miss rate. Additionally, they show how their analyt-
ical cache model can be used to dynamically partition the
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cache. To optimize the overall cache-miss rate, the sched-
uler assigns cache blocks to tasks and dynamically decides
to lock or unlock them, depending on the tasks cache-miss-
rate curves. This approach differs from our by the use of
dynamic partitioning and cache locking. Additionally, we
are not restricted to a specific scheduler.

Banakar et al. [1] propose to exploit the scratchpad memory
of an embedded system. The basic idea is not to rely on the
cache and store frequent data in the scratchpad memory.
In this fashion, the authors manage to avoid the eviction
of important data, but are forced to modify the code. The
authors do not address systems with preemptive scheduling.
This approach is out of scope for this paper, because it forms
a complete alternative to caches.

The next approach copes with a different problem but is
nevertheless strongly related to our work.

In [4] Gloy et al. propose a procedure placement algorithm
that minimizes the instruction cache conflicts of a single
task. Their algorithm optimizes a task by means of the
cache configuration, the sizes of the procedures and pro-
gram traces. The program traces are used to infer conflicts
between procedures of the task to optimize. The presented
algorithm is designed to cope with direct-mapped caches
only, but the authors provide an extension to two-way set-
associative caches that use the LRU replacement policy.

Guillon et al. [5] have improved the heuristic presented in
[4]. The authors found that minimizing cache conflicts by
maximizing the overlap between procedures does on average
not contribute to reduce cache conflicts. Making the algo-
rithm of Gloy et al. sensitive to code size expansion, the
authors manage to achieve very good results with a mini-
mal code size expansion. However, the improved algorithm
only copes with direct-mapped instruction caches.

The main difference is of course the target itself; we aim
to optimize and analyze whole task sets instead of a single
task only. The optimization of single tasks is again only
valid for non-preemptive systems. For several reasons, we
cannot adopt the former approach directly to our target:
the interaction between tasks is highly dynamic. Therefore
a few traces are not sufficient to capture enough data for a
preemptive system. Also the analysis of endangered or per-
sistent cache sets has not been treated sufficiently to be used
for timing analyses. Finally our method is not restricted to
a specific type of cache or replacement policy.

3. BASICS

Before introducing our method in Section 4, we explain how
the placement of tasks in main memory influences the per-
formance of a taskset. Figure 1 shows a taskset with three
tasks, where each task occupies n/2 cache sets. The used
cache is a direct-mapped instruction cache with n sets. The
first and the third task have a short period and share their
execution via time slicing, whereas the second task has a
high period and thus executes very infrequently. Obviously,
the second task distribution scheme leads to a much bet-
ter performance than the first one, where the first task will
evict the instructions from the third task whenever control
switches and vice versa. The influence of the second task
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Figure 1: Two different task distribution schemes.

can be neglected because it occurs too infrequently. Nat-
urally, this example is very simple and does not represent
the common case. Nonetheless, it clearly demonstrates how
the task placement influences the overall performance of a
taskset.

For the sake of simplicity, we concentrate on instruction
caches exclusively and ignore the tasks’ data completely.
Our method can be extended to data or unified caches, if the
tasks do not make use of dynamic data structures. This re-
striction is acceptable for embedded systems, where memory
is a very limited resource.

The following subsection gives an overview of our assump-
tions concerning the used system and taskset. Afterwards,
we identify those factors that influence the performance of
a taskset.

3.1 Assumptions

System

We assume an embedded system with a single processor.
The architecture is supposed to possess an instruction cache
using any replacement policy. In the following we explain
our method by means of the least-recently-used (LRU) re-
placement policy, which is known to allow static analyses
to predict the cache contents best [9]. As noted above, we
expect a system with preemptive scheduling. Most impor-
tantly, we assume a system without virtual memory. In a
system with virtual memory, we are no longer able to as-
sign cache sets to a specific task statically. This assumption
is not that restrictive because most time-critical embedded
systems do not use virtual memory.

Taskset

Concerning the taskset, we do not have any restrictions. We
allow a mixture of hard and soft real-time tasks. The tasks
may use shared memory to communicate with each other.
We expect the task-interdependencies to be known a priori,
i.e. by which tasks each task might be interrupted. Note
that, as discussed in Section 5, the structure of the taskset
determines how successful our cache-optimization can be.
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3.2 Cache Performance Factors
The cache performance is influenced by system and taskset
properties, which are discussed below.

System

On the one hand, the cache size is of major importance.
The smaller the cache and the more tasks completely fill
up the cache, the less chance for optimization exists. How-
ever, as the cache sizes are steadily increasing, optimal task
placements become more and more important.

On the other hand, the associativity and the replacement
policy of the cache have a strong influence on the perfor-
mance of the system. Both parameters determine how many
different accesses are required until a certain cache-block
might be evicted from the cache. For instance, if the sys-
tem uses a direct-mapped cache, two different memory ac-
cesses that point to the same cache set are necessary to
evict the data of the first access from the cache. If a four-
way set associative LRU-cache is used, at least five different
accesses to the same set are required to achieve the same
effect. The maximum number of accesses that are allowed
before a cache-line might be evicted from the cache is the
minimum life span [9].

Taskset
The following taskset properties have an effect on the overall
performance of the system:

task size: needed to identify the sets the task will occupy

task period: the more frequently a task occurs, the more
likely it will evict data from other tasks

task-interdependencies: determine which tasks might in-
terrupt other tasks

real-time constraints: soft and hard real-time tasks have
to be handled differently

Although there are probably other factors, such as the struc-
ture of each task or the cache-miss behavior of a task [13],
we only consider the above factors. Most important of the
above factors are the task interdependencies. Consider two
tasks a and b, where both tasks are mapped to the same
cache-sets. If task a cannot preempt task b and vice versa,
neither task can evict the other task’s cache entries while
the other task is running®. However, if task a may preempt
task b, task a could evict data of task b from the cache,
causing task b to take longer to finish execution.

4. TASK PLACEMENT METHOD

This section we present our method to compute an optimal
task distribution scheme. The scheme is optimal with re-
spect to a specific cost function that is defined below. The
cost function depends on the cache performance factors we
have identified in Section 3.2.

Note that we only aim at keeping cache entries of a task
persistent during its execution. We do not care about a
task’s cache entries after it has run to completion.



In the following, we formally define the input data of our
task placement algorithm, which is a simple model of the
cache and the task set. Then we introduce a weight func-
tion and define the notion of a task placement. A task map-
ping determines the set a specific task starts at. Finally, we
specify the cost function to be minimized.

Definition 1. A pair C = (m,k) € N x N is a cache con-
figuration, where m is the cache size (i.e. the number of
cache sets) and k is the minimum life span of the cache’s
replacement policy (see Section 3.2).

Definition 2. A taskset with n € N tasks is a set of tasks
T = {m,...,7}. The subset Tsor+ C T denotes the soft
real-time tasks of T. The size of task 7; is denoted by S(7;),
the period of task 7; is written as P(7;). The size of a task
determines the number of cache sets the task will occupy
after it is completely loaded into the cache.

Definition 3. For a given taskset T, a task interdepen-
dency relation is a reflexive, binary relation - C T x T.

Let 7; and 7; be two arbitrary tasks. The statement 7; - 7;
holds, iff the task 7; might interrupt the task 7; during its
execution and thus possibly evict cache entries belonging to
7; from the cache. For this reason, task interdependency
relations are reflexive (i.e. 7+ 7 for each 7 € T'), because
a task could evict itself from the cache. This self-eviction
might happen, if a task does not fit entirely inside the cache.

The task interdependency relation is used to reflect depen-
dencies between tasks. Without this information, it must
be assumed that each task can be interrupted by each other
task. This, however is not true in most systems. So, for in-
stance, if the scheduler uses static priorities, a task can only
interrupt tasks with lower priorities. A second source for
dependencies between tasks are communication methods or
semaphores. A dependency can also be part of the task spec-
ification, where a certain task must finish before another one
can start. In this case, none of these two tasks might inter-
rupt the other. Usually, a precedence or dependency graph
describes such relations. Since these dependencies are part
of the specification of the system, the user has to provide
the task interdependency relation defined above.

In the following, let C' = (m, k) be a cache configuration, T a
taskset with n tasks and F a task interdependency relation.

We now assign an integer cost to each task. The weight of
a task reflects how expensive it is to interrupt that task.’
The weight function should assign to each task a weight
that is inversely proportional to the task’s period. Apart
from that, the weight function should treat hard real-time
tasks differently. The function is supposed to assign each
hard real-time task a weight larger then the weight of every
soft real-time task, to indicate that interrupting a hard real-
time task and possibly evicting part of task’s cache entries
is the worst thing that can happen.

2A weight function models the performance of the task set
on the cache. It can only approximately reflect the true
performance.
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Figure 2: Shows a 16kb cache and three different
tasks with different sizes. Each task starts at the
same cache set.

We found that the following weight function satisfies the
above requirements:

W:T— N,

W(r) = {

where H > W (1) for each 7 € Tyo54.

P(7)
HeN

’Vmale:o P("’q‘,)—‘ if e Tsoft

otherwise

Although other weight functions are possible, we have seen
during testing that this function produces satisfactory re-
sults.

Next, we formally define a task placement, which determines
to which cache sets a task will be mapped. A task place-
ment additionally defines how often a task will occupy a
certain set. Figure 2 clearly shows how the size of a task
and its placement in memory affect how often the task will
occupy certain cache sets. Using this information, we can
then compute the number of conflicts between two tasks.

Definition 4. A function M : T — {1,...,m} is a task
placement of the taskset T. The M (7;) denotes the set, task
T; starts at. For simplicity, we restrict the mapping such
that M(r) = 1.2

The function occ : (T' — N) x T'x N — N computes for a
given task placement how often a task occupies a certain set
(see Figure 2).

Before we can define the cost function, we need to determine
the number of conflicts for a given task 7 and cache set 1.
This value measures how threatened a task’s cache entry
actually is. Our task placement method aims at minimizing
the threat to all cache sets and thus at increasing persistence
of cached data.

The number of conflicts at the set i is determined by how
often the tasks preempting the task 7 occupy this set, but
only if 7 occupies that set itself (i.e., occ(M, 7,4) > 0). Oth-
erwise, the conflicts for the task 7 at the set i are zero. For a

3 Although, we slightly restrict the solution set, we only re-
move redundant information. The naming of the sets does
not affect the possible solutions.



given task placement M, we compute the number of conflicts
as follows:

conf: (T—N)xTxNw— N,

> oce(M, k,i) if oce(M,T,i) >0
conf(M,T,i1) =4 rFr
0 otherwise

With the number of conflicts known for each task and set,
we can finally specify the cost function in respect of which
we are going to optimize the task placement. At this point,
the minimum life span of the used replacement policy comes
into play. If the number of conflicts at a cache set for a
given task is less then or equal to the minimum life span of
a cache entry, the data of that task will not be evicted from
that cache set. Thus, only those sets contribute to the costs
of a task placement whose number of conflicts exceeds the
minimum life span.

We compute the costs of a task mapping M as follows:
costs: (T — N) — N,

costs(M) = Zj: W (i) <§1 max(conf(M, 1, j) — k,0)>

i=1

The cost function is designed to reflect the true performance
of a task placement. This means that for two placements M;
and M, with costs(M1) < costs(Mz) the task placement M;
should outperform Ma.

In the following section we describe two approaches to find
a task placement M such that costs(M) is minimal. In Sec-
tion 4.1.1 we describe how an optimal solution can be found,
by encoding the above cost function as an integer linear pro-
gram (ILP). In Section 4.2.2 we discuss a simulated anneal-
ing approach, which solves a relaxed optimization problem,
that is capable of finding a (near-)optimal solution much
faster than an ILP solver. Additionally, we prove that both
optimization problems introduced below are NP-hard.

4.1 Optimization Problem
The problem to solve is to find a task mapping M such that
costs(M) is minimal. We will denote it with the abbrevi-
ation TPP. In our first approach we used integer linear
programming to solve this problem.

4.1.1 ILP Formulation

For the ILP formulation, we require two types of variables:
st;,; and 0;,5. These variables can take the following values:

st . 1 if 7; starts at the j-th cache set
“71 0 otherwise

and
0i,; = n € N, where 7; occupies the j-th set n times

The variables st; j can be binary variables, whereas 0; ; must
be integer variables. The latter condition is required, be-
cause a task might occupy a set several times increasing the
threat to that cache set, if the task size (in terms of cache
sets) is larger than the number of cache sets (i.e., S(i) > m).

263

Using these two variable types, we define the following con-
straints the ILP has to obey:

e Each task ¢ has exactly one starting position:

m
Zsti,j =1 (1)
Jj=1

e The task ¢ occupies the j-th set, iff it starts at most
S(7) sets ahead of the j-th set (remember that S(i)
denotes the size of task 7):

J

>

J'=i-S8@)+1

0i,j = 8t (3 mod m) (2)

To complete the ILP formulation, we require two additional
types of variables: ¢;; and c} ;. The variables ¢;; count
the number of conflicts for the task 7; at the j-th set (see
above), whereas the variables ¢; ; only count the number of
conflicts that exceed the minimal life span k of the cache’s
replacement policy. To count the number of conflicts, we
define the following constraints:

Ci,j Z 0

J

>

Jj'=j—S()+1

Ci,j 2 _B(l - Sti,(j’ mod m)) + Z 04/ 5 (4)

T T

where B € N is a very large number.

The first inequality ensures that the number of conflicts is
always positive. The second inequality is more complex:
The latter sum simply sums over all tasks that might conflict
with the task 7; and counts how often those tasks occupy
the j-th set. The first sum makes sure that c¢;; is only
positive if the task 7; actually occupies the j-th set.* So,
both constraints force ¢;,; to 0, if the task 7; does not occupy
the j-th set.

As mentioned above, the variables cg,j
ber of conflicts that exceed the minimum life span.
achieve this behavior with the following constraints:

only count the num-
We

C;’j Z 0

()

(6)

/
Ci,j 2 Ci,j — k

where k is the minimum life span of the cache’s replacement
policy.

4To do so, we have to choose B to be at least the highest
possible number of conflicts for a task.



In the last step, we have to define the objective function of
the ILP. The objective function is simply the sum over the
number of conflicts multiplied with the weight assigned to
each task:

obj : min Z W(TZ)(Z ci.j)
i=1 j=1

4.1.2  Complexity Analysis
In this subsection, we discuss the complexity of the ILP
formulation and of the optimization problem in general.

Complexity of the ILP. The main indicators for the com-
plexity of the ILP are naturally the number of variables and
constraints. For each task and cache set exist the variables
sti,j, 04,5, ci,j. Thus, the total number of variables is 4nm.
Table 1 list the number of constraints of each type. The
total sum is 5nm + n.

Constraint | Number
(1) n

(2) nm

(3) nm

(4) nm

(5) nm

(6) nm

Table 1: Type of constraint and corresponding num-
ber of used constraints.

Although the total number of constraints and variables are
in ©(nm), the complexity of ILP grows too fast to be suit-
able for large task sets and caches. Instead, only small
taskset can be solved within acceptable time using this ap-
proach. The complexity of the ILP however is not caused
by formulation but is rather an inherent problem of T'PP.

Complexity of the Optimization Problem

THEOREM 1. The optimization problem T PP as intro-
duced above is NP-complete.

Guillon et al. have shown the NP-completeness of a similar
problem: computing a procedure placement that is optimal
with respect to the number of cache misses when using a
direct-mapped cache [5]. Although we handle different types
of caches with arbitrary replacement policies and tasks with
preemption instead of procedures, we can easily adapt the
proof. Therefore we only provide a short proof sketch. For
the detailed proof, we refer to Appendix 1 of [5].

Proor. To prove that TPP is NP-complete, we have to
show that TPP € NP and that T PP is NP-hard.

TPP € NP:

The statement directly follows by the construction of the
cost function. The cost function and therefore the check for
a given solution can be computed within polynomial time.

TPP is NP-hard:
To proof this claim, we have to reduce an NP-complete prob-
lem to T'PP. For this purpose, we use k-colorability. The
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Figure 3: Optimal placement of four tasks for a
direct-mapped cache comprising n sets with respect
to the given task interdependency relation. Each of
the tasks occupies half of the cache.

k-colorability of a graph G = (V, E) can be reduced to an
instance of T PP as follows: each vertex V of the graph rep-
resents one task with the length of one set and a weight of
one. The conflict graph equals the original graph G. The
cache has k sets and a minimal life span of 1. Each set of
the cache represents one color and no two neighbored tasks
are allowed to map to the same set. Therefore, if the task
set can be mapped to the sets with zero costs then the graph
can be colored using k different colors. [

4.1.3 Remarks

We have not yet mentioned the problem of code size ex-
pansion. The starting points of the different tasks are only
given modulo the cache size. So we first have to provide
an algorithm that merges the data into one block. Such an
algorithm was presented in [4] and [5]. In some cases, it
is not possible to merge the tasks to a continuous memory
block. In these cases, our method introduces empty spaces
between the tasks. However, during our tests we have never
encountered a task set where the best result could not be
merged to a continuous block.

Figure 3 shows the smallest example for a direct-mapped
cache, where a task placement with empty spaces in-between
leads to smaller costs than a continuous placement. An op-
timal placement is achieved, if the three tasks T'1, T2 and
T3 are mapped to different cache sets than the task T4.
Because T'1, T2 and 73 do not interrupt each other, it is
uncritical to force them to the same cache sets.

So far, we have not identified sufficient conditions under
which leaving memory unoccupied leads to optimal results.

Both the code size expansion and the complexity of T PP
led us to study a second approach. In practice, the ILP can
only be used for small task sets and caches. So, ILP should
only be used if the best solution is required. A best-effort
approach is often sufficient.



4.2 Simplified Optimization Problem

The empty spaces within the memory image introduced by
the first method are on the one hand very unpleasant in the
scope of embedded systems, where memory is limited, and
on the other hand only provide limited improvement with
respect to the performance. For these reasons, we will define
a second optimization problem that allows only continuous
memory images. Therefore, we have investigated task per-
mutation placements.

Definition 5. A task permutation o : T — T is a bijective
function which maps each element of T to another element
of the set T'.

Using this definition, we can adapt the definition of a task
permutation placement M’.

Definition 6. A function M’ : T — {1,...,m} is a task
permutation placement of the taskset T', iff there exists a per-
mutation o such that M’ (o (7)) = M'(0(1i-1))+S(o(i-1))
for all i € {2,...,n}.

The revised optimization problem T PP’ is T PP with a task
permutation placement function M’.

Next, we will discuss the complexity of the revised problem
TPP’ and will later on provide an heuristic for it.

4.2.1 Complexity Analysis

Although we have simplified to problem to allow only con-
tinuous memory images, Theorem 2 states that the problem
is still too complex to be solved exactly.

THEOREM 2. The simplified optimization problem T PP’
is NP-hard.

PROOF. The proof bases on Theorem 1. As above, we re-
duce the k-colorability of a graph G = (V, E) to an instance
of TPP’. However, we can not use the same transformation,
since the result of TPP is not necessarily a permutation.
To get rid of this restriction, we have to insert dummy-tasks
which are used only to fill the gaps between the other tasks.
These dummy-tasks have cost and size one and have no con-
flict with any tasks but themself. By this, we can ensure that
each task mapping forms a permutation of the task set.

The number of inserted dummy-tasks must be polynomial
bounded. But since we need at most k * |E| new tasks to fill
all gaps the statement follows directly from Theorem 1. [

4.2.2  Simulated Annealing

The restriction applied to the task placement problem short-
ens the solution space but as we have just shown the prob-
lem is still NP-hard. Because of this fact, we will provide
an heuristic instead of an exact algorithm for TPP"'.

For the heuristic approach, we used simulated annealing.
The algorithm starts with a random permutation and greed-
ily selects a neighboring permutation with the best costs.
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Definition 7. A permutation ¢’ is a neighbor of the per-
mutation o, iff o can be reached from ¢’ only by swapping
the position of two tasks:

o' (1:) = o(15)A
o'(15) = o(Ti)A
Vke{l,...,n}\ {i,j}: o' () = o(7%)

The set of all neighbors of a permutation o is denoted by
NE(o).

Ji,j € N:

If no improvement is possible, the algorithm swaps to the
second best permutation within the set of neighbors and
starts searching from this new permutation on. However, se-
lecting the second best permutation is only allowed p times,
where p is a predefined parameter. The higher p is the more
of the state space is visited. Of course, we have to ensure
that each permutation is visited at most once. Thus, we
must keep a set of visited permutation which we always sub-
stract from the set of neighbors. The algorithm in pseudo
code is given in Algorithm 1.

Algorithm 1.

simulated_annealing (permutation ostart, int p)
{

Ocur = Ostart

Obest — Ostart

visited = visited U {ostart}

while (p # 0)

{

/* select next candidate */

let o' € NE(ocur)

with C(¢’) = min({C(0)|oc € NE(0cur)} \ visited)
visited = visited U {0’}

/* is it better than the current? */

if (C(ocur) > C(0”))

{

/* is it best permutation seen so far? x/
Ocur = U/
if (C(0best) > C(0") { Obest =" }

}

/* if not, continue with a worse result */

else

{
p=p-—1
Ocur = U/

}
}
}

S. EVALUATION

In this section we evaluate our approach. Section 5.1 dis-
cusses the framework in which we have embedded our task
placement algorithm. Section 5.2 discusses the effectiveness
of the heuristic presented in Section 4.2.2.

5.1 Framework

Figure 4 shows the three steps of our task placement opti-
mization method. At first, we compile the source code into
object files. Next, we determine the size of each task. For
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Figure 4: Task Placement Framework.

this we need annotations that indicate which functions (con-
tained in the object files) belong to each task. Apart from
that, both the task periods and the task interdependency
relation are encoded in these annotations. With this infor-
mation and the system configuration (amongst others, the
cache configuration) we optimize the task placement with
respect to the cost functions as discussed in Section 4. Fi-
nally, we instruct the linker to align the tasks according
to the computed placement and to produce a memory im-
age that can be uploaded into the embedded system’s main
memory.

5.2 Tests

We have evaluated our approach by optimizing several task
sets with tasks from the WCET Benchmark [2]. To measure
the effectiveness of our task placement method, we have sim-
ulated the tasks sets under the RTEMS operating system
[11]. The operating system itself is running on a software-
emulated ARMT provided by the MPARM project [7]. To
determine the effectiveness of our approach, we compared
the number of cache misses of the worst and the best task
placement.

Number | Task Size (in cache sets)
1 nsichneu 1263
2 statemate 520
3 adpcm 253
4 fft1 131
5 compress 118
6 edn 115
7 Ims 115
8 jfdctint 115
9 loop3 112
10 minver 108
11 SYSTEM 250

Total Size 3100

Table 2: Shows the size in the number of cache sets
for each task.

For our measurements, we have used the 10 largest tasks
of the WCET Benchmark to form three different task sets.
Figure 5 shows the task set interdependencies. For the sake
of simplicity, we have chosen a simplified display. Instead of
drawing edges between two tasks that might interrupt each
other, the figure displays which tasks depend on each other.
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Task Set A

> is executed before

OTask

Figure 5: Shows the structure of the task sets A, B
and C. Incoming edges denote which tasks have to
be completed before a task may begin.

If there is no path between two tasks, they might possibly
evict each other from the cache. We have designed the task
sets such that task set A shows many, task set B features
some and task set C' offers only few possible preemptions.

We have optimized the task sets for three different instruc-
tion caches using the LRU replacement strategy:

e 16kb direct-mapped cache with 1024 sets
e 32kb two-way set-associative cache with 1024 sets

e 32kb four-way set-associative cache with 512 sets

The WCET Benchmark tasks are rather small. Thus, we
have chosen small caches, to ensure that conflicts between
the tasks occur. Table 2 shows the tasks and their corre-
sponding size. The SYSTEM task comprises system code
and is assumed to be in conflict with every other task. Note
that the some tasks do not fit entirely inside the cache (di-
vided by the associativity).

Table 3 shows the cost ratio and the measured cache-miss
ratio of the best and the worst task placement for each task
set and cache configuration. The measurement shows that
there is no direct correlation between the number of (pos-
sible) preemptions and the decrease of cache misses. The



effectiveness of the optimization strongly depends on the
task set and the used cache. The ratio between the task set
size and number of cache sets strongly influences the effect
of our optimization. However for each test case, we were
able to decrease the number of cache misses ranging from
1% up to over 50%.

However, our measurements also show that the cost ratio
between the best and the worst task placement does not
indicate how well the cache-miss ratio will improve. The
reason for the divergence between the two ratios is to be
found in the structure of the tasks. So far, we have only
taken the task sizes into account and weighted each occupied
cache set equally. However, certain code sections (e.g., loop
bodies) are certainly executed more often. Evicting such a
code section is thus more costly than evicting a code region
a task visits only once. We will address this improvement
in future work.

Task Set | Cache Sets | Cost Ratio | Miss Ratio
A direct 1024 79% 47%
A two-way | 1024 52% 62%
A four-way | 512 71% 99%
B direct 1024 76% 85%
B two-way | 1024 52% 7%
B four-way | 512 67% 98%
C direct 1024 81% 83%
C two-way | 1024 59% 49%
C four-way | 512 7% 98%

Table 3: Shows cost and cache-miss ratio between
the best and worst task permutation placement.

Table 4 shows the percentage of persistent cache sets for
the task compress as optimized by our analysis. In case of
the direct-mapped cache, our method was not able to find
a placement for any of the three task sets, where no cache
set occupied by the task compress could be classified as per-
sistent. To compute a safe execution time estimate for the
given task, the timing analysis must assume that the con-
tent of each cache set to be unknown. In case of the two-way
and four-way set-associative caches, our method was able to
find a placement for every task set, where all the cache sets
compress occupies could be classified as persistent. In this
case, the previously computed WCET for that task is safe
in the context of preemptive scheduling. The only exception
forms the placement for task set B in case of the two-way
set-associative cache, where our method was able to iden-
tify only 34% persistent cache sets. Assuming the contents
of the other cache sets to be unknown, a timing analysis is
then able to compute a safe as well as tight execution time
estimate for the given task.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented a new method to optimize and
analyze the cache-performance of task sets running on em-
bedded systems with preemptive scheduling. We exploit the
fact that different task placements within the memory lead
to different cache-interferences during execution. For a given
task set and a cache configuration our method adjusts the
starting position of the tasks such that the threat to the
cache sets is globally minimized. This optimization improves
the cache performance on the one hand and statically clas-
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Task Set | Cache Sets Persistent Cache Sets
Best Case | Worst Case
A direct 1024 0% 0%
A two-way | 1024 100% 0%
A four-way | 512 100% 0%
B direct 1024 0% 0%
B two-way | 1024 34% 0%
B four-way | 512 100% 0%
C direct 1024 0% 0%
C two-way | 1024 100% 0%
C four-way | 512 100% 31%

Table 4: Shows the percentage of persistent cache
sets for the task compress.

sifies whether cached entries are persistent or threatened
during the execution of a task. In contrast to other ap-
proaches our method does not need to modify the code and
thus does not impair the execution time of a task. The
cache-set classification finally makes precise timing guaran-
tees for preemptively scheduled tasks a reachable goal.

For the optimization, we introduced a simple performance
model to compare the performances of different placement
and to derive the classification of the cache entries. On top
of this model we developed two slightly different optimiza-
tion problems and showed the NP-hardness of both. The
first problem optimizes the performance independent from
the used memory space and the second one only allows min-
imal memory usage. Additionally, we presented an ILP for-
mulation for the first one and an heuristic approach for the
second.

The measurements show that our method is able to compute
cache-efficient task placements. We have observed that the
effectiveness of our approach strongly depends on the op-
timized task set. Because we have no access to real-world
applications (e.g., task sets of an automotive system), we
were only able to apply our method to self-written task sets.
However, we are very optimistic that our method will prove
valuable in practice.

The framework we introduced within this paper offers a wide
area for future work. The performance model can be en-
riched with more detailed information about the task set
and the tasks themselves. For instance, information about
recurring or sequential code segments could lead to a better
approximation. To derive this information static analyses
or the help of the compiler and its data could be used. An-
other important issue is the level of detail. Not only the
tasks within the set but also the procedures of the tasks
can be moved within the main memory to allow a higher
variability and therefore better performances. The different
steps of the method could be combined to a semi-automatic
implementation of the framework where the user only has
to provide the task interdependencies. Last but not least, a
final evaluation of the method using task sets from industry
is left for further research.
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