
Existential Abstractions for Distributed Reactive Systems
via Syntactic Transformations

Vijay D’Silva
ETH Zurich, Switzerland
vdsilva@inf.ethz.ch

Sampada Sonalkar
Columbia University, U.S.A.
ss3119@columbia.edu

S. Ramesh
GM R&D India Science Lab,

Bangalore, India
ramesh.s@gm.com

ABSTRACT
Synchronous languages are well suited to implementation
and verification of reactive systems. Large reactive systems
tend to be distributed to cope with scalability and appli-
cation specific demands. We propose abstractions for dis-
tributed reactive systems modelled as a set of synchronous
nodes with asynchronous communication between them. The
special features of synchronous programs allow us to obtain
abstractions that are also valid synchronous programs only
by syntactic transformations. For a given program, the set
of all such abstractions forms a semi-lattice with the original
program as the bottom and the most abstract program as
the top element. The transformation we define is a natural
basis for constructing an abstraction-refinement framework
for verification. Given a program and a safety property,
the abstraction-refinement process is a search in a lattice of
programs obtained via syntactic transformations. We have
implemented this abstraction refinement framework in a pro-
totype tool and report our case studies.

Categories and Subject Descriptors
F.3 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs

General Terms
Languages, Theory, Verification

1. INTRODUCTION
Reactive systems are ubiquitous and often safety critical.

Synchronous programming provides a powerful abstraction
for such systems based on ideas from control theory and
digital circuit design. Control dominated reactive systems
are designed using languages like Esterel, Statecharts, Sync-
Charts or Argos [4]. Large reactive systems, such as the net-
work of processors in an automobile, tend to be distributed,
consisting of synchronous nodes communicating using asyn-
chronous mechanisms based on message passing or shared

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009 ...$5.00.

memory. Much research has recently been devoted to ex-
tending the synchronous languages to encompass a special
class of distributed reactive systems called Globally Asyn-
chronous Locally Synchronous (GALS) systems [6, 15].

We address the problem of efficiently verifying distributed
reactive systems. As multiple proposals exist to extend the
synchronous paradigm to incorporate distributed reactive
systems, we abstract away the details and model all asyn-
chronous interaction as communication à la Communicating
Sequential Processes (CSP) [6]. A survey of the state-of-the-
art in automated verification reveals that abstraction tech-
niques are routinely used to cope with the prohibitive size
and complexity of designs to be verified. Localisation re-
duction abstracts circuits by removing invisible latches and
their associated logic and using spurious counterexamples to
refine the abstraction [3, 12]. This technique operates on a
low level synchronous design and may not be applicable to
distributed reactive systems. In predicate abstraction [16],
abstract programs are constructed using Boolean variables
tracking predicates on data values. Unlike software, the be-
haviour of control dominated distributed reactive systems is
dictated by volatile signals, events and asynchronous com-
munication. We propose specialised abstractions for dis-
tributed reactive systems that exploit semantic aspects of
the synchronous model. For the rest of the paper, we use
the terms program and system for synchronous programs
and distributed reactive systems respectively.

Verification algorithms for safety properties usually con-
struct existential abstractions. Consider two synchronous
programs M1 and M2 with the same signals. If every execu-
tion sequence in M1 has a corresponding execution sequence
in M2 such that the temporal behaviour of M2 is identical
to that of M1 on some signals but arbitrary on others, M2

is an existential abstraction of M1. Conversely, we say that
M1 refines M2. Any safety property that holds in M2 holds
in M1 as well. We prove that the core synchronous program-
ming constructs of parallel and hierarchical composition give
rise to such refinements and provide modular refinement re-
sults for four basic operators. Signal localisation and the in-
teraction between synchronous and asynchronous behaviour
introduce subtle complications which require consideration
of the program’s context.

The theoretical results we prove are used to construct
abstractions by syntactically modifying a program. These
syntactic transformations have two desirable features: (1)
expensive calls to a theorem prover are avoided when con-
structing abstractions and (2) the abstraction is a valid syn-
chronous program, which can be analysed using standard

240

compilers and verification tools. Additionally, we show that
the set of all such syntactically constructed abstractions
forms a semi-lattice with the original program as the bottom
element and the most abstract program as the top. Coun-
terexample guided abstraction refinement [7] for the systems
in this paper can be viewed as a search in this lattice for the
optimal abstraction.

We have implemented our verification algorithm in a pro-
totype tool for graphically describing and simulating dis-
tributed reactive systems [15]. A concrete model is first
abstracted by dropping components which do not generate
signals of interest. The abstract model is verified in a model
checker. Counterexamples from the model checker are trans-
lated into traces that can be run in the simulator to deter-
mine if they are feasible. Spurious traces are used to refine
the abstraction by adding a component that may previously
have been eliminated. We have conducted several case stud-
ies and in many cases, have observed a significant reduction
in the number of Boolean state variables the model-checker
had to consider in many cases.

The paper is organised as follows: Section 2 introduces
our main idea informally, through an example. In Section 3,
we formally define the model and in Section 4, the basis of
our abstraction technique. Section 5 covers our case-studies,
Section 6 discusses related work and concludes.

2. OVERVIEW BY EXAMPLE
We illustrate our ideas with an example of a controller.

We begin with a synchronous controller and then consider
a distributed controller system.

Consider a bottling machine in a factory. Vertically ori-
ented bottles arrive on a conveyor belt and are filled, four
at a time. The four bottles are then moved out from under
the nozzles and are capped. Capped bottles are lifted off the
conveyor belt and placed in a crate. A crate can hold six-
teen bottles. When a crate is full, it is moved elsewhere. To
prevent a pile-up on the conveyor belt, bottles are not filled
while a crate is being moved. Replacing a full crate with an
empty one takes twice the amount of time required to fill
four bottles. After a new crate is in place, the sequence of
operations above repeats.

A synchronous controller Bottler for the bottling ma-
chine is shown in Figure 1(a). At the top level, it is a reac-
tive automaton (ra) called Mode with two states q1 and q2

as shown (the label Mode is not shown in the figure to avoid
clutter). A reactive automaton executes in discrete steps,
each identified with a time instant. In each step, depending
on the input signals and the current state, a transition is
made to the next state and output signals are simultane-
ously emitted. Bottles are filled in state q1 but not in state
q2. A transition is made from q1 to q2 when a pause signal
is received. A transition is made from q2 to q1 when the
signal resume is received.

The state q1 is hierarchical and contains the reactive au-
tomata M1 and M2. M1 generates the signal fill, which causes
the machine to fill bottles. If the fill signal has been gener-
ated four consecutive times, the automaton M2 generates the
signal pause, which causes the transition from q1 to q2. The
state q2 is also hierarchical, containing the reactive automa-
ton M3. The controller remains in q2 when a crate is being
replaced. Two time instants after entering q2, M3 generates
the signal resume, which causes a transition to q1 after which
the machine continues filling bottles.

a/pause
a/

resume/

pause/

/
/resume

M1 M2 M3

/fill
/fill

a

q2q1

(a) Controller: Bottler

resume/

pause/

/
/resume

M3

q2q1

(b) Abstraction

Figure 1: Bottling machine controller and abstrac-
tion

The ras M1 and M2 in Bottler are said to be in synchronous
parallel composition, denoted M1‖M2. A hierarchical state q
containing an ra M is denoted [q → M]. The ra Bottler

can be written textually as Mode[q1 → (M1‖M2)][q2 → M3].
Suppose we want to verify the safety property that two

steps after receiving a pause signal, the controller resumes
operation. The entire behaviour of the controller need not
be analysed to determine that this property holds. It may
be sufficient to prove this property for a sound abstraction
of the ra Bottler. We use synchronous programs as ab-
stractions. An abstraction which suffices is the ra shown in
Figure 1(b). Observe that this abstraction is obtained by
simply dropping the hierarchical components from the state
q1. The ra is an abstraction because the signals fill and
pause are treated as inputs. Their behaviour, being unde-
fined may be arbitrary. Thus, the traces of the abstraction
are a superset of those of Bottler.

We prove that sound abstractions can be obtained by
dropping parallel and hierarchical components of reactive
automata. We also show how abstractions can be constructed
in the presence of signal localisation and asynchronous com-
munication. The set of abstractions constructed in this man-
ner forms a lattice. This lattice of syntactically constructed
abstractions for Bottler is shown in Figure 2.

We now introduce an asynchronous node in this system.
A second controller may generate an interrupt that causes
the bottling machine to abort. This controller, modelled
by the ra Int, is shown in Fig 3(b) along with an exten-
sion of Bottler, called Aborttler, that allows for opera-
tion to be aborted when the machine is not filling bottles.
States in which asynchronous communication can take place
are drawn as ellipses for emphasis and the relevant transi-
tions are drawn dashed. There is an asynchronous channel
ab connecting the two controllers. The CSP communica-
tion action ab? succeeds iff the action ab! occurs simultane-
ously. If no asynchronous communication takes place, either
one controller or the other executes, as is standard in most
asynchronous concurrent formalisms. The entire system, is
a communicating reactive machine crm; the asynchronous
(or interleaved) composition of the two controllers is denoted
Aborttler9 Int.

In the presence of asynchronous communication, reactive
automata cannot be simplified as before to obtain existential

241

Mode[q1 → (M1‖M2)][q2 → M3]

Mode[q1 → (M1‖M2)] Mode[q1 → M1][q2 → M3] Mode[q1 → M2][q2 → M3]

Mode[q1 → M1] Mode[q1 → M2] Mode[q2 → M3]

Mode

Skip

Figure 2: Lattice of Abstractions

q1

resume/

pause/

M2M1 M3

ab?/
abort

q2

abort/

q3

(a) Controller:Aborttler

stop/

ab!/

(b) Int

Figure 3: Bottling and Interrupt Controllers

abstractions. If an automaton is involved in asynchronous
communication, removing it might lead to a deadlock in the
transformed system. If this happens, the transformed sys-
tem will have fewer traces than the original and cannot be
used as an abstraction. In Section 4 we identify conditions
which must be satisfied to obtain abstractions in the pres-
ence of asynchronous communication.

3. THE FORMAL MODEL
We introduce a simple process calculus that contains the

main synchronous programming constructs, along with asyn-
chronous communication. This is along the lines of the Com-
municating Reactive Processes (CRP) model for a network
of Esterel reactive programs presented in [6].

Definition 1. The syntax of a communicating reactive ma-
chine (crm) is defined by the grammar:
crm ::= ra | crm9crm
ra ::= ha | ra‖ra | ra\s
ha ::= aut | ha[q → ra]
aut ::= (Q, init, I,O, C, T)

where aut is a deterministic Mealy-style automaton with
input I, output O and channels C. For a set S of sig-
nals, let B(S) denote the set of Boolean formulae over S.

K1
o1,c1−−−→

e1
K′

1 , c1 ∩ C2 = ∅

K1 9 K2
o1,c1−−−→

e1
K′

1 9 K2

[Asynch1]

K2
o2,c2−−−→

e2
K′

2 , c2 ∩ C1 = ∅

K1 9 K2
o2,c2−−−→

e2
K1 9 K′

2

[Asynch2]

K1
o1,c1−−−→

e1
K′

1 , K2
o2,c2−−−→

e2
K′

2, c1 ∩ C2 = c2 ∩ C1

K1 9 K2
o1∪o2,c1∪c2−−−−−−−−→

e1∧e2
K′

1 9 K′
2

[Asynch3]

Table 1: Asynchronous Transition rules

Let AO = 2O denote the set of output actions; sets of
signals that may be emitted in a transition. For a chan-
nel c, c! is a send action and c? is a receive. Let AC de-
note the set of asynchronous actions such that c? ∈ AC

iff c! /∈ AC and vice versa. The transition relation T ⊆`
Q× B(I ∪ O)×AO ×Q

´
∪

`
Q×AC ×AO ×Q

´
contains

synchronous and asynchronous transitions.

A communicating reactive machine is the asynchronous
composition of a set of reactive automata. A reactive au-
tomaton M may be in synchronous parallel composition
with another, denoted M‖N , may have a hierarchical state
q containing an ra N , denoted as an ha, M [q → N] and
may have local signals, denoted (M\s) for each local signal
s. Local signals have limited scope. For example, in the
ra (M\s)‖N , the signal s is not visible in the ra N . An
ra with no structuring constructs is simply an automaton
(aut). An automaton has states and transitions. In a syn-
chronous transition, if a condition on the input signals is
satisfied, an set of output signals is emitted. In an asyn-
chronous transition, if communication succeeds on a chan-
nel, a set of output signals is emitted. We briefly define the
semantics of our model, which is based on Esterel [5].

3.1 Semantics
An event e is a minterm over the complete set of signals

of an ra. It is a conjunction of positive and negative liter-
als indicating presence and absence of signals. Events and
asynchronous communication define which transitions take
place. At any step in the execution of an ra, we say that the
current state is active. The semantics of a crm M is given
by a sequence of configurations of the form Ki = (M, Ai)
where Ai is a set of active states in the ras in M at time step
i ∈ N; essentially the synchronous program counter. Transi-

tions are uniformly denoted as (M, Ai)
o,c−−→
e

(M, Ai+1). In a

synchronous transition, the states in Ai are active and the
event e causes signals o to be emitted and c is the empty
set. In an asynchronous transition, communication takes
place on the channels in c and signals in the set o are emit-
ted. For an asynchronous action a being c? or c!, define
chan(a) = {c}. Let init(M) denote the set of initial states
of all the ras in M .

Table 1 describes the transitions of an asynchronous sys-
tem M1 9 M2 in configurations K1 and K2, with sets of chan-
nels C1 and C2 respectively. These rules are similar to those
for parallel composition in CSP with the important differ-
ence that communication on multiple channels is possible
in a single transition. If no communication occurs, either
M1 or M2 makes a transition (rules Asynch1 or Asynch2).
If communication takes place, M1 and M2 progress together

242

(rule Asynch3). Note that multiple communications can take
place in the same transition step.

Table 2 describes the semantics of synchronous constructs.
Synchronous transitions in a simple automaton are described
by the rule Synch. If the state q is active, a transition from
q to q′ is taken provided the input condition and output
signals are consistent with the event e. Asynchronous tran-
sitions are described by Asynch, which is similar.

Two ras in synchronous parallel composition have the
same signals. In the rule SynchPar, a pair of transitions in
the two ras, which are consistent with the set of active states
and a given event can take place simultaneously. In contrast,
note that in an asynchronous composition, the events of the
two ras are different.

The semantics of hierarchical states are given by three
rules. In a transition leaving a hierarchical state in rule
Hsrc, the ras contained in the state first complete their ex-
ecution. This is known as weak preemption and is standard
in the synchronous languages. The active states after the
transition are only A′

1 and not A′
1∪A′

2. For example, in the
transition from q1 to q2 in Figure 1(a), the ra M1 first gen-
erates the signal fill. If a hierarchical state q containing
the ra M2 is entered, as described in the rule Htarget, the
set of active states after the transition includes q and the
initial states of M2. An example is the transition from q1 to
q2 in Figure 1(a), in which the set of active states after the
transition contains q2 and the initial states of M3. Finally,
in the rule Hself describing a transition from a hierarchi-
cal state to itself, all contained ras complete their current
transitions and are then “reset” to their initial states.

Signal localisation is a well studied issue in the synchronous
languages because of causality paradoxes which may arise.
We adopt Berry’s constructive solution and explain it briefly.
A comprehensive discussion can be found in [5]. A signal s
can only be made local if its status can be uniquely de-
fined. This means that assuming the status of s undefined,
denoted s⊥, we can determine if at the end of the reac-
tion, s is present or absent, denoted s+ and s− respectively,
by examining how the other signals affect the output. Let
e∗ s⊥ denote the expression obtained by replacing every oc-
currence of s by s⊥ in e. Let must(K, e ∗ s⊥) denote the
set of signals that are emitted in every transition from the
configuration K with the event e ∗ s⊥. As the event e is
not completely defined, multiple transitions may be possi-
ble. In the rule Local1, s is in the must set, so it will always
be emitted and we can assume that it is present in e to
compute the next states, but have to remove it from the
output set because it is local. Let may(K, e ∗ s⊥) denote
the set of signals that are emitted in at least one transition
from the configuration K with the event e ∗ s⊥. Note that
must(K, e ∗ s⊥) ⊆ may(K, e ∗ s⊥). In rule Local2, s is not
in the may set, so it will never be emitted in transitions
from that configuration. We can assume that s is absent
to compute the next set of active states. In both rules, the
status of the signal can be determined without making any
a priori assumptions. That is, without cyclic reasoning. If
the signal is not in the must set but is in the may set, it may
be emitted but need not be. Such programs are rejected by
compilers of synchronous languages because their behaviour
is unpredictable.

A run of a crm M is sequence of transitions derived from

the semantic rules, K0
o0,c0−−−→

e0
K1

o1,c1−−−→
e1

. . ., where the initial

configuration K0 = (M, init(M)). A trace τ is a sequence
(e0, o0, c0), (e1, o1, c1), . . . derived from a run. We write ei, oi

and ci as τ [i].e,τ [i].o and τ [i].c respectively. Let Tr(M)
denote the set of all traces of M .

4. EXISTENTIAL ABSTRACTION
We are interested in existential abstractions. Existential

abstractions are typically defined such that for every trace in
the concrete program, there exists a corresponding trace in
the abstraction. Any safety property that is satisfied by an
existential abstraction also holds for the concrete program.
The mathematical relation between an abstraction and a
concrete system is called refinement.

We define refinement for crms based on these ideas. Our
definition may appear different from existing definitions be-
cause our model combines both synchrony and asynchrony.
In a synchronous model, if an ra N emits more output sig-
nals than ra M for the same sequence of events, the be-
haviour of N is more defined than that of M because we
can make stronger statements about N . The most abstract
ra has all signals as inputs. Thus, all signals behave com-
pletely arbitrarily and nothing can be proved about them.
If a signal that N produces as output is made local, it is
not externally visible in the trace anymore but may influ-
ence the set of traces of N . Hence, local signals have to be
treated specially for abstraction.

In contrast to output signals, asynchronous communica-
tion actions should increase in an abstraction. This is be-
cause more asynchronous communication leads to more traces
in a crm. If fewer communication actions take place, one of
the asynchronous nodes may deadlock, leading to a smaller
set of traces in the entire system. The most abstract crm
is like Hoare’s Chaos process, arbitrarily communicating on
all possible channels. Definition 2 is motivated by these ob-
servations.

Definition 2. A crm N refines M in a context with signals
S, denoted N refS M , iff for every τ ∈ Tr(N), there exists
a trace σ ∈ Tr(M) such that at each step i the following
holds:

1. τ [i].e = σ[i].e and τ [i].o ⊇ σ[i].o and τ [i].c ⊆ σ[i].c

2. τ [i].o ∩ S = σ[i].o ∩ S

The set S is a parameter that is used when dealing with
local signals and to construct the initial abstraction. We
write N ref M for N ref∅ M . If S′ ⊆ S, then N refS M

implies N refS′ M .

4.1 Syntactic Transformations
We now define transformations of crms and show that

they give rise to existential abstractions. First, we consider
ras constructed using only synchronous parallel composi-
tion and hierarchy. Let Skip denote the reactive automaton
with all signals as input and no asynchronous communica-
tion. For an ra M , let Components(M) denote the set
of ras constituting M . Let A denote an automaton. The
set Components(M), abbreviated to Com(M) is formally
defined as follows:

243

(q, i, o, q′) ∈ TM , e → i ∧ o

(M, {q}) o,∅−−→
e

(M, {q′}) [Synch]
(q, a, o, q′) ∈ TM

(M, {q}) o,chan(a)−−−−−−→
e

(M, {q′})
[Asynch]

K1
o1,c1−−−→

e
K′

1, K2
o2,c2−−−→

e
K′

2

K1‖K2
o1∪o2,c1∪c2−−−−−−−−→

e
K′

1‖K′
2

[SynchPar]

(M1, A1)
o1,c1−−−→

e
(M1, A

′
1), (M2, A2)

o2,c2−−−→
e

(M2, A
′
2), q ∈ A1, q /∈ A′

1

(M1[q → M2], A1 ∪A2)
o1∪o2,c1∪c2−−−−−−−−→

e
(M1[q → M2], A

′
1)

[Hsrc]

(M1, A1)
o1,c1−−−→

e
(M1, A

′
1), q /∈ A1, q ∈ A′

1

(M1[q → M2], A1)
o1,c1−−−→

e
(M1[q → M2], A

′
1 ∪ init(M2))

[Htarget]

(M1, A1)
o1,c1−−−→

e
(M1, A

′
1), (M2, A2)

o2,c2−−−→
e

(M2, A
′
2), q ∈ A1, q ∈ A′

1

(M1[q → M2], A1 ∪A2)
o1∪o2,c1∪c2−−−−−−−−→

e
(M1[q → M2], A

′
1 ∪ init(M2))

[Hself]

s ∈ must((M, A), e ∗ s⊥), (M, A)
o1,c1−−−→
e∗s+

(M, A′)

(M\s, A)
o1−{s},c1−−−−−−−→

e
(M\s, A′)

[Local1]
s /∈ may((M, A), e ∗ s⊥), (M, A)

o1,c1−−−→
e∗s−

(M, A′)

(M\s, A)
o1,c1−−−→

e
(M\s, A′)

[Local2]

Table 2: Synchronous Transition rules

Com(A) = {A}
Com(M1‖M2) = {M1‖M2} ∪ Com(M1) ∪ Com(M2)

Com(M1[q → M2]) = Com(M1) ∪˘
M1[q → M ′

2]|M ′
2 ∈ Com(M2)

¯
Definition 3. Given an ra M , define the relation v be-

tween ras M1, M2 ∈ Components(M) such that if M2 ∈
Components(M1) then M1 v M2. For all ras N define
N v Skip.

Observe that as per the definition, for two ras M1 and M2,
M1‖M2 v M1 and M1[q → M2] v M1. Similarly M1‖M2 v
M2 and M2[q → M1] v M2.

Lemma 1. The relation v is a partial order on the set
Components(M), where M is an ra with only synchronous
parallel and hierarchical composition.

Proof. We need to show that v is reflexive, antisymmet-
ric and transitive. Observe that M ∈ Components(M), so
M v M . Now observe that M v N iff Components(N) ⊆
Components(M). Thus, if M v N and N v M , we know
that Components(N) = Components(M). Suppose M and
N are not identical. Then, there exist either an ra or com-
position of ras in M that is not in N . But then, this ra
should also be in Components(M) and not in Components(N),
which cannot be. Transitivity follows because if P v Q
and Q v R, then Components(R) ⊆ Components(Q) ⊆
Components(P), so P v R as required.

Additionally, for an ra M , we can define a meet semi-
lattice of ras on the set Components(M) ∪ {Skip}. The
meet of M1, M2 ∈ Components(M), denoted M1 u M2, is
the ra N such that Components(N) is the smallest subset
of Components(M) containing both M1 and M2. M is the
bottom and Skip is the top of this lattice. Let L(M) denote
the lattice 〈Components(M) ∪ {Skip},v,u〉 for an ra M .
For example, the set Components(Bottler) for the ra in
Figure 1(a) is the set of nodes in Figure 2. The partial
order and L(Bottler) are as shown in Figure 2.

Theorem 1. For reactive automata M1, M2 ∈ L(M), if
M1 v M2, then M1 ref M2.

Proof. We know from the definition of the lattice that
a sequence of ras exists such that M1 = N0 v N1 . . . v
Nk v Nk+1 = M2 and for any 0 ≤ i ≤ k, Ni+1 is the least
element in L(M) greater than Ni. The proof is by induction
on k. For the base case, k = 0, we have N0 = M2. Clearly
M1 ref M1.

For the induction hypothesis, assume that for any k in
the sequence above that M1 refNk. It remains to show that
M1 ref Nk+1. By definition of v, either (1) Nk+1 is Skip

or (2) Nk must be of the form Nk+1‖N ′ or Nk+1[q → N ′].
In case (1), for every trace τ = (e0, o0, ∅), (e1, o1, ∅), . . . of
Tr(Nk), there exists a trace σ = (e′0, ∅, ∅), (e′1, ∅, ∅), . . . in
Tr(Skip) with the same sequence of events and no outputs.
Thus, Nk ref Skip. In case(2), we need to consider the se-
mantic rules for synchronous parallel and hierarchical com-
position. Observe in the rules SynchPar, Hsrc, Htarget and
Hself that a transition is defined in the composition iff there
is a transition with the same event in the two ras composed.
Further, the output signals emitted in a transition in the
composition are the union of those emitted by the two ras.
Thus, for every trace of the composition, we can derive cor-
responding traces in the composed ras satisfying condition
1 of Definition 2 and can conclude that Nk ref Nk+1.

Hence, it holds that M1refNk+1 and that M1refM2.

Let us examine the practical utility of these results. The
set Components(M) can be constructed entirely by syn-
tactically modifying M . From Theorem 1 we know that
these ras are all existential abstractions of M . Synchronous
composition and hierarchy are by far the most commonly
used structuring operators in the synchronous languages, so
we expect such abstractions can be frequently constructed.
However, we have made two strong assumptions so far: that
the ras contain no signal localization and no asynchronous
communication. In the next section, we show that a syntac-
tically constructed abstraction can be combined with other
ras to obtain more general refinement results.

244

4.2 Modular Refinement
If we have a pair of ras M1 and M2 such that M1 refM2,

and M1 is part of a larger program, it is desirable, if possible,
to replace M1 by M2 to reduce the complexity of verification.

If M1 is in parallel or hierarchical composition with some
other ras, it can be replaced by M2. The intuition is similar
to that used in the proof of Theorem 1. Traces in the syn-
chronous parallel and hierarchical composition of two ras
are constructed from traces of their components and have
more outputs. If (M1 ref M2) we can also conclude via
similar arguments that (M1‖M3) ref (M2‖M3). A similar
statement can be made for hierarchical composition. Such
a result is useful because we can individually simplify differ-
ent parts of a large system without having to examine the
monolithic program.

We have remarked before that signal localization compli-
cates matters. Consider an ra M and L(M). Suppose a
signal s is made local, then s is no longer an input or output
of M\s, so we cannot compare M\s with any ra in L(M).
What if we consider the ra N\s for some N ∈ L(M)? It
may be that the signal s is emitted in M but not in N , so
the results of the may-must analysis will be different. Con-
sequently, the transitions defined in M\s and N\s will be
different, so even though M refN , no similar conclusion can
be drawn about M\s and N\s.

Table 3 contains simple examples illustrating refinement
and modular refinement. The columns Concrete and Ab-
stract contain programs related by refS , with S in the last
column. The abstractions in the first three rows are con-
structed as in the previous section. Observe that (M1‖M2)ref
M2 but (M1‖M2)\a and M2\a behave differently because a is in
the must set of the concrete but not the abstract program.
Similarly, we know from the second row that (M1‖M2) ref

{b}

M2 and can obtain the abstraction M2‖M3 of (M1‖M2‖M3) with-

out examining M3 such that (M1‖M2‖M3) ref
{b} (M2‖M3).

For the example in row 6, an abstraction is constructed mod-
ularly for an ra with hierarchical composition.

Let us examine abstractions for crms. In the crm M 9 N ,
we cannot drop one of the parallel components to obtain an
existential abstraction. To see why, consider the crms in row
7 of Table 3. If the node M5 is removed, no asynchronous
communication takes place, so we do not have an abstrac-
tion. A possibility is to replace an asynchronous node by
a Chaos process that communicates arbitrarily on all chan-
nels. Though we get an abstraction, it may be far too coarse
to help prove any property.

What if we consider abstractions of M and N in M 9 N?
That is, if M = M1‖M2, what can we conclude about
M1 9 N given that M refS M1? Once again, the problem
is that any asynchronous communication between M2 and
N is lost. If the ra M4 in row 7 of Table 3 is removed,
no asynchronous communication takes place, and the set of
traces in the system is reduced. A remedy, is to introduce
the Chaos process, but restrict its asynchronous behaviour
to only those channels in M4. This way, given M 9 N , we can
pick an abstraction of M from L(M) and use it to obtain an
abstraction of M 9 N without introducing too much spuri-
ous behaviour. We have the following modular refinement
results.

Theorem 2. Let M1, M2, M3 and N1, N2, N3 be ras.

1. If M1 ref
S M2, then (M1‖M3) ref

S (M2‖M3).

2. If M1 ref
S M2, then M3[q → M1] ref

S M3[q → M2].

3. For s /∈ S, if M1 ref
S∪{s} M2, then M1\s refS M2\s.

4. If N1 ref
S N2, then N1 9 N3 ref

S N2 9 N3.

4.3 Constructing Abstractions
Given an arbitrary crm, we would like to construct a se-

quence of abstractions using syntactic transformations as
much as possible. From Section 4.1, we know that this is
possible for a purely synchronous system that includes only
synchronous parallel and hierarchical composition. We show
how L(M) can be used to obtain abstractions for crms con-
taining M .

For an ra M , let chan(M) be the set of channels on which
asynchronous communication takes place in M . Consider a
crm N1 9 N2. To construct abstractions for this system we
first obtain an ra M from L(N1) as follows:

1. If N1 = M1‖ . . . ‖Mk, pick an M ∈ L(N1).

2. If N1 = M0[q1 → M1] . . . [qk → Mk], pick M ∈ L(N1).

3. If N1 = N\s, pick M ∈ L(N) such that N ref{s} M .

In the presence of asynchronous communication, Let C =
chan(N1) \ chan(M). That is, C is the set of channels on
which communication actions may not take place in the
abstraction. Define Chaos(C) as the ra that communi-
cates arbitrarily on the channels in the set C. We can
use Chaos(C)‖M as an abstraction of N1. More precisely,
N1 9 N2 ref (Chaos(C)‖M) 9 N2. In this manner, we can
construct a sequence of existential abstractions for crms,
using abstractions from the lattice. The coarsest abstrac-
tion of N1 is Chaos(chan(N1))‖Skip.

We use this scheme to construct abstractions that are re-
fined using counterexamples. Given a safety property ϕ and
a crm N1 9 N2, a minimal abstraction for ϕ is the crm
M1 9 M2 where Mi is derived from M ′

i ∈ L(Ni) and M ′
i is

the maximal element of L(Ni) that can be used to prove ϕ.
Note that because of signal localization and introducing a
Chaos process, Mi itself may not be in L(Ni). In general,
there may not exist a best abstraction, that is, a unique
minimal abstraction.

5. EXPERIENCE
We have described a simulator and model checker for our

distributed reactive systems model in [14, 15]. We have
added an abstraction-refinement algorithm to the tool based
on the ideas in this paper.

The results of the previous section have been algorith-
mically encoded in the iterative-refinement loop in Figure 4.
Specifications are provided as distributed observers, a gener-
alisation of the standard automata based specifications used
in the synchronous languages [11]. An initial abstraction is
constructed retaining only components generating signals in
the specification. A crm and it’s specification are translated
into Promela for verification with Spin. If model checking
an abstract model fails, we obtain a counterexample. The
counterexample is translated into a sequence of events and
communication actions which can be fed as input to the
simulator.

The simulator serves two purposes: To identify spurious
counterexamples and to evaluate the quality of refinement,

245

Concrete Abstract S

1 M1 /a M2 a/b M1 /a {a}

2 M1 /a M2 a/b M2
a/b

{b}

3

b/c

a/bM2

M3 b/c

M3 {c}

4
/b(M1||M2)\a /

M1\a ∅

5

b/c

M3M1 /a M2 a/b

b/c

M3M2 a/b {b}

6
M1 /a M2 a/b

b/c
M3

b/c
M3

M2 a/b
{b}

7

b/c M3 a/b

M1M4

r!/a

M5

/dr? b/c M3

M4 M5

r!/a r?/d

{a}

Table 3: Refinement: Constructs and Modularity

AbstractionNew Abstraction

Checker
Model

SimulatorRefine

Simulator

AbstractSlicer

Counter
example

Done

Bug

Slice

Initial

Success

Feasible

Failure

Spurious

Feasible

Spurious

M O

M’

T

T

M’

T refined M’

Program Specification

Figure 4: Iterative-Refinement loop

both roles undertaken by a theorem prover in predicate-
abstraction. To determine the authenticity of the counter
example, the trace is simulated on the abstract model and
the original model. At each step, the simulator checks whether
the set of active states in the abstract model is a subset of the
set of active states in the original model. If this condition
holds throughout the simulation and the observer reaches
the bad state, the counter example is genuine. If at some
step the subset condition does not hold, we can infer that the
counter example is not a valid trace of the original model.
For example, consider row 3 of Table 3 and a trace {a}.
The original model enters state M3 and emits c while the ab-
stract model remains in state M1 because signal b is absent
here. On discovering a spurious counterexample, we try al-
ternate refinements till one eliminating the spurious trace is

found. The simulation step at which the subset condition
failed gives a good indication that the producer of b, Com-
ponent M2, should be added to the abstract model. The new
abstraction is given as input to the model checker and the
iterative verification process repeats.

Our tool is implemented in C and is meant to be a pro-
totype for exploring ideas for such systems. Translating a
synchronous model to Promela is non-trivial and far from
optimal, because the translated code has to preserve syn-
chronous semantics where required. Thus, our running times
are often quite high. However, our aim is to evaluate the ef-
ficacy of the abstraction procedure suggested here. For this,
we believe it is sufficient to examine the reduction in run-
ning time and states explored during verification when using
iterative refinement rather than absolute values.

The running times and memory requirements of a experi-
ments on several examples are shown in Table 4. The exper-
iments were run on a 2.6 GHz dual processor machine with
3.6 GB memory. The Unoptimised results are for verification
using Spin. The Iterative Refinement contains figures ob-
tained when using our iterative refinement procedure. The
time required for model checking the abstraction obtained
is shown in the Verification column.

The Bottling example is a more detailed version of that
in Section 2. Traffic is a traffic light controller in which a
large part of the system could be abstracted away. The bus
protocol is a model based on the Advanced Microcontroller
Bus Architecture (AMBA) from ARM [2]. The protocol
supports pipelined bus transfers of different lengths with
multiple masters and slaves. We verified a property about
the pipelined behaviour. The abstraction that was obtained
did not change the verification running time required and
the refinement algorithm only introduced an overhead. The
ATM example is a model of a set of ATM machines interact-
ing with a central database. A transaction property of the

246

Name Nodes Unoptimised Iterative Refinement Verification
Var Time (s) Memory (MB) Var Time (s) Memory (MB) Time (s)

Bottling 1 19 0.51 588.85 15 0.711 588.85 0.514
Air Conditioner 1 20 2.13 593.15 7 2.13 588.64 2.07
Traffic 2 34 12.0 2196 17 3.99 2029 3.55
Bus Protocol 1 24 3.51 2029 23 7.49 2029 3.51
ATM 2 84 > 1400 > 3207 50 53.01 2765 52.3
CD Player 2 87 — — 26 681.2 2031 651.28
Elevator 3 98 — — 74 > 1200 2634 107.7

Table 4: Experimental evaluation

PC

EC

out

Loaded

Disc

eject/

in

eject/

No disc

eject/has_disc/

/ejecte?

/playp?

(a) New drive

insert/

eject/

no_disc/

has_disc/

e?/eject

p?/play

(b) Old drive

Figure 6: Two CD drives

model could not be verified directly, but the iterative refine-
ment algorithm could identify an abstraction that required
only 52.3 seconds for verification.

The CD player is a case study of grip 3.2.0, an open
source CD playing software [13]. We modelled the inter-
action between the device driver and the software as asyn-
chronous communication between two nodes. Each widget
in the graphical interface triggers a call to the device driver
and was modelled as two ras, one reacting to the user’s in-
put and the other interacting with the device driver. The
ras for the Eject and Play buttons are shown in Figure 5.
The behaviour of the system varies with the kind of CD
drive that is used. We partially show models of two differ-
ent drives in Figure 6. In some drives, as in Figure 6(a),
after an eject, the drive’s state is No Disc until the input
has disc is produced by a sensor (not shown). In contrast,
in some older drives, as in Figure 6(b) (to be found on one
author’s laptop), the entire drive is ejected an there may
still be a CD in the drive after an eject. We verified that
the property that that a play command should not be issued
to the drive with the tray out is not satisfied by a system
with an old drive.

In the Elevator example, direct verification did not termi-
nate. Using iterative refinement, we obtained an extremely
long counterexample, which ran in the simulator for over
half an hour, after which we terminated the process. We
were unable to determine if the counterexample was gen-
uine. The verification time reported is for the last abstrac-
tion computed.

6. RELATED WORK
Our verification framework is based on ideas from dif-

ferent areas of research. We believe this to be the first
iterative-refinement algorithm for distributed reactive sys-
tems. We are unaware of similar results even for the syn-
chronous model described here.

In a general sense, abstract interpretation is the semantic
backdrop for analysis using abstractions [8]. Our use of a
lattice of abstractions and the notions of minimal and best
abstractions are influenced by their work.

Work in constructing modular abstractions for model check-
ing goes back to Grumberg and Long [10]. They define a a
preorder relation, similar to refinement, which is used to con-
struct abstractions. Their model is different from ours and
only synchronous parallel composition of processes is con-
sidered. More recently, Alur and Grosu [1] defined a visual
language with operators including hierarchical and parallel
composition. They also define refinement and prove mod-
ularity results in this model. Their model differs from the
synchronous paradigm and concepts such as weak preemp-
tion are interpreted differently. Thus, the results obtained
in these settings do not directly apply to our model.

A modular verification technique for synchronous systems
using observers was proposed in [11]. Later, de Simone
and Ressouche proposed compositional verification for Es-
terel [9]. The ideas in these papers do not readily fit into a
counterexample guided refinement framework.

Iterative refinement appeared as localisation reduction in
[12] and its recent avatar as counterexample guided abstraction-
refinement in [7]. These techniques operate directly on the
transition relation and do not exploit the abstraction po-
tential of programming constructs. Similarly, Balarin’s al-
gorithm [3] for iterative-refinement of communicating finite
state-machines works well for BDD based verification but is
not modular and does not apply to synchronous programs.

The closest approach to ours is Vecchie and de Simone’s[17]
use of Esterel syntax for verification of Esterel programs. By
analysing the structure of the program, they efficiently par-
tition the BDDs representing the reachable state space of
the program. Though their analysis takes program syntax
into account, the transformations are eventually performed
on BDDs and are at a much lower level than ours.

7. CONCLUSION
In this paper we developed a verification framework for

distributed reactive systems. We define a refinement re-
lation for such systems and show that abstractions can be
constructed by dropping components from synchronous pro-
grams containing synchronous and hierarchical composition
operators. We observed that the set of all such abstrac-
tions forms a semi-lattice and that elements of this lattice
can be used to construct abstractions of programs that also
have signal localisation and asynchronous communication.
We have implemented our ideas and conducted several case
studies and obtained favourable results.

247

Eject
Button Play

Button

busy/

Cursor

Stop
Command

Play
Command

Eject
Command

no_disc/
has−disc/

playcplay_done/

not_busy

get_status
pressP/ busypressE/ busy

stopc

stop_done/
eject_done/

not_busy
ejectc not_busy/

playc/

/play_done

ejectc/

/eject_done

stopc/

/stop_done Channels

Input pressE pressP

Output

Local busy stopc
ejectc
playc

not_busy
play_done
stop_done no_disc

eject_done
has−disc

get_status

pecc! e! p!

Figure 5: GUI: CD playing user interface

8. REFERENCES
[1] Rajeev Alur and Radu Grosu. Modular refinement of

hierarchic reactive machines. In Principles of
Programming Languages, pages 390–402, 2000.

[2] ARM. Advanced Microcontroller Bus Architecture
Specification. 1999.

[3] Felice Balarin and Alberto L. Sangiovanni-Vincentelli.
An iterative approach to language containment. In
Computer Aided Verification, pages 29–40, London,
UK, 1993. Springer-Verlag.

[4] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The synchronous
languages twelve years later. Proc. of the IEEE,
Special issue on embedded systems, 91(1):64–83,
January 2003.

[5] G. Berry. The constructive semantics of pure Esterel.
In Book Draft, version 3, July 1999.

[6] G. Berry, S. Ramesh, and R. K. Shyamasundar.
Communicating reactive processes. In Principles of
Programming Languages, pages 85–98, 1993.

[7] Edmund M. Clarke, Orna Grumberg, Somesh Jha,
Yuan Lu, and Helmut Veith. Counterexample-guided
abstraction refinement. In Computer Aided
Verification, pages 154–169, 2000.

[8] P. Cousot and R. Cousot. Abstract interpretation
frameworks. Journal of Logic and Computation,
2(4):511–547, August 1992.

[9] Robert de Simone and Annie Ressouche.
Compositional semantics of Esterel and verification by
compositional reductions. In Computer Aided
Verification, pages 441–454, 1994.

[10] Orna Grumberg and David E. Long. Model checking
and modular verification. ACM Transactions on
Programming Languages and Systems, 16(3):843–871,
1994.

[11] Nicolas Halbwachs, Fabienne Lagnier, and Pascal
Raymond. Synchronous observers and the verification
of reactive systems. Algebraic Methodology and
Software Technology, pages 83–96, 1993.

[12] R. P. Kurshan. Computer Aided Verification of
Coordinating Processes. Princeton University Press,
1994.

[13] Mike Oliphant. Grip 3.2.0. www.nostatic.org/grip/,
2004.

[14] S. Ramesh, A. Kulkarni, and V. Kamat. Slicing tools
for synchronous reactive programs. In Proc. of the
2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 217–220, 2004.

[15] S. Ramesh, Sampada Sonalkar, Vijay D’Silva,
N. Chandra, and B. Vijayalakshmi. A toolset for
modeling and verification of GALS systems. In
Computer Aided Verification, July 2004.

[16] S. Graf and H. Saidi. Construction of abstract state
graphs with PVS. In Computer Aided Verification,
1997.

[17] Eric Vecchié and Robert de Simone. Syntax-driven
reachable state space construction of synchronous
reactive programs. In Computer Aided Verification,
2005.

248

