Performance Characterization of Prelinking and Preloading
for Embedded Systems *

Changhee Jung Duk-Kyun Woo Kanghee Kim
Embedded Software Research Embedded Software Research Mobile Communication
Division Division Division
ETRI ETRI Telecommunication Network
Daejon, 305-700, Korea Daejon, 305-700, Korea Business

chjung@etri.re.kr

dkwu @ etri.re.kr

Samsung Electronics Co.,

LTD.
kang.hee.kim@samsung.com

Sung-Soo Lim
School of Computer Science
Kookmin University
Seongbuk-gu, Seoul, Korea
136-702
sslim@kookmin.ac.kr

ABSTRACT

Application launching times in embedded systems are more
crucial than in general-purpose systems since the response
times of embedded applications are significantly affected by
the launching times. As general-purpose operating systems
are increasingly used in embedded systems, reducing appli-
cation launching times are one of the most influential factors
for performance improvement. In order to reduce the appli-
cation launching times, three factors should be considered at
the same time: relocation time, symbol resolution time, and
binary loading time. In this paper, we propose a new ap-
plication execution model using a combination of prelinking
and preloading to reduce the relocation, symbol resolution,
and binary load overheads at the same time. Such applica-
tion execution model is realized using fork and dlopen exe-
cution model instead of traditional fork and erec execution
model. We evaluate the performance effect of the proposed
fork and dlopen application execution model on a Linux-
based embedded system using XScale processor. By apply-
ing the proposed application execution model using both
prelinking and preloading, the application launching times

*This work was supported in part by the IT R&D program of
MIC/IITA [2006-S-038-02, Development of Device-Adaptive
Embedded Operating System for Mobile Convergence Com-
puting], in part by No. 379 from the Basic Research Pro-
gram of KOSEF, and in part by the MIC, Korea under the
ITRC (Information Technology Research Center) support
progl)"am supervised by the IITA (IITA-2006-C1090-0603-
0045).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EMSOFT’07, September 30—October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009 ..$5.00.

213

are reduced up to 71% and relocation counts are reduced up
to 91% in the benchmark programs we used.

Categories and Subject Descriptors

D.3.4 [Programming Languages|: Processors—compil-
ers, run-time environment; D.4 [Operating Systems]: Or-
ganization and Design—real-time systems and embedded sys-
tems

General Terms

Design, Performance

Keywords

embedded systems, prelinking, preloading, application launch-
ing

1. INTRODUCTION

Dynamically linked applications have been increasingly
used in embedded systems as general purpose operating sys-
tems are adopted in embedded systems. As more diverse ap-
plications with significant sizes are installed for such embed-
ded systems, the portion of dynamically linked applications
increase accordingly. Therefore, the shared library process-
ing times including relocation, symbol resolution, and li-
brary image loading steps have substantial impact on the
overall application execution performance. For example, in
[1], the GNOME startup time analysis results show that the
most of the IO operations are due to shared library oper-
ations and around 65 % of non-contiguous 10s come from
library accesses.

Application launching overhead is more crucial in embed-
ded systems since the hardware performance of the embed-
ded systems is not comparable to the performance of general
purpose systems. Moreover, the prolonged launching times
could not be accepted in user-interactive consumer electron-
ics products since the response times of applications would

directly affect the values of the products (i.e., the launch-
ing time of HTML or WAP browser in mobile phones, the
launching time of document viewer in PDAs and phones).
Optimizing such application launching times through effi-
cient handling of dynamically linked applications is neces-
sary in the products.

In this paper, we propose an application execution model
to reduce the handling cost of dynamically linked applica-
tions in launching applications: we perform relocation, sym-
bol resolution, and shared library binary loading in advance
before application execution. The prelinking (i.e., reloca-
tion and symbol resolution before application execution) and
preloading (i.e., shared library binary loading before execu-
tion) techniques are combined in an application execution
environment by modification of the existing dynamic linker.
In order to apply the combined techniques to the exist-
ing general purpose OS-based systems, the fork and dlopen
model is used for application execution instead of fork and
exec model. In the fork and dlopen model, the applications
are launched as shared objects by an application launcher
and the shared libraries needed to execute the applications
are prelinked and preloaded by the launcher.

The fork and dlopen application execution model with pre-
linking and preloading naturally gives a number of restric-
tions in launching and running applications. First, as we
mentioned above, the applications need to be changed to
shared objects and launched through dlopen. Second, most
of the applications in a system need to be covered by pre-
determined set of shared libraries so that additional shared
library loading would not be needed at run-time. Though
the factors mentioned above seem to impair the flexibility
of the system, the consumer electronics embedded systems
could well accept the application execution model due to
their characteristics. The consumer electronics products
such as smartphones, portable media players, and set-top
boxes normally have a centralized application launcher who
controls the launching and termination of other applications.
In addition, the shared libraries used by the applications
could be well predetermined since most of the applications
are fixed from factory configuration and additional applica-
tions would also utilize the already installed shared libraries.
Moreover, once the products boot and start to run, the prod-
ucts are rarely rebooted, but typically woken-up from sus-
pended modes. This would hide the launching time of the
application launcher itself and preloading times of shared
libraries since these are performed at boot time. Especially
for mobile phones, the system boot is normally accompanied
by subscriber registration process and thus the prolonged
launching time would not affect the user perception.

We implemented the application execution model in a
Linux-based embedded system with modification of dynamic
linker in GCC. We evaluated the performance improvement
of the fork and dlopen application execution model with the
previous fork and exec model using a number of benchmark
programs. Our experiments show that the launching times
of applications are reduced up to 71 %, relocation counts up
to 91 %, and the total execution times of applications are
improved up to 11.3 % by using the combination of prelink-
ing and preloading.

2. RELATED WORK

Efficiently linking programs has long been an important
issue in operating systems area. Dynamic linking draws a

214

number of issues in application execution performance. Ef-
ficient dynamic linking has been discussed and implemented
in single-address-space operating systems such as Mungi [5,
3] and Nemesis [12] and the dynamic linking scheme has
been used in Iguana project [4] which is a modified version
of Mungi and used for commercialized systems. Most of
the issues in dynamic linking in single address space have
been discussed in [5, 3, 12] and those discussions could be
well considered in general purpose operating systems. In
this paper, we aim at devising and evaluating a method for
efficient dynamic linking that could be practically used for
general purpose operating systems such as Linux.

Prelinking [8] is an ELF image translation to speed up
dynamic linking of ELF programs. It tries to remove sym-
bol resolutions of ELF programs by incorporating the simple
philosophy of the a.out binary format into the ELF format
without compromising its flexibility. That is, it assigns a
base address to which every shared library in the system
should be mapped, and according to the base addresses,
performs all symbol resolutions at link time. If there exists
a case where the base address assigned to a prelinked shared
library is already occupied by another shared library (e.g.,
when a non-prelinked library is already loaded to the base
address), all symbol resolutions performed at link time for
the prelinked library are cancelled at load time of the li-
brary, and the library is handled as a normal non-prelinked
ELF library; that is, the base address is dynamically de-
termined by the system, and the symbol resolutions occur
during the run time of the program. To make an effective
use of prelinking, it is important to cover as many shared
libraries as possible in system design phase, thus reducing
the possibility of non-prelinked libraries in system operating
phase.

On the other hand, fized-up image caching [11] is an op-
erating system level technique developed in Spring OS to
speed up dynamic linking. The basic idea is to maintain a
cached copy of application executables and shared libraries,
once the corresponding applications are launched and ter-
minated. If an application has to be launched later, the
cached copy of the associated executable and shared libraries
is used. In this approach, it is important to assign a unique
base address to each shared library, in order not to main-
tain multiple copies of a single shared library due to different
base addresses. Since the approach requires large memory
space for image caching, it is not adequate for embedded
systems with no swap.

One final resort to completely avoid relocation, symbol
resolutions, and library loading is to come back to static
linking. In [2], static linking is revisited as an alternative
to dynamic linking, which is combined with a notion called
message digests to reduce the space overhead imposed by
static linking in terms of both memory and disk. However,
the space overhead of 40% relative to dynamic linking is too
high for general purpose OS-based embedded systems we
consider.

Recently, as general purpose OS-based embedded systems
are increasingly used, there has been an effort to address the
overheads of dynamic linking with a different application
execution model. This is quicklaunching [13], which adopts
the fork and dlopen model other than the traditional fork
and exec model. In this approach, a process called launcher
preloads all shared libraries that will be used in the system,
while completing relocations and symbol resolutions. This

high

Shared Shared

s
exec(App.exe) [Hibraries

Address libraries fork() libraries
space
Launcher.exe Launcher.exe ‘ App{.e%H ‘ ‘ |
(a)
high
Shared Shared Shared
Address libraries libraries libraries

fork() dlopen(App.so)
— —

space
P dlsym(main)

Launcher.exe

Launcher.exe Launcher.exe

(b)

Figure 1: (a) fork/exec model vs. (b) fork/dlopen
model

way the launcher can guarantee to each application no over-
heads due to the shared libraries, except for the application
executable.

3. APPLICATION EXECUTION MODEL

In this section, we introduce the idea of preloading shared
libraries, which starts to be used in general-purpose OS
based embedded systems [13] but not quantitatively eval-
uated to the best of our knowledge. In such embedded sys-
tems, as more shared libraries of general-purpose systems
are adopted unmodified, it becomes more crucial to speed
up dynamic linking of ELF programs. Compared with pre-
linking, preloading is another complete mechanism to reduce
the overheads due to dynamic linking by changing the ap-
plication execution model from fork and exec to fork and
dlopen. As can be seen in Section 4, preloading can give us
a significant synergy, combined with prelinking.

3.1 fork-and-dlopen Execution Model

The traditional fork and exec model launches a new ap-
plication in two steps: first, a parent process such as shells
makes a child process by duplicating the address space via
fork, and then the child process modifies its address space
via ezec. In the address space modification, the child process
completely destroys all memory segments inherited from the
parent process and maps a new ELF executable image and
the required shared libraries into the empty address space.
In this model, since loading of the shared libraries required
by the child process, relocation and symbol resolution should
occur for each single application, the application launching
time could be significant. To reduce the application launch-
ing time, prelinking can be used in this environment to re-
move relocation and symbol resolution.

However, the application launching time can be better ad-
dressed by the fork and dlopen model. The essential problem
of the fork and exec model is that the child process could
not utilize the inherited memory segments from the parent
process. If shared libraries of the child process are already
loaded in the parent’s address space, and all relevant reloca-
tion and symbol resolution are done in the parent context,
the child process would incur no overheads upon execution
due to the shared libraries. In this model, to preserve the
inherited memory segments, the child process should launch
the designated application image in form of an ELF shared

215

Preloading launcher

> for (i=1; i<m; i++)

q R preload lib-/so;
)

Request
to launch
application-k
comes?

Prelinker | ==

< Yes

fork();

dlopen (App-4.s0);
addr = dlsym(main);
jump to addr;

App-1.s0

g\ /z 5
. g .o
3
g

Figure 2: The proposed framework

object as well, instead of the ELF executable. Thus the
child process loads the application image via dlopen, finds
the address of main via dlsym, and finally executes the ap-
plication by jumping to the address. To realize the fork and
dlopen model, the set of shared libraries used in the system
should be identified first, and be loaded into a common pro-
cess called launcher. Figure 1 contrasts the two application
execution model described above.

3.2 Overall Framework

Figure 2 shows the overall framework of our application
execution environment. We first identify all applications
used in the system and build them as shared objects (App-
1.s0, App-2.s0, ..., App-n.so). Next, for each application
image, we find all the dependent shared libraries by recur-
sively checking DT_NEED entries' in the dynamic section
of the ELF binary and determine the whole set of shared li-
braries used in the system (Lib-1.so, Lib-2.so, ..., Lib-m.so).
Next, we use the prelinker tool for both application bina-
ries and shared libraries to remove relocation and symbol
resolutions at run time of the applications.

With the above assumptions, we use the fork and dlopen
model for our launcher program. The launcher program
preloads all the shared libraries in advance, even if some
of them are not actually needed for the launcher program
itself. In a real embedded system such as smartphones, how-
ever, since the launcher program requires GUI interfaces like
other GUI applications, many of the shared libraries are
also utilized by the launcher program in practice. Next, the
launcher program waits for a request of launching an ap-
plication. When a user requests to execute an application
k, the launcher forks a child process, and the child process
invokes the application by loading the associated App-k.so
binary.

It should be noted that each application invocation incurs
almost no relocation and symbol resolution, since all appli-
cation binaries and shared libraries are already prelinked.
As we will see later, this leads to a significant performance
improvement. Moreover, since all shared libraries used in
the system are preloaded by the launcher process, we can
obtain further performance improvement over the fork and
ezec model combined with prelinking.

Figure 3 shows the execution time decomposition of our
application execution model. Our model can be described
by four different phases:

1. launching phase of the launcher itself

2. preloading phase of the shared libraries

!Each entry contains the name of a dependent shared library

Launcher’s Launcher’s

launching running
S - | |
Start \ 12/ O o Time
Shared libraries” Application’s Application’s
preloading launching running

Figure 3: Execution time decomposition

3. launching phase of a target application

4. running phase of a target application

The first phase is launching phase of the launcher it-
self, which can be reduced by applying prelinking to the
launcher’s binary. The second phase is preloading phase of
all the shared libraries used in the system, which performs
all relocations and symbol resolutions in advance that would
otherwise occur while each target application is running. It
is important that the overhead of the preloading phase can
be amortized as more and more applications are executed
once the launcher executes. The third phase is launching
phase of a target application, where it requires only reloca-
tion and symbol resolution of the application binary. The
final phase is running phase of the target application.

Note that in our framework, it is also possible to consider
the shared libraries that an application binary explicitly in-
vokes via dlopen, which are not detected at prelink time.
To do this, some other tool is needed for searching each ap-
plication binary for such shared libraries and instrumenting
the source code of the application so that the explicit dlopen
call can be removed, but we do not consider such a tool in
the paper.

3.3 Implementation

In order to practically use the preloading, we need to de-
termine which software platform would be used. An operat-
ing system should provide the way of dynamic linking which
allows an application to request the dynamic linker to load
and link certain shared libraries at runtime. For this pur-
pose, Linux and Windows support dlopen and LoadLibrary,
respectively.

In addition, when converting static libraries to shared ones
in order to exploit the preloading, special care should be
taken to avoid runtime errors. Generally, when a shared ob-
ject is compiled, only symbols are added by default to its
dynamic symbol table that are actually used by some other
modules. In other words, the dynamic symbol table of the
shared object does not contain those symbols that are not
referenced by other modules at compile time, even though
they may be used at runtime using dlopen(). Therefore, un-
defined symbol errors should be inevitable when an attempt
to refer such symbols is made at runtime, since the dynamic
linker tries to find symbol entries that are not in the dynamic
symbol table. To solve this problem, when compiling shared
objects, a special compiler option should be specified that
allows all symbols, not only used ones, to be added to the
dynamic symbol table. For example, GCC (GNU Compiler
Collection) supports a ”-rdynamic” option for this purpose.

We implemented the prelinking/preloading-based appli-
cation execution environment on a Linux-based embedded
system. The system configuration is shown in Table 1. In
order to augment the existing dynamic linking tool (dlopen)
with the prelinking and preloading, the dynamic linker (ld-

216

CPU Intel PXA Bulverde 270

Caches 32KB L1 data, 32KB L1 instruction
SDRAM 64 MB
NOR flash 64 MB

Linux 2.6.15 kernel
1d-2.3.2.s0 (glibc 2.3.2)

Operating system
Dynamic linker

Table 1: Target embedded system specification

2.8.2.s0) was modified. Our application execution environ-
ment assumes that relocation and symbol resolution process
for prelinked shared libraries can be skipped by the dynamic
linker when loading them with dlopen(). However, in current
implementation of Id-2.3.2.s0, such a mechanism works only
for ELF executables instead of ELF shared objects. There-
fore, we modified the dynamic linker so that it can selectively
skip the process based on whether or not an ELF shared
object is prelinked. Moreover, the dynamic linker was in-
strumented to measure performance metrics using software
timers.

To apply prelinking to the target embedded system, Red
Hat’s prelink [8] was ported to the ARM architecture. We
use it as a cross prelinker. And the preloading launcher was
implemented from scratch in C.

4. EVALUATION AND DISCUSSION

In order to evaluate the performance improvement of our
application execution model based on prelinking and preload-
ing compared to previous application execution models, we
have measured the launching times and total execution times
of a number of benchmark programs. The measurement has
been performed for both fork and exec and fork and dlopen
program execution models explained in Section 3. In this
section, the characteristics of the benchmark programs used
in our experiments and the measurement results with the
analysis are presented.

4.1 Benchmark Applications

We used eleven benchmark programs from three differ-
ent benchmark suites MiBench [6], MediaBench [9], and
GTKPerf [7]. We only choose programs where the number
of used shared libraries is not less than 3. The descriptions
of the benchmark programs are summarized in Table 2. For
each benchmark program, the number of shared libraries
used by each program and the portion of launching time in
the execution time of the program are shown in the fourth
and the last columns, respectively.

4.2 Execution Time

We present the measurements results of the proposed fork
and dlopen application execution model and comparison with
the results from the fork and erec application execution
model. The comparison is performed in terms of launching
time (Section 4.2.1) and total execution time (Section 4.2.2)
in the following.

4.2.1 Launching Time

Table 3 shows the launching times of applications for the
four different application execution models: Base and Prelink
correspond to fork and exec application execution models:
Base corresponds to non-prelinked fork and exec application
execution model while Prelink to prelinked fork and exec

Application [Suite Problem # of dependent | % application’s
shared libraries | launching time
It MiBench Fast fourier transform computation 4 7.35%
gsm.enc MediaBench Rate speech transcoding coder based on the 4 6.28%
gsm.dec European GSM standard (encoder/decoder) 4 10.54%
gtkperf gtkperf.sourceforge.net | Testing platform to run GTK+ widgets 25 2.39%
jpeg.enc MediaBench JPEG encoder/decoder 4 21.89%
jpeg.dec 4 41.92%
lame MiBench MP3 encoder/decoder 5 0.43%
mad 7 19.86%
mpeg2.enc MediaBench MPEG2 video encoder/decoder 3 0.29%
mpeg2.dec 3 1.01%
stringsearch || MiBench String search using a case comparison algorithm 3 64.35%
Table 2: Benchmark applications used
1.1
1.0
o 09
£
= 0.8
(=2}
£ 07
<
206
3
Jos
o
S04
£03
202
0.1
0.0
QX T T QX T T QX TT QX TT QX T T Q T T QX TT QX T T QX TT QX T T QX TT QX T T
sS85 ©£85 ©£E85 ©8£85 ©£8F ©E£E8F 885 885 885 885 =85 ©8=85
DPg> @Pg> MPg> @MPg> @0g> MPg> @Pg> BPg> DPgs @Pg> @MPgs @DPg>
n.&I C"EI D'KI D_EI n_&I &I g_&j: Q_&I Q_&I D'EI D'EI “‘EI
fft gsm.enc gsm.dec gtkperf jpeg.enc jpeg.dec lame mad mpeg2.enc mpeg2.dec stringsearch average

Figure 4: Launching time of the applications with different schemes

model. On the other hand, Preload and Hybrid correspond
to fork and dlopen application execution models: Preload
corresponds to non-prelinked fork and dlopen model while
Hybrid to prelinked fork and dlopen model. In Preload and
Hybrid models, the symbol resolution overheads for shared
libraries are eliminated in advance as in the cases of Prelink
model. Therefore, the difference between Preload and Hybrid
would be the symbol manipulation overheads for application
binary loading. Figure 4 shows the application launching
times normalized to the Base execution model.

In fork and exec model, Prelink reduces the launching time
up to 53 % and 36 % on average compared to Base model.
This launching time reduction is caused by elimination of re-
location time and symbol resolution time at launching phase.

In fork and dlopen model, Preload reduces the launching
time by 42 % on average compared to Base model. This re-
duction is caused by elimination of binary loading overhead
at launching phase. While Preload model performs better
than Base and Prelink models for most of the benchmark
programs, exceptions occur for mpeg2.enc and mpeg2.dec
benchmark programs. The discussion on the reason why the
programs show worse performance in Preload model than in
Prelink model is described in Section 4.3. Hybrid model per-
forms the best since the model combines both prelinking and
preloading at the same time. As a result, Hybrid achieves a

217

71% average reduction in the launching time. In addition,
Hybrid achieves 50% better performance on average than
Preload and this improvement is caused by the elimination
of relocation and symbol manipulation overheads.

4.2.2 Total Execution Time

Figure 5 shows the total execution times of the benchmark
programs; the total execution time includes the launching
time and the running time of each benchmark. Each bar
shows the total execution time where the portion of the
launching time is separately shown. Since the main ob-
jective of our application execution model is to reduce the
launching time of each application, the total execution time
reduction of each benchmark program is highly dependent
upon the portion of the launching time in the total execution
time (e.g., jpeg.enc, jpeg.dec, mad, and stringsearch).
As shown in the figure, the running time portion of each
application is little affected. The possibility to further re-
duce the running time of each application through fork and
dlopen model is two fold; (1) relocation and symbol reso-
lution caused by lazy binding [10] and (2) relocation, sym-
bol resolution, and binary loading caused by dlopen() calls
while an application is running. Unfortunately, even if it
is possible, the time portion in the running time is quite
small. That’s why the running time is not reduced for almost
all application. Especially for gtkperf, Prelink, Preload,

|| Application || Base | Prelink | Preload | Hybrid || Application ||

Base | Prelink | Preload | Hybrid ||

il 23582 | 15893 12122 5841 || gsm.enc 23584 | 15036 14517 8250
gsm.dec 23685 | 15838 14726 8453 || gtkperf 130187 | 60114 22319 | 10444
jpeg.enc 23133 | 15322 13687 8107 || jpeg.dec 23942 | 15435 13306 8469
lame 28632 | 19047 13491 8030 || mad 34720 | 22499 18059 9417
mpeg2.enc 20673 | 13854 17198 6130 || mpeg2.dec 21278 | 13243 17083 6590
stringsearch || 20318 | 13651 13527 5720 || average 33973 | 19994 15458 7768
Table 3: Launching time of applications (absolute values)

11 O Launching M Running

1.0

0.9

0.8

0.7

0.6

0.5

0.4
0.3
0.2

Normalized Total Execution Time

il |
0.0 N O O | I..- - - . I. | | II-
VX T T QX T T QX TTO VX TO QX T T o VX TTO Q T T VX TTO VX T T Q o QX TTO
BES5S LSS5 RBES5 BES5 RESE 5 BS85 BESE BSS5 B85 BESE RLBS
MPg> BWPF> VPG> DPF> BOg> > MQPg> BPGg> @MPG> RPg> @ > 005>
o_a-_I n_a—_I n_a—_I a_g.—_I n_&I I Q_A-_I EI a_a—_I a_é—_:l: I o_a—_I
fft gsm.enc gsm.dec gtkperf jpeg.enc jpeg.dec lame mad mpeg2.enc mpeg2.dec stringsearch average

Figure 5: Total execution time of the applications with different schemes

and Hybrid reduce the running time by 3.27%, 3.31%, and,
3.75%, respectively. This is due to the characteristic of
gtkperf which loads a number of shared libraries (1858)
using dlopen() at runtime.

On average, Prelink, Preload, and Hybrid reduce the total
execution time by 6.1%, 6.2%, and 11.3%, respectively. That
results mainly from reduced launching time.

4.3 Relocation Counts

The performance improvement by prelinking and preload-
ing would be tightly correlated with the relocation counts
of the applications during their launching and running. Fig-
ure 6 shows the relocation counts of the benchmark pro-
grams for the four application execution models. The re-
location counts are shown normalized to Base model. The
white portion of the relocation counts corresponds to those
performed at application launching phase while the black
portion to the relocation counts at running phase. The fig-
ure shows that the relocation count of Prelink model is zero
for almost all applications except for gtkperf. This is due
to the runtime characteristic of gtkperf that loads shared
libraries whose dependency information does not exist in the
dynamic section of its executable file; prelinking works only
for the shared libraries found in DT_NEED entries in the
dynamic section of ELF binaries (see Section 3.2).

Preload reduces the relocation counts significantly for all
the applications compared to Base model. The difference of
the relocation counts reduction between Preload and Prelink
is due to the relocation and symbol resolution overheads of
the application itself since Preload does not use prelinked
binary image for the application itself. The resultant relo-
cation counts reduction of Preload model reaches 59 % on
average. The actual relocation and symbol binding of the

application image is typically performed at running phase
through lazy binding [10]. Eliminating such run-time relo-
cation and symbol binding overheads could be possible by
combining Prelink model and Preload model. Preload model
shows exceptionally poor performance for mpeg2.enc and
mpeg2.dec benchmark programs in the aspect of relocation
counts. The relocation counts for those benchmark pro-
grams are even quite larger than the relocation counts in
Base models.

In mpeg2.enc and mpeg2.dec, there are especially many
global symbols. Recall that the application itself is changed
to a shared object in Preload model to use fork and dlopen
model, that is, the application shared object is also position-
independent code (PIC) [10] like the shared libraries it de-
pend on. Thus the global symbols used in the application
shared object cannot be resolved before runtime, since their
real addresses are not determined until the dynamic linker
maps them. Therefore, additional relocations and symbol
resolutions could occur. Such additional relocation counts
are presented in the figure and reach up to 37 %. In other
words, the additional relocation counts for mpeg2.enc and
mpeg2.dec benchmark programs at running phase are due
to lazy binding of the procedure addresses used in the ap-
plication while the additional relocation counts at launching
phase are due to the the other global symbol resolutions; the
global symbols would be mostly data used during encoding
and decoding algorithms. The combination of prelinking
and preloading could eliminate the additional symbol res-
olution overheads since the prelinking solves the run-time
global symbol resolution problem. Hybrid model eliminates
such relocation overheads as shown in Figure 6. Hybrid has
just one relocation for main() in all applications and all
other relocations are handled by prelinking.

218

O Launching

M Running

Normalized Relocation Counts

Base |
Prelink
Base
Prelink
Base
Prelink
Base |
Prelink
Base [
Prelink

3 Preload [N
Preload [T

Hybrid |
Preload
Hybrid |
Preload
Hybrid ||
Hybrid |

gsm.dec gtkperf jpeg.enc

Figure 6: Relocation count of the applications

4.4 Preloading Time

Final evaluation for our application execution model is to
compare preloading times between Preload model and Hy-
brid model. This experiment is to see the impact of the
prelinking on the preloading time of shared libraries. Since
Hybrid model uses prelinked binary, the preloading over-
head is much less than the overhead in Preload model. The
preloading time improvement is significant as the number of
shared libraries needed to be loaded increases. Therefore,
it is meaningful to see how much improvement in preload-
ing time is achieved as the number of shared libraries to
be loaded increases. To obtain the results on the preload-
ing time improvement effect by prelinking, we evaluate the
preloading time when the number of the shared libraries is
varied from 10 to 100. Figure 7 compares the preloading time
for the Preload and Hybrid models, normalized to the Preload
model. The x-axis represents the number of the shared li-
braries loaded into the launcher. The figure shows that the
impact of the preloading time reduction due to Hybrid be-
comes increasingly significant (28-71%), as the number of
the shared libraries increases.

4.5 Repeated Execution

@ Base M Preload

11
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Normalized
Launcher's Running Time

RERRRRD

2 3 4 5 6 7 8 9
Number of Repeated Executions

0.0

Figure 8: Repeated execution effects

The impact of preloading on the application launching
time improvement would be increased significantly when an
application is launched repeatedly in a system. Normally, in
consumer electronics embedded systems, some applications
are very frequently executed and thus the launching and run-
ning phases performance of the applications affect the over-
all system performance significantly. In order to quantify
the impact of preloading on the application launching time
improvement in repeated executions of a single application,

Preload [N

Hybrid |

jpeg.dec

219

Base |
Prelink
Base
Prelink
Base
Prelink
Base
Prelink
Base
Prelink
Base
Prelink

Preload [l

Preload [H
Hybrid |
Preload
Hybrid |
Preload
Hybrid |
Preload |
Hybrid |
Hybrid |
Preload
Hybrid

N
a

lame mad mpeg2.enc mpeg2.dec stringsearch average

with different schemes.

we compare the execution time of stringsearch benchmark
program between Base and Preload models in repeated exe-
cutions. The figure shows that the increase of the repeated
execution times causes a larger time difference between the
two models. This reveals that the performance improve-
ment in launching times of applications would increase sig-
nificantly as the numbers of executions of the applications
increase.

S. CONCLUSION

We have presented a new application execution model for
general purpose OS-based embedded systems based on pre-
linking and preloading to reduce the launching times of ap-
plications. The proposed application execution model fol-
lows fork and dlopen instead of fork and exec model. The
application execution model is implemented on an embedded
system running Linux by modifying the existing dynamic
linker.

The application execution model is categorized into four
different configurations depending on the techniques used:
Base for non-prelinked binary execution model for fork and
ezec model, Prelink for prelinked binary execution model for
fork and exec model, Preload for non-prelinked binary exe-
cution model for fork and dlopen model, and Hybrid for pre-
linked binary execution model for fork and dlopen model.
Performance comparison results for the four configurations
show that Hybrid execution model improves application launch-
ing times up to 71 %, relocation counts reduction up to 91
%, and total execution times improvement of applications
up to 11.3 %.

The results indicate that the application execution model
using prelinking and preloading would be appropriate for
consumer electronics embedded systems where predetermined
set of shared libraries are commonly used, centralized appli-
cation launcher controls launching and termination of appli-
cations, and the system rarely reboots.

6. REFERENCES
[1] L. Colitti. Analyzing and improving GNOME startup
time. In Proc. of the 5th System Administration and
Network Engineering Conference, Delft, The
Netherlands, May 2006.
[2] C. Collberg, J. H. Hartman, S. Babu, and S. K.
Udupa. Slinky: Static Linking Reloaded. In Proc. of

@ Preload W Hybrid

Normalized Preloading Time

COOCO00O0CO00O00 =
oRrNwhUoaoNwLO R

10 20 30 40 50 60 70 80 a0 100
Number of shared libraries

Figure 7: Preloading time comparison of the original preloading and our application execution environment

the USENIX Annual Technical Conference, Anaheim, [9] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
CA, 2005. MediaBench: A Tool for Evaluating and Synthesizing

[3] L. Deller and G. Heiser. Linking Programs in a Single Multimedia and Communications Systems. In
Address Space. In Proc. of the 1999 USENIX Proceedings of the 30th International Symposium on
Technical Conference, Monterey, CA, 1999. Microarchitecture, December 1997.

[4] N. ERTOS. Iguana project, 2006. avaialable at [10] J. R. Levine. Linkers and Loaders. Morgan-Kaufmann,
http://www.ertos.nicta.com.au/software/kenge/iguana- 1999.
project/latest/. [11] M. N. Nelson and G. Hamilton. High Performance

[5] J. V. S. R. J. L. Gernot Heiser, Kevin Elphinstone. Dynamic Linking Through Caching. In Proc. of the
The Mungi Single-Address-Space Operating System. USENIX Summer 1993 Technical Conference,
Software: Practices and Ezperiences, 28(9), 1998. Cincinnati, OH, 1993.

[6] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. [12] T. Roscoe. The Structure of a Multi-Service
Austin, T. Mudge, and R. B. Brown. MiBench: A Operating System. Technical report, University of
Free, Commercially Representative Embedded Cambridge Computer Laboratory, 1995. TR-376.
Benchmark Suite. In Proceedings of the 4th Annual [13] Trolltech. Developing Graphical System for Embedded
Workshop on Workload Characterization, December Linux, 2006. available at
1998. http://www.freescale.com/files/abstract /overview/

[7] http://gtkperf.sourceforge.net. Benchmarking Tools FTF2006_PC202.pdf.

Designed to Test GTK+ Performance. 2005.

J. Jelinek. Prelink. Technical report, Red Hat, Inc.,
2004. available at
http://people.redhat.com/jakub/prelink.pdf.

8

220

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

