
Grand Challenges in Embedded Software

Christoph M. Kirsch
University of Salzburg

ck@cs.uni-salzburg.at

Reinhard Wilhelm
Saarland University

wilhelm@cs.uni-sb.de

ABSTRACT
This is an introduction to the EMSOFT 2007 Panel on
Grand Challenges in Embedded Software.

Categories and Subject Descriptors
C.3 [Real-time and embedded systems]

General Terms
Design, Performance, Reliability, Verification

Keywords
Embedded software, challenges, performance, scheduling, ver-
ification, analysis, design

Introduction
What are the grand challenges that the embedded software
community is facing? The statistics of the submissions to
EMSOFT 2007 reveal that embedded software is increas-
ingly recognized as a key factor in embedded systems en-
gineering yet the numbers only provide an unsatisfactory,
deeper insight. Leading in the number of submissions are
the usual suspects: Scheduling, Analysis and Verification,
Synchronous Languages, Software Engineering, Performance
Analysis, Model-Based Design, and Models of Computation.
The only outlier, ranging just behind Software Engineering,
is Systems Software for Flash Memory. This one we could
consider a peculiarity of the recent history of EMSOFT, i.e.,
the fact that EMSOFT 2006 took place in Seoul, and that
the South Korean industry is dominating the Flash market.

However, academic researcher’s favorite topics seem to
trail far behind, e.g. Component-based Design, Predictabil-
ity, and Mobility. This raises several questions:

• Do we address the right issues?

• How do we know what the right issues are?

• How do we discover newly emerging grand challenges?

• Where do they originate after all?

Looking back, we can at least try to answer the last ques-
tion. What were the origins of grand challenges that we have
already addressed and partially solved?

Copyright is held by the author/owner(s).
EMSOFT’07, October 1–October 3, 2007, Salzburg, Austria.
ACM 978-1-59593-825-1/07/0009.

• New applications, e.g. multimedia, mobile devices,

• Technological developments, ever higher integration
causing energy problems,

• “Advances” in computer architecture, e.g. high-perfor-
mance processors using caches, pipelines, and specula-
tion, as well as in system architecture, e.g. Integrated
Modular Avionics, AUTOSAR,

• Pressure of development and maintenance costs lead-
ing to component-based and object-oriented designs,

• Safety requirements of many embedded systems lead-
ing to reactive languages and model-based design.

The EMSOFT 2007 Panel on Grand Challenges in Embed-
ded Software provides a forum for discussing these questions
among the panelists and the embedded software community.
For more details on the panel see also the following position
statements.

Lothar Thiele
Department Information Technology and Electrical
Engineering, Computer Engineering and Networks
Lab, ETH Zürich, Switzerland
thiele@tik.ee.ethz.ch

Based on the characterization

Embedded systems =
computation + communication + resource interaction

and the necessity to combine the computational and physical
view of embedded software, the following challenges emerge:

Challenge 1 Component models whose interfaces talk
about extra-functional properties like time, energy and
resource interaction.

Challenge 2 Design methods that lead to timing-predic-
table and efficient embedded systems.

Challenge 3 Design methods that lead to dependable
large-scale distributed embedded systems with wire-
less communication.

Challenge 4 Models of computation that talk about re-
sources and mobility.

Challenge 5 Design and optimization methods that lead
to small and extremely resource-constrained embedded
systems.

2

Edward A. Lee
Department of EECS, University of California, Berke-
ley, Berkeley, CA 94720, USA
eal@eecs.berkeley.edu

Abstractions currently used in computing hide timing prop-
erties of software. As a consequence, computer scientists
have developed techniques that deliver improved average-
case performance and/or design convenience at the expense
of timing predictability. For embedded software, which in-
teracts closely with physical processes, timing is usually an
essential property. Lack of timing in the core abstractions
results is brittle and non-portable designs. Moreover, as
embedded software becomes more networked, the prevailing
empirical test-based approach to achieving real-time com-
puting becomes inadequate.

I believe it is necessary to reintroduce timing predictabil-
ity as a first-class property of embedded processor architec-
tures. Architectures currently strive for superior average-
case performance that regrettably ignores predictability and
repeatability of timing properties. “Correct” execution of a
C program has nothing to do with how long it takes to per-
form any particular action. C says nothing about timing,
so timing is not considered part of correctness. Architec-
tures have developed deep pipelines with speculative exe-
cution and dynamic dispatch. Memory architectures have
developed multi-level caches and TLBs. The performance
criterion is simple: faster (on average) is better.

The biggest consequences have been in embedded comput-
ing. Avionics offers an extreme example: in“fly by wire” air-
craft, where software interprets pilot commands and trans-
ports them to actuators through networks, certification of
the software is extremely expensive. Regrettably, it is not
the software that is certified but the entire system. If a man-
ufacturer expects to produce a plane for 50 years, it needs
a 50-year stockpile of fly-by-wire components that are all
made from the same mask set on the same production line.
Even a slight change or “improvement” might affect timing
and require the software to be re-certified. All users of em-
bedded software face less extreme versions of this problem.
Upgrading an engine controller in a car to a newer micro-
processor, for example, often requires substantial redesign
of the software and thorough retesting. Even “bug fixes” in
the software can be extremely risky, since they can change
timing behavior.

Designers have traditionally covered these failures by find-
ing worst case execution time (WCET) bounds and using
real-time operating systems (RTOS’s). But these require
substantial margins for reliability, and ultimately reliability
is (weakly) determined by bench testing of the complete im-
plementation. Moreover, WCET has become an increasingly
problematic fiction as processor architectures develop ever
more elaborate techniques for dealing stochastically with
deep pipelines, memory hierarchy, and parallelism.

The reader may object that there are no true “guaran-
tees” in life, so the correct solution should be to accept tim-
ing variability and to build in robustness. However, syn-
chronous digital hardware—the technology on which most
computers are built—can deliver astonishingly precise tim-
ing behavior with reliability that is unprecedented in any
other human-engineered mechanism. Software abstractions,
however, discard several orders of magnitude of precision.
Compare the nanosecond-scale precision with which hard-

ware can raise an interrupt request to the millisecond-level
precision with which software threads can respond.

To fully exploit such timing predictability would require
a significant redesign of much of computing technology, in-
cluding operating systems, programming languages, compil-
ers, and networks. I believe we must start by creating a
new generation of processors whose temporal behavior is as
easily controlled as their logical function. We call them pre-
cision timed (PRET) machines [1]. Our basic argument is
that real-time systems, in which temporal behavior is as im-
portant as logical function, are an important and growing
application; processor architecture needs to follow suit.

Of course, timing precision is easy to achieve if you are
willing to forgo performance; the engineering challenge in
PRET machines is to deliver both precision and perfor-
mance. In [1], we argue that the problem should be first
tackled from the hardware design perspective, developing
precision timed (PRET) machines as soft cores on FPGAs.
The near term goal would be that software on PRET ma-
chines be integrated with what would traditionally have
been purely hardware designs. This provides a starting
point for a decades-long revolution that will make timing
predictability an essential feature of computing.

References
[1] S. A. Edwards and E. A. Lee. The case for the precision

timed (PRET) machine. In Design Automation Confer-
ence (DAC), San Diego, CA, 2007.

Gernot Heiser
NICTA and University of New South Wales and Open
Kernel Labs, Sydney, Australia
gernot@nicta.com.au

One of the greatest challenges facing modern embedded sys-
tems results from the complexity of their software. Conver-
gence is leading to dramatic increase of functionality offered
by a single device, which results in a continued growth of em-
bedded software. Consumer devices, such as mobile phones,
already run software that measures upwards of 5,000,000
lines of code.

This complexity is impacting the reliability, safety and
security of embedded devices. Even well-engineered code is
expected to contain in the order of one bug per thousand
lines of code (and most embedded software is not that well
engineered), and the defect density in many cases grows with
the size of the overall code base. For the foreseeable future,
embedded systems will therefore have to live with thousands
or tens of thousands of bugs.

At the same time, embedded systems are increasingly used
in contexts where they are security critical (e.g. financial
transactions via mobile phones), safety critical (e.g. x-by-
wire) or mission critical (e.g. business communication infras-
tructure). This means that the cost of failure of embedded
devices is becoming unbearably high. In other words, the ef-
fects of the inevitable software faults must be contained, so
that the device can recover from them, and continue operat-
ing correctly (although possibly with temporarily impaired
functionality).

While this is primarily a software-engineering challenge,
we argue that it cannot be met without advanced operating-
systems technology.

3

The modern way of managing software complexity is by
componentisation. A software system is de-composed into
small units which communicate via small interfaces. If those
interfaces can be guaranteed, meaning that we can ensure
that no inter-component interaction happens except via a
declared interface, the implementation details are hidden
inside the component. More importantly, the effects of a
(faulty) component misbehaving can be limited — for ex-
ample, the component cannot damage any data other than
its own. Alternatively, if a component is small enough, it
becomes possible to prove the correctness of its implemen-
tation.

Component interfaces can be guaranteed either by lan-
guage means or by hardware. The former requires that all
components are implemented in a type-safe language. This
is, in general, unfeasible for embedded systems, which typi-
cally contain large amounts of code written in non-typesafe
languages such as C, C++ and assembler. Furthermore,
the run-time systems of type-safe languages are themselves
large and must be expected to contain many bugs, which
undermines the language approach to componentisation.

The alternative, hardware-enforced component boundaries,
works for any language, but imposes strong requirements on
the operating system that manages the hardware mecha-
nisms. Specifically, we need:

1. an extremely reliable operating-system substrate, as
the encapsulation of components can be only as reli-
able as the OS itself;

2. a lightweight yet highly flexible component technology
that supports the construction of large and complex,
yet well-performing software systems that possess the
necessary fault-tolerance properties;

3. the ability to ensure non-functional properties of the
system, such as timeliness and energy budgets.

The first requirement implies that the operating system is
based on a minimal kernel that is small enough to make a
formal correctness proof tractable. Such a microkernel must
be general enough to support the construction of arbitrary
systems on top, and must be able to support arbitrary re-
source management and security policies, while providing
low-overhead cross-component communication.

The second requirement is for a carefully-designed software-
engineering framework that leverages the operating-system
mechanisms to support highly-reliable systems that can de-
tect and recover internal faults, and support formal reason-
ing about its operation at the system level. In particular, it
should be possible to prove correctness of components indi-
vidually, and prove properties of the system based on formal
models of the components.

The third requirements implies that the operating system
is fully analysed for its worst-case time and energy consump-
tion, and that it is possible to analyse the timing and energy
use of the componentised software system.

The above set of requirements provide a formidable re-
search challenge. Meeting this challenge requires a con-
certed cross-disciplinary approach combining operating sys-
tems, software-engineering and formal methods research[1].

References
[1] G. Heiser, K. Elphinstone, I. Kuz, G. Klein, and S. M.

Petters. Towards trustworthy computing systems: Tak-

ing microkernels to the next level. ACM SIGOPS Oper-
ating Systems Review, 41(3), July 2007.

Joseph Sifakis
Verimag, 2 Avenue de Vignate, centre Equation,
GIERES, France
Joseph.Sifakis@imag.fr

Embedded software design is part of embedded system de-
sign, which by its very nature, requires a deep and coher-
ent integration of competencies in software, hardware, and
controller design. The scientific challenge is in setting up
embedded systems as a new discipline, which systemati-
cally and even-handedly marries computation and physical-
ity, performance and robustness. Our aim is not to discuss
this grand challenge presented in detail in [1], but rather
to identify missing pieces for applying the formal methods
paradigm to embedded systems design. Formal methods, in
particular formal verification, have been successfully applied
to hardware design, and more recently, to software design.
To what extent is it possible to adapt existing methods and
tools to embedded systems?

Design is the process of deriving a system that meets given
requirements. Correctness can be demonstrated using for-
mal models meeting the requirements and representing a
design at some level of abstraction. For some classes of sys-
tems, it is possible to derive a design from a model which
by-construction meets the requirements (e.g. hardware syn-
thesis). For others, a design is obtained as the result of a a
creative process using existing algorithms and principles for
organizing computation, pre-defined functions, data, com-
ponents, etc. In this case, correctness may be established
by a posteriori verification, to show that a model, which
is an adequate abstraction of the design, meets the given
requirements.

There are two non-trivial obstacles to transposing the for-
mal methods paradigm to embedded systems.

Faithful modeling: Contrary to pure software or hard-
ware, for a given embedded system, we do not know how to
derive a model that faithfully represents its behavior at the
proper level of abstraction. Embedded systems are heteroge-
neous. They are composed of a large variety of components,
each having different characteristics, from a large variety of
viewpoints, each highlighting different dimensions of a sys-
tem.

We need models representing systems at varying degrees
of detail and interrelated in an abstraction hierarchy. A
key abstraction would relate application software to its im-
plementation on a given platform. Another cause of hetero-
geneity in abstractions, is the use of different viewpoints e.g.
combining computational and analytical models or different
extra-functional dimensions such as timing and power con-
sumption. At each level of abstraction, two main sources
of heterogeneity may exist. a) Components may be fully
synchronized, or asynchronous. Currently, we do not know
how to consistently integrate synchronous and asynchronous
models. b) There is a large variety of dispersed mechanisms
used for coordinating interaction between components, in-
cluding semaphores, monitors, message passing, remote call,
protocols etc.

We need a unified composition framework for heteroge-
neous components. Such a framework should allow system
designers to formulate their solutions in terms of tangible,

4

well-founded and organized concepts. It should consider ar-
chitectures as first-class entities, having their own proper-
ties, that can be studied independently of their components’
behavior.

Achieving correctness: Current verification techniques
focus mainly on invariance properties by analysis of abstrac-
tions. Embedded systems are concurrent, and their correct-
ness is characterized by other classes of properties not pre-
served by abstractions. This is typically the case for progress
properties or time-dependent properties. For instance, we do
not have abstractions preserving even simple progress prop-
erties such as deadlock-freedom.

Furthermore, existing verification techniques work on flat-
tened global models, whereas for embedded systems, extra-
functional properties depend on architectural features. For
all these reasons, we believe that a posteriori verification
by itself is not sufficient for achieving correctness. As dis-
cussed in [1], emphasis should be put on results allowing
correctness-by-construction in two complementary directions:
a) Develop reference architectures guaranteeing generic prop-
erties by-construction such as security, robustness, diagnos-
ability, adaptivity. b) Develop results allowing interference-
free composition of different architectural solutions. Such
results are essential for guaranteeing the stability of proper-
ties of integrated components, and are necessary for building
reconfigurable systems.

References
[1] T. A. Henzinger and J. Sifakis. The Embedded Systems

Design Challenge. In Formal Methods 06, LNCS 4085,
pages 1–15, 2006.

Jaejin Lee
School of Computer Science and Engineering, Seoul
National University, Seoul, 151-744, Korea
jlee@cse.snu.ac.kr

In the last few years, we have seen heightened interest in the
field of mobile devices and consumer electronics equipments,
such as smartphones, PDAs, high definition TVs, gaming
stations, set-top boxes, etc. Moreover, we have seen land-
mark developments to strengthen and broaden the scope of
the embedded systems to those areas.

One difficulty in developing embedded software is that the
software development environment is largely different from
that of the enterprise and desktop computing software. In
the enterprise and desktop computing, software developers
work on the existing hardware/software platforms, for which
their product will be finally released. However, in the case
of embedded software, the hardware platform is often still
under development in parallel with the embedded software
due to the pressure of speeding time to market.

On the other hand, demands for computing power and
power efficiency in embedded applications have been con-
tinuously increased. For example, current video workloads
in mobile devices and consumer electronics equipments re-
quire much more computing power and power efficiency than
those of a few years ago.

Since the performance and power efficiency of the conven-
tional high performance embedded processors may not easily
satisfy those demands, multi/many-core embedded proces-
sors soon will replace the conventional embedded processors.
The number of cores in a single chip is expected to grow

exponentially, according to the Moore’s law. Furthermore,
the multicore embedded processor architecture will show up
in all sorts of forms including architectures with symmetric
multicores, distributed memory multicores, heterogeneous
multicores, etc. with various interconnect architectures and
memory hierarchies. For example, the Cell Broadband En-
gine is one of them.

While the multicore approach may satisfy those demands,
its software development cycle becomes much more com-
plex than before. The muticore architecture forces the soft-
ware developers to write parallel programs explicitly. We
arguably believe that the degrees of difficulty in program-
ming and debugging are almost equal in enterprise and desk-
top computing. However, this is not true for multicore em-
bedded systems because the underlying complexities in the
parallel execution of the software are exposed to the pro-
grammer during debugging period. Moreover, performance
debugging plays a key role in this case. Consequently, em-
bedded software development becomes even more difficult
than before.

Among others, to facilitate the development of software
for embedded multicores, we address two challenging issues
associated with the ease of programming and debugging in
this position statement. One challenge is providing embed-
ded software developers with an easy and practical program-
ming model for embedded multicores. Currently, most of the
software implementations for multicore embedded systems
(typically with heterogeneous dual cores: RISC and DSP)
are based on the traditional programming model, in which a
control processor and a compute coprocessor communicates
with each other through some specialized communication
channels or shared memory. This may not work for the near
future multicore architectures where cores are more tightly
coupled and interconnect architectures are more complicated
in order to meet the performance demand.

The solutions to this challenge could be derived in the
form of automatic parallelization based on sequential seman-
tics (possibly with some user hints), a software run-time en-
vironment that hides the underlying architecture details yet
without loosing performance, a new (possibly parallel) pro-
gramming language and libraries, or a hybrid of them. For
example, a software distributed shared memory for the Cell
Broadband Engine is one of the software run-time environ-
ments that hide complicated cache coherence and memory
consistency issues from the programmer.

The other challenge is building a fast virtual prototyping
system for multicore embedded software. In the last few
years, embedded system developers have exploited instruc-
tion level simulators to prototype and debug embedded soft-
ware in addition to using them to explore design spaces.

A successful virtual prototyping system for multicore em-
bedded software requires full-fledged whole system simula-
tion technologies. It should be capable of performing cycle-
accurate simulations of the multicore architecture, operat-
ing system, and peripherals to facilitate performance debug-
ging. It should be fast enough to reduce time spent on each
edit-test-debug cycle in the embedded software development
process. Furthermore, it should be capable of detecting and
reporting bugs caused by parallel execution and synchro-
nization. We do not believe that such capabilities come in
handy in the currently existing virtual prototyping systems
for embedded software.

5

The solutions to the two challenges addressed in this state-
ment will synergistically facilitate the software development
process for embedded multicores.

Gilbert Edelin
Research Group on Information Science and Technolo-
gies, THALES Research and Technologies,Palaiseau,
France
Gilbert.Edelin@thalesgroup.com

Embedded applications are extremely diverse: from infor-
mation systems to aerospace on board navigation systems,
or systems on chips. In addition to common scientific chal-
lenges [1], this raises a lot of practical challenges in defining
the research directions, in selecting and exploiting the best
of class solutions. At the Group level one can mention eg

• Applicability of new software Engineering and archi-
tecting solutions to a specific domain: specific prop-
erties (Critical real-time constraints, performance, de-
pendability, etc) suitability/efficiency of standard solu-
tions: theoretic issues (languages, semantic gaps, com-
putational models, composability,etc), cost effective-
ness.

• Addressing legacy to preserve the software investment
while implementing new generations of tools

• Validate the maturity of the technologies,

• Develop training and cultural changes: embedded soft-
ware is a new discipline which should result in impor-
tant improvements in computer science curricula

• Measure the ROI (return on investment) before ensur-
ing a large scale deployment

Key trends in hard real-time and highly constrained Sys-
tems from a THALES perspective have been recently sum-
marized this way [2] in the Aerospace field: growing au-
tomation, increased real-time media/interaction demanding
Quality of Service (video, positioning, etc.), increasing need
to process more info while preserving response time, con-
tinued limited resources (communications, processing, etc.),
increased cooperation between systems, evolution during life
cycle, extensive safety constraints, increased vulnerability
(due to complexity and openness) along with a growing re-
quest for security etc.

This means systems harder and harder to engineer and
design to manage response quality in an uncertain world:
the platforms themselves, when only inspired by IT solu-
tions (servers), are hugely increasing the difficulty. Moreover
these systems must sustain lifecycles as long as 50 years or
more [3].

In the context of these types of Embedded Systems, from
a user perspective, essential examples of challenges appear
to be found in eg:

• Combining functional and non functional properties: a
standard top down design flow is not suitable here but
a Y chart coupling software engineering and hardware
engineering techniques and giving to the programmer
a exploitable view of the complexity at the execution
level should give better results

• For ensuring long lifecycle stability of the application,
providing a stable reference model completed by for-
mally proved transformation techniques: software syn-
thesis, co-design, use of higher reference levels than
source code, libraries are likely to be improved. Engi-
neering for uncertainty to find the best compromise/
optimum should result in weaving and reconciling all
models in a proven solution

• Breakthroughs in performance and timing predictabil-
ity are also expected: they could come from new com-
position techniques for non functional properties

• New platforms for computational intensive applications:
parallel, with a new programming model, less RT un-
certainties and more robustness to failures, with their
related programming tools and formalisms (beyond C)
should take part to the solution.

• Breakthroughs in productivity with model driven tech-
niques providing quality and composability (even for
non functional properties), but also analysis and sim-
ulation tools which are essential to the massive ex-
tension of these component oriented techniques in the
engineering of Embedded Systems. This means also
a dramatic reduction in verification and certification
lead-times. This covers bugs and moreover timing
properties correctness. Incremental certification is also
a track for improvement.

The goal of a large Company involved mainly in mission
critical systems is not specifically to develop tools but we
need a diversified offer for the thousands of software design-
ers and developers. But with an industry of editors very
fragmented and unstable [3], the industrial challenge of pro-
viding state of the art, stable, low cost and sustainable so-
lutions is high, so internal development and investment in
research is necessary. This is also required to handle the
difficult and long lasting insertion between best in class sci-
entifically proved solutions and their suitability in the indus-
trial context: the operational transition (scale factor, legacy
issues, curricula of the software engineers, training, etc. are
huge obstacles to the rapid diffusion in large industrial com-
panies.

References
[1] T. A. Henzinger and J. Sifakis. The Embedded Systems

Design Challenge. In Formal Methods 06, LNCS 4085,
pages 1–15, 2006.

[2] J.L. Voirin. Some future challenges in hard real-time and
highly constrained systems. Artemis annual conference,
Berlin, 4-5 June 2007.

[3] S. Robert. New trends and needs for avionics systems.
Artemis annual conference, Berlin, 4-5 June 2007.

6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

