Influence of Different System Abstractions on the
Performance Analysis of Distributed Real-Time Systems

Simon Perathoner ', Ernesto Wandeler *, Lothar Thiele *
Arne Hamann 2, Simon Schliecker 2, Rafik Henia 2, Razvan Racu 2, Rolf Ernst 2
Michael Gonzalez Harbour *
! Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland
2 |Institute of Computer and Communication Network Engineering, TU Braunschweig, Germany
3 Grupo de Computadores y Tiempo Real, Universidad de Cantabria, Santander, Spain

ABSTRACT

System level performance analysis plays a fundamental role
in the design process of real-time embedded systems. Several
different approaches have been presented so far to address
the problem of accurate performance analysis of distributed
embedded systems in early design stages. The existing for-
mal analysis methods are based on essentially different con-
cepts of abstraction. However, the influence of these differ-
ent models on the accuracy of the system analysis is widely
unknown, as a direct comparison of performance analysis
methods has not been considered so far. We define a set of
benchmarks aimed at the evaluation of performance analysis
techniques for distributed systems. We apply different anal-
ysis methods to the benchmarks and compare the results
obtained in terms of accuracy and analysis times, highlight-
ing the specific effects of the various abstractions. We also
point out several pitfalls for the analysis accuracy of single
approaches and investigate the reasons for pessimistic per-
formance predictions.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and Embedded
Systems; C.4 [Computer Systems Organization|: Per-
formance of Systems—Modeling techniques

General Terms

Performance, Design, Verification

Keywords

Performance Analysis, System Abstraction, Benchmarking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EMSOFT’07, September 30—October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009 ...$5.00.

193

1. INTRODUCTION

One of the major challenges in the design process of real-
time embedded systems is to accurately predict performance
characteristics of the final system implementation in early
design stages. Reliable predictions on end-to-end delays of
events, memory demands and resource usages are essential
to guarantee that the designed system meets all given perfor-
mance requirements before time and resources are invested
for the actual implementation of the system. In addition, an
accurate and fast performance analysis is necessary to drive
the design space exploration and thus support important
design decisions.

The system level performance analysis of modern em-
bedded systems is generally a difficult task as the archi-
tectures are increasingly heterogeneous, parallel and dis-
tributed. Complex input event streams, resource sharing,
interferences among tasks and independent scheduling de-
cisions of the distributed computing and communication
nodes make the analysis process challenging even for ap-
parently simple systems.

The need for reliable and accurate performance predic-
tions in early design stages as well as the mentioned chal-
lenges of the analysis have driven research for many years.
Most of the approaches for performance analysis proposed
so far can broadly be divided into the two main classes of
analytic techniques and simulation based methods. There
are also stochastic methods for performance analysis which
we will however not consider in this context. The main
advantage of simulation is the large modelling scope, as var-
ious dynamic and complex interactions can be taken into
account. However, most simulation based performance es-
timation methods suffer from insufficient corner case cover-
age. To determine guaranteed performance limits, analytic
methods must be adopted. These methods provide hard per-
formance bounds, but they are typically not able to model
complex interactions and state-dependent behavior, which
can lead to pessimistic (but still correct) analysis results.

Several models and methods for formal performance anal-
ysis have been presented so far; they are based on essen-
tially different abstraction concepts. The first idea was to
extend well-known results of the classical scheduling theory
to distributed systems. This implies the consideration of
the delays caused by the use of shared communication re-
sources, which cannot be neglected. This combined analysis
of processor and bus scheduling is often referred to as holistic
scheduling analysis. The first approach in this direction was

made by Tindell and Clark in [20] where the authors combine
fixed priority (FP) preemptive scheduling on the processing
resources of a distributed system with time division multiple
access (TDMA) scheduling on the interconnecting commu-
nication bus. In [22] Yen and Wolf presented an analysis
approach for distributed systems that considers data depen-
dencies and in [14] Pop et al. took into account also control
dependencies. Later several holistic analysis techniques for
various other combinations of input event models, resource
sharing policies and communication arbitration have been
investigated, see e.g. [15].

A more general approach to extend the concepts of classi-
cal scheduling theory to heterogeneous distributed systems
was presented by Richter et al. in [17]. In contrast to holistic
methods that extend classical scheduling analysis to special
classes of distributed systems, this approach applies existing
analysis techniques in a modular manner: the single mod-
ules of a distributed system are analyzed with classical al-
gorithms and the local results are propagated among the
system through appropriate interfaces relying on a limited
set of event stream models. Several extensions of this per-
formance analysis framework have been worked out [6].

A completely different modular performance analysis ap-
proach that does not rely on classical scheduling theory was
presented by Thiele et al. in [19]. The method uses Real-
Time Calculus which extends the basic concepts of Network
Calculus [7] to analyze the flow of event streams through a
network of computation and communication resources. This
method is not restricted to a few classes of input event mod-
els, but can model any event stream using the abstraction
of arrival curves. A similar abstraction, the so-called service
curves, permit to model any availability of computation or
communication resources. Also for this approach various
extensions have been presented [21].

While the previously mentioned formal performance anal-
ysis methods provide hard upper bounds for the worst-case
performance and hard lower bounds for the best-case per-
formance of a system, there are also approaches that de-
termine the exact worst-case and best-case results. For in-
stance timed automata models can be used for exact schedul-
ing analysis [2]. Hendriks and Verhoef have presented an
approach for the analysis of distributed systems based on
model checking of timed automata networks in [5].

The set of available abstractions for performance analy-
sis of distributed embedded systems is not limited to the
methods cited above. The various approaches are very het-
erogenous in terms of modelling scope, modelling effort, tool
support, accuracy and scalability. There is a lack of liter-
ature on their classification and comparison. In particular,
it is very difficult for a designer to determine which perfor-
mance analysis method is most suitable for a given system.

A direct comparison of performance analysis methods is
difficult because several important aspects of the abstrac-
tions can only hardly be quantified, such as scalability or
progression of the end-user’s learning curve. Moreover the
modelling scopes of the various approaches do only par-
tially intersect. This means that an abstraction often allows
to model scenarios that are not covered by other abstrac-
tions. Nevertheless, the comparison of different abstractions
for performance analysis is necessary because it permits to
highlight the specific effects of the various analysis methods
and it helps to determine modelling difficulties and analysis
pitfalls. Moreover, the comparison of different approaches

194

serves to better understand the relation between models and
analysis accuracy as well as to improve analysis methods by
combining ideas and abstractions. Such a comparison based
on a set of characteristic benchmark problems is not avail-
able so far, despite of its essential importance for any future
work on performance analysis methods for distributed em-
bedded systems.

The contributions of this work can be described as follows:

e We define a set of benchmarks for the evaluation of ab-
stractions for performance analysis of distributed em-
bedded systems.

e We apply different abstractions to the benchmarks and
compare the results obtained in terms of accuracy and
analysis times.

e We point out several pitfalls for the different abstrac-
tions and investigate the reasons for deviating analysis
results.

2. COMPARISON METHODOLOGY

Comparing different abstractions for performance analysis
of distributed embedded systems is not trivial, as the various
approaches are incompatible for various reasons. First of all
there are differences with respect to the analyzable perfor-
mance metrics. For instance most abstractions focus on the
analysis of timing properties like end-to-end delays of events
or response times of tasks, while only some of the approaches
can also handle other performance metrics like buffer sizes
and resource usage. Moreover, there are substantial differ-
ences with respect to the modelling power of the various ab-
stractions. There are many different system characteristics
that can be taken into account by some approaches but not
by others. Hierarchical scheduling, blocking times or mul-
tiple events per task activation are just a few examples of
numerous system properties that differentiate the modelling
scope of the various abstractions.

In this work we focus on systems in the intersection of
the various modelling scopes, in order to highlight the spe-
cific effects of the abstractions. We also intentionally keep
the benchmarks small with the purpose to isolate the influ-
ence of different system characteristics and expose specific
analysis difficulties of the various abstractions. In order to
produce meaningful evaluations, we do not restrict the anal-
ysis problems to a single system configuration but repeat
the performance analysis for changing values of relevant pa-
rameters in the systems.

Furthermore we would like to point out that this work is
not intended as competition between performance analysis
methods. Apart from the fact that such a competition could
hardly be fair given the large heterogeneity of the modelling
capabilities, we underline that our main motivation is not
the ranking of analysis approaches but rather the detection
and investigation of analysis difficulties.

3. BENCHMARK PROBLEMS

In this section we present a set of benchmark problems
that we will use for the evaluation of different abstractions
for performance analysis. Some of the described benchmark
problems were discussed, among others, at the ARTIST2
Workshop on Distributed Embedded Systems 2005%.

1http: //www.tik.ee.ethz.ch/~leiden05/

Every problem is tailored to a particular analysis issue and
consists of a simple system architecture (involving only few
event streams, tasks and resources) and a performance char-
acteristic to determine. The set of proposed benchmarks is
by far not exhaustive, since there are lots of system configu-
rations that lead to challenging analysis problems. However,
our work defines several orthogonal analysis issues aimed at
the evaluation of abstractions for performance analysis of
distributed systems.

For the sake of simplicity we propose benchmarks with
constant task execution times. We would like to point out
that this choice is made in order to permit an easier in-
terpretation of the analysis results, but is not strictly neces-
sary, since all the analysis abstractions described in Section 4
can handle variable task execution times, typically specified
as intervals [BCET, WCET]. Furthermore, in the described
benchmarks the input streams are fully asynchronous and
the buffering of events does not affect the performance of
the system, i.e. we consider unbounded and infinitely fast
buffers.

3.1 Benchmark 1: Complex activation
pattern

The intention of this benchmark specification is to com-
pare the behavior of different analysis abstractions with re-
spect to a complex task activation pattern. By complex we
mean an activation pattern that cannot be described by one
of the so-called standard event models like periodic activa-
tion, periodic activation with jitter or periodic activation
with burst (see Section 4.2.1 for more details on standard
event models).

CPU1

@%@ o)
CPU2
.@%@

I1: periodic (P = 60ms)
12: periodic (P = 5ms)
13: periodic (P = [60..110]ms)

Input streams

Resource sharing | CPU1: FP preemptive, CPU2: FP preemptive

Execution times T1: 35ms, T2: 2ms, T3: 4ms, T4: 12ms

priority T1: high, priority T2: low
priority T3: low, priority T4: high

Scheduling
parameters

Figure 1: Specification of benchmark 1

Figure 1 depicts the topology of the system. Three peri-
odic event streams are processed by four tasks running on
two CPUs that implement preemptive fixed priority schedul-
ing. The performance characteristic to determine is the
worst-case response time of task T3 as function of the pe-
riod of stream I3. The activation pattern of task T3 is not
periodic anymore, since task T1 can preempt task T2. In
particular, the output behavior of task T2 is complex, i.e.
cannot be precisely described by a standard event model.
Thus, we expect pessimistic analysis results for abstractions
relying on standard event models.

3.2 Benchmark 2: Variable feedback

The purpose of this benchmark specification is to confront
the different analysis abstractions with a feedback loop and

195

CPU2

CPUL

R

OO

I1: periodic (P = 100ms)

Input streams
12: periodic (P = 5ms)

Resource sharing | CPU1: FP preemptive, CPU2: FP preemptive

Execution times | T1: 2ms, T2: 2ms, T3: [2..22]ms, T4: lms

Scheduling priority T1: high, priority T2: low
parameters priority T3: high, priority T4: low
Figure 2: Specification of benchmark 2

the consequent correlations among the activation times of
the involved tasks. The system architecture is shown in
Figure 2. A periodic event stream 12 is processed serially
by three tasks running on two CPUs and forming a feed-
back loop. Besides, CPU2 processes also a second periodic
event stream I1 of higher priority. The performance metric
to determine is the worst-case delay from 12 to O2. In order
to vary the correlation among the task activation times in
the feedback loop, the execution time of task T3 is grad-
ually increased. We expect pessimistic analysis results for
abstractions that do not take into consideration such corre-
lations among task activations.

3.3 Benchmark 3: Cyclic dependencies

The intention of this specification is to examine the capa-
bility of different performance analysis methods to deal with
cyclic dependencies.

Input stream I1 periodic with burst (P = 10ms, J = [0..50]ms)

Resource sharing | CPU1Ll: FP preemptive

Execution times T1: 1ms, T2: 4ms, T3: 4ms

1) priority T1: high, priority T3: low

Scheduling
2) priority T1: low, priority T3: high

parameters

Figure 3: Specification of benchmark 3

Figure 3 represents the system to analyze. A periodic
event stream with bursts is processed by a sequence of three
tasks running on two resources. On CPU1 a preemptive
fixed priority scheduler is used to schedule the tasks T1
and T3. The performance characteristic to determine is the
worst-case delay from I1 to O1 for increasing values of the
input jitter and in two different scenarios. In scenario 1 T1
has higher priority than T3. In scenario 2 T3 has higher pri-
ority than T1, which means that there is a cyclic dependency
among the two tasks (T1 indirectly triggers T3, however T3
preempts T1). We expect this cyclic dependency to make
the analysis difficult for compositional system abstractions.

3.4 Benchmark 4: Data dependencies

The purpose of this benchmark specification is to clarify
the ability of different analysis approaches to handle systems

%l

I1: periodic (P = 80ms)

12: periodic (P = 50ms)

CPU: FP preemptive

T1: [15..30]ms, T2: 20ms, T3: 10ms
priority T1: high,

priority T2: medium, priority T3: low

g 6

Input streams

Resource sharing

Execution times

Scheduling
param.

Figure 4: Specification of benchmark 4

with data dependencies among tasks. The system specified
below was first presented as example in [22] by Yen and Wolf.
Figure 4 depicts the topology of the system. Two periodic
event streams are processed by three tasks on a CPU that
implements preemptive fixed priority scheduling. The data
dependency is given by the execution sequence T2-T3. The
performance characteristic to determine is the worst-case
delay from 12 to O2 as function of the execution time of T1.
For this benchmark we expect pessimistic analysis results
for abstractions that do not take into consideration data
dependencies among tasks.

4. ABSTRACTIONS FOR PERFORMANCE
ANALYSIS

In this section we briefly describe four different abstrac-
tions for formal performance analysis of distributed embed-
ded systems in early design stages.

4.1 Holistic scheduling - The MAST approach

Rather than a specific performance analysis method, holis-
tic scheduling is a collection of techniques for the analysis
of distributed embedded systems. The common principle
is to extend concepts of the classical scheduling theory to
distributed systems, integrating the analysis of processor
and communication infrastructure scheduling. Every tech-
nique is tailored towards a particular combination of input
event model, resource sharing policy and communication ar-
bitration. The resulting large and heterogeneous collection
of analysis methods makes it rather difficult to use holis-
tic scheduling analysis in practice. This problem was re-
lieved with the release of the Modelling and Analysis Suite
for Real-Time Applications (MAST) [4] that aggregates sev-
eral holistic analysis techniques. MAST is an open model for
the description of event-driven real-time systems, together
with a set of open source tools that enables the designer of
a real-time application to verify its timing behavior.

The MAST suite includes schedulability analysis tools
for the analysis of single processor and distributed systems
with fixed priority, earliest deadline first (EDF) or EDF
within priorities scheduling. The toolset includes offset-
based schedulability analysis techniques [12, 11], optimized
priority assignment, automatic calculation of blocking de-
lays caused by mutual exclusion synchronization and sensi-
tivity analysis. All the techniques include analysis capabil-
ities for arbitrary deadlines, handling of input and output
jitter and different variations of the scheduling policies, such
as preemptive and non-preemptive, polling servers, sporadic
servers, etc.

196

In MAST a real-time system is modelled as a set of trans-
actions. Each transaction is represented through a graph
that models the event flow among the activities executed by
the system. The external events triggering the transactions
can be of different kinds: periodic, unbounded aperiodic,
sporadic, bursty, or singular (arriving only once). The ex-
ecution of an activity generates an event that may in turn
trigger other activities. Internal events may have timing
requirements associated with them.

Figure 5 shows one of the key aspects of the MAST model,
which is the separate modelling of the execution platform,
the software modules, and the transactions that define a par-
ticular configuration or mode of the real-time system. This
separation simplifies the use of the model in a component-
based design process and separates the description of over-
head parameters such as processor-, network- and driver
overheads from the actual application model.

Platform
Software Modules Processing[< — _
Rsource >
Shared Scheduler
R sources
v D 7]
~ _ Operation L -
- =1 Server — —
) E
\ e RN Scheduli;
Eent Event T ametenrgs
A divil
I

Eent
Handler
Real-time situation R ;lr“'in,;]fm[

Figure 5: Elements of the MAST model

—> Ewnt
- # Rderence

Using a UML tool it is possible to describe a real-time
view of a system by adding appropriate real-time classes and
objects [9]. The application design is linked with the real-
time view to get a full description of the system including its
timing requirements. The corresponding MAST model can
then be automatically extracted from the UML description.

The MAST suite is available as open source software.?

4.2 Compositional Analysis Approaches

The basic idea of compositional analysis approaches is
visualized in Figure 6. Compositional system level anal-
ysis alternates local component analysis and output event
model propagation. More precisely, in each global iteration
of the compositional system level analysis, local analysis is
performed for each component to derive the output event
models. Afterwards, the calculated output event models are
propagated to the connected components, where they are
used as input event models for the subsequent global itera-
tion. Obviously, this iterative analysis represents a fix-point
problem [17]. For the case that after an iteration all calcu-
lated output event models stay unmodified, convergence is
reached and the last calculated task response times are valid.
This holds for analysis techniques that do not contain a state
in the analytical model, otherwise not only unchanged out-
put event models, but also steady internal state has to be
considered as convergence criterion. In the case where no
convergence is reached, no statement can be made about
the analyzed system.

’http://mast.unican.es

In the following sections we will shortly introduce two
compositional analysis methodologies, namely SymTA/S
(Section 4.2.1) and MPA-RTC (Section 4.2.2). Both meth-
ods differ in the way local component analysis is performed,
as well as how event models are represented and propagated
between dependent components.

environment model

map to input
event model

local analysis |I

infeasible
configuration

feasible
configuration

Figure 6: Compositional system level analysis

4.2.1 The SymTA/S approach

The system level performance analysis approach SymTA /S?
(Symbolic Timing Analysis for Systems) is based on the
principles of compositional system level analysis.

At the component level SymTA/S uses formal analysis
techniques based on the busy window technique proposed
by Lehoczky [8]. SymTA/S can therefore directly reuse
scheduling analysis techniques from real-time research, and
does not need to adapt these techniques to a specific model.
Currently, SymTA/S offers local analysis techniques for
FP scheduling (preemptive and non-preemptive), TDMA,
Round Robin, EDF, CAN, and ERCOSek.

SymTA/S uses so-called standard event models as inter-
face to couple local component analyses according to the
compositional system level analysis methodology. Standard
event models are described by three parameters P, J and D.
A periodic event model has one parameter P and states that
each event arrives exactly every P time units. This simple
model can be extended with the notion of a jitter J, leading
to the event model periodic with jitter. In this model events
occur periodically on the long term, but their actual arrival
instant can jitter around the ideal periodic arrival within an
interval of size J. If the jitter is larger than the period, then
two or more events can occur at the same time, leading to
bursts. To describe such a bursty event stream, the model
periodic with jitter is extended with a parameter D that
captures the minimum distance between the arrival times of
events within a burst. Standard event models capture only
key timing aspects of event streams but ignore more detailed
stream properties. They therefore represent an simple inter-
face for the coupling of heterogeneous performance analysis
techniques.

In order to enable the performance analysis of distributed
systems with feedback between two or more components,
SymTA/S uses a so-called starting point generation to de-
termine initial input event models for all components. Ba-
sically the external event models are propagated along all

*http://www.symta.org

197

task chains until an activating event model is available for
each task. Since the scheduling of tasks on a shared resource
does not change the periods of the involved event streams
and cannot decrease their maximum jitter, the starting point
generation is safe. More details about starting point genera-
tion and output event model calculation can be found in [16].

The end-to-end latency along task chains is calculated by
a simple sum over the local worst case response times. While
this allows an easy composition of the local analysis results,
it leads to an overestimation of end-to-end delays in the
presence of bursty event streams, because the worst-case in-
terference is assumed for each task along the chain and this
is generally not realistic. In recent work this has been ame-
liorated by considering the pipelined execution of multiple
events. The results of this improvement are included in the
experiments of Section 5 and labelled as SymTA/S path,
while the performance analysis based on the simple sum of
local worst case response times is denoted by SymTA /S add.

4.2.2 Modular Performance Analysis with Real-Time
Calculus

Modular Performance Analysis with Real-Time Calculus
(in short called MPA-RTC) [18] is a framework for perfor-
mance analysis of distributed embedded systems that has its
roots in network calculus [7]. MPA-RTC analyzes the flow of
event streams through a network of computation and com-
munication resources in order to derive performance charac-
teristics of the system.

Event stream model.

Event streams are described using a pair of arrival curves
a“(A), a(A) e RZ%, A € RZ° which provide an upper and
a lower bound on the number of events in any time interval
of length A. Figure 7(a) shows an example pair of arrival
curves. If R[s,t) denotes the number of events that arrive
in the time interval [s,t) , then the following inequality is

satisfied:
al(t—s) < R[s,t) <a“(t—s) Vs<t

where & (0) = &“(0) = 0. This abstraction is much more
general than standard event models: any event stream can
be modelled by an appropriate pair of arrival curves.

—u
#events o #bytes pu
6 [31
4 a!
) b
A
0 5 10 15 20 0 10 2 B

Figure 7: Examples of arrival and service curves

Resource model.

In a similar way, resource streams are described using a
pair of service curves 8%(A), '(A) € RZY, A € R=° which
provide an upper and a lower bound on the available ser-
vice in any time interval of length A. Figure 7(b) shows an
example pair of service curves. The service is expressed in

an appropriate unit, for instance number of cycles for com-
puting resources or bytes for communication resources. If
C[s, t) denotes the number of processing or communication
units available from the resource over the time interval [s,),
then the following inequality holds:

Bt —s) < Cls,t) < "t —s) Vs <t

Any resource availability can be modelled by an appropriate
pair of service curves. The described abstraction treats the
resource usage as first class citizen of the analysis approach
and makes it modular also in terms of resource composition.

Performance components and Real-time Calculus.

Performance components are the basic building blocks to
construct a performance model of a system. They model
the processing of an event stream by an application process
that is running on a shared resource, e.g. a computing or
a communication subsystem. In the MPA-RTC framework
an incoming event stream, represented as a pair of arrival
curves o and a*, is processed by a resource with availability
B! and 8%. On its output, the component generates an out-
going stream of processed events, represented by a pair of
arrival curves o/ and . Resources left over by the compo-
nent are made available again on the resource output and are
represented by a pair of service curves Bl/ and ﬁ“/. Outgo-
ing arrival and service curves are determined from incoming
arrival and service curves according to equations defined by
Real-Time Calculus [3].

Performance components are combined to form perfor-
mance models of distributed embedded systems. Schedul-
ing policies on shared resources can be modelled by the way
performance components are linked and resource streams are
distributed among them. Possible resource sharing mecha-
nisms are FP, EDF, TDMA and generalized processor shar-
ing (GPS). Global performance characteristics such as end-
to-end delays are determined by propagating the local anal-
ysis results through the system. MPA-RTC is available in
form of a free Matlab toolbox.

4.3 Timed automata based analysis

Timed automata [1] are a popular formalism for the spec-
ification and analysis of real-time systems. Timed automata
can be applied for the schedulability analysis of event driven
systems [10]. In this work we focus on a performance analy-
sis approach for distributed embedded systems presented by
Hendriks and Verhoef in [5], which relies on formal verifica-
tion of timed automata networks by means of reachability
analysis using the Uppaal model checker®.

Modelling the environment

Several timed automata models have been presented for dif-
ferent event stream types. For instance, Figure 8 shows a
timed automaton that models a periodic event stream with
period P and jitter J < P.

Modelling the system

Each hardware resource is modelled by a separate automa-
ton. Several different resource sharing strategies can be
modelled with appropriate timed automata. For instance,
Figure 9 depicts a timed automaton that models a CPU

“http://www.mpa.ethz.ch/Rtctoolbox
*http://www.uppaal.com

198

L0 <20 L1
© Y reqer L2
x<=P x<=] x<=P

Figure 8: Periodic event stream with jitter

<D x==D
— 3:=0, req_T2--, x:=
0 @ D:=0, req_T2—, x:=0

“ o

req_T10
hurry!

req_T2>0 and req_T1==0 req_T1>0
hurry!

x:=0, D:=WCET_T2

hurry!

x:=0

T1

pre_T1 y<=WCET_T1 x<=WCET_T1

x==WCET_T1
req_TI--

y==WCET_T1
req_Tl--, D:=0, req_T2--
D+=WCET_T1

Figure 9: Preemptive FP resource with two tasks

executing two tasks and implementing preemptive fixed pri-
ority scheduling.

Performance analysis

The models of the various system components are aggre-
gated into a timed automata network. The key idea for the
modelling of distributed systems is to use global variables
and channels for the interaction of the different automata.
The performance of the system is derived by formal veri-
fication of properties of the timed automata network. For
instance, to ensure that the maximum backlog of a certain
task does not exceed a given value b, it is sufficient to verify
the following property with Uppaal:

AG (reg <b)

where "AG’ stands for ’always generally’ (= invariantly) and
req is the global variable that counts the activation requests
of the corresponding task. It is also possible to derive the
exact maximum backlog by finding the smallest b that sat-
isfies the above property. This is done by using a binary
search strategy.

The verification of end-to-end delays is done using particu-
lar timed automata models for event stream generators that
are synchronized with the system output over a global chan-
nel and can keep track of the amount of time that elapses
between the generation of an event and its output from the
system. For a detailed explanation of the corresponding
models we refer the reader to [5].

S. ANALYSIS RESULTS

In this section we present the results obtained by apply-
ing the formal performance analysis methods described in
Section 4 to the benchmarks of Section 3. We compare the
performance bounds obtained and discuss deviating results
and analysis pitfalls. The models adopted are available on-
line®. For their analysis we have used the RTC Toolbox
v1.0, SymTA/S v1.1, Uppaal v4.0.3 and MAST v1.3.6, re-
spectively.

Shttp://www.tik.ee.ethz.ch/~leiden05/index2.
html#publications

We also include the results obtained by a simple SystemC
simulation. For periodic input streams with jitter/burst the
simulator generates events as early as possible (at the begin-
ning of the jitter interval) with a probability of 5%, as late
as possible (at the end of the jitter interval) with a probabil-
ity of 5% and uniformly distributed over the jitter interval
with a probability of 90%. This is done in order to increase
the corner case coverage of the simulation with respect to
a fully uniform event distribution. The time length of the
simulated system execution is indicated in brackets in the
graphs.

For additional benchmarking results and details about the
simulation tool used we refer the reader to [13].

5.1 Benchmark 1: Complex activation
pattern

In this experiment we evaluate the accuracy of the differ-
ent formalisms when the event patterns significantly deviate
from the patterns of standard event models that are used
in SymTA/S. For this purpose, we tap the event stream be-
tween the tasks T2 and T3 in the system of Figure 1, where
a distortion of the periodic event pattern occurs due to the
influence of task T1. Figure 10 shows the analysis results
for the worst-case response time of task T3.” The perfor-
mance values derived with timed automata models are veri-
fied through model checking and represent the exact worst-
case response time of task T3.

55

—&— MPA-RTC
—— SymTA/S (add) —%— Simulation [10s]
—o— SymTA/S (path)

== Timed automata (exact)

Ry

50+

45

404

Worst-case response time T3 [ms]

100 105 110

Period I3 [ms]

Figure 10: Analysis results for the WCRT of T3 in
benchmark 1

The graph shows that the compositional analysis ap-
proaches provide pessimistic predictions for the worst-case
response time of task T3 and it points out that there is
a remarkable difference between the results obtained by
SymTA /S and MPA-RTC. This can be explained by the dif-
ferent event models adopted by the two abstractions. While
MPA-RTC accurately models the complex output pattern
of T2 by an appropriate pair of arrival curves, SymTA /S
approximates the output of T2 by a periodic event stream
with burst.

Figure 11 shows the effect of the two different event mod-
els on the analysis accuracy for Prs = 65 ms. The worst-
case response time of T3 is given by the maximum hori-

"The MAST tool does not support the analysis of local
response times in the current release and was thus not con-
sidered for this analysis problem.

199

350

300 |-
41
250 |- delay q
MPA-RTC
=
E 200 4
o
g
S 150} 4
oy
)
1
100 |- B |
u
— OMPA-RTC
u
50 - N OLSymTA/S
delay
SymTA/S
0 . \
0 50 100 150 200 250 300 350 400
A [ms]

Figure 11: Influence of different event models on the
analysis of the WCRT of T3 for P;3 = 65 ms

zontal distance between the worst-case resource availability
(dashed curve) and the worst-case execution demand (solid
curves). The graph shows that the approximation adopted
by SymTA/S leads to an overestimated response time of
task T3. Interestingly, however, the conservative results of
SymTA /S disappear when the whole task chain from 12 to
02 is considered. This is because the adopted path analy-
sis detects that the total worst-case delay from 12 to O2 is
smaller than the sum of the two single worst-case delays. For
the worst-case delay 12-O2 all considered methods determine
the exact performance results.

5.2 Benchmark 2: Variable feedback

In benchmark 2 depicted in Figure 2 the behavior of the
feedback stream 12-O2 depends strongly on the execution
time of task T3, as task T3 may preempt task T4 and thus
affect its response time. In particular, increasing the worst-
case execution time of T3 at a constant rate causes the cor-
relation effects between T1 and T2 to vary in a periodic
manner.

40 A
—&— MPA-RTC —®— MAST

—A— SymTA/S (add)
—o— SymTA/S (path) —%— Simulation [10s]

35 4 === Timed automata (exact)
30

251

Worst case delay 12-O2 [ms]

20

22

Execution time T3 [ms]

Figure 12: Analysis results for the worst case delay
I2-02 in benchmark 2

This effect is shown in Figure 12 by the exact values of
the worst-case delay 12-O2 determined with the analysis ap-
proach based on timed automata. The graph shows that also
the MAST tool provides the exact worst-case performance

values for all the parameter configurations of the specified
system. However, the compositional analysis approaches
MPA-RTC and SymTA/S do recurrently overestimate the
exact performance of the system and provide pessimistic
predictions for several parameter values. A closer analysis
of the behavior of the feedback loop reveals that this over-
estimation happens for those parameter configurations that
lead to the worst-case delay 12-O2 without a full preemption
of task T2 on CPU1. Since the compositional abstractions
do not take into consideration the correlation between the
activation times of T1 and T2, the corresponding analysis
methods have no means to recognize the missing or partial
preemption and suppose that a full preemption is possible
in the worst case, which leads to pessimistic performance
predictions.

Another interesting property of the system in Figure 2 is
that the worst-case delay 12-O2 is smaller than the sum of
the single worst-case delays at T1, T4 and T2. This phe-
nomenon is common for systems with a sequence of tasks
that process bursty event streams and is generally referred
to as 'Pay burst only once’ [7]. In such cases a purely modu-
lar analysis based on the sum of the local worst case response
times leads to overly pessimistic performance predictions, as
shown in Figure 12 by the results of the analysis mehtod
Symta/S add.

5.3 Benchmark 3: Cyclic dependencies

In the first scenario of the specification depicted in Fig-
ure 3 task T1 has higher priority than task T3 and thus
there is no cyclic dependency in the system. However, cor-
relation effects as described for benchmark 2 are present.
For instance, depending on the input stream properties, it
may happen that task T3 is not preempted by task T1. Such
correlations are not fully exploited by all analysis abstrac-
tions, as described above. While the timed automata model
permits to determine the exact worst-case latencies of the
system, other formal analysis methods like MPA-RTC and
SymTA /S slightly exceed the exact performance results and
their pessimism grows with increasing input jitter values, as
shown in Figure 13.

The poor performance predictions of the MAST tool have
another cause. Holistic analysis methods compute the worst-
case delay not referred to the actual release time of an event
which varies within the jitter interval, but referred to the
ideal periodic release time. In other words, the release jitter
is considered already part of the delay and thus the predicted
worst-case end-to-end latency cannot be smaller than the
maximum input jitter. This explains why the pessimism of
the predictions provided by MAST increases for increasing
values of the input jitter. Unfortunately this deviation with
respect to the other analysis abstractions cannot be simply
adjusted after the analysis, since the actual release instant
leading to the worst-case performance is generally unknown.
However, we would like to point out that the different in-
terpretation of latency adopted by MAST in the presence of
input jitter can be useful in other settings. For instance in
a system where the activation jitter of a task is caused by a
low resolution clock it is more appropriate to refer the dead-
line for the response time of the task to the real activation
request rather than to the actual activation instant.

The graph in Figure 13 also shows that simulation can in
general not be used to guarantee hard performance bounds:
for some input configurations the corner-cases leading to the

200

worst-case performance are missed by the executed simula-
tion.

i —— MPA-RTC —8— MAST
—A— SymTA/S (add)

—o— SymTA/S (path) —%— Simulation [10s]

=== Timed automata (exact)

Worst case delay I11-O1 [ms]

20 25 30 35 40 45 50

Worst-case jitter I1 [ms]

Figure 13: Analysis results for the worst case delay
I1-O1 in benchmark 3 (scenario 1)

175

—&— MPA-RTC —&— MAST

150 4 —&— SymTA/S (add) === Timed automata (exact)

—<o— SymTA/S (path) —— Simulation [10s]

125 4

100

Worst-case delay 11-O1 [ms]

20

25 30 35 40 45 50

Worst-case jitter I1[ms]

Figure 14: Analysis results for the worst case delay
I1-O1 in benchmark 3 (scenario 2)

In scenario 2 T3 has higher priority than T1 and thus
there is a cyclic dependency: the output behavior of T1 de-
pends on the CPU availability left over by the activity of T3
while at the same time the activity of T3 depends on the
output behavior of T1. For holistic system abstractions this
dependency does not make the analysis more difficult and
Figure 14 shows that the performance predictions provided
by MAST do not deviate more significantly from the ex-
act values than in the previous scenario (note the different
scaling of the ordinate axes). However, for compositional
abstractions the cyclic dependency complicates the analysis
process. Both MPA-RTC and SymTA/S use a fixed-point
calculation to handle it, but the graph shows that this leads
to overly pessimistic performance predictions.

5.4 Benchmark 4: Data dependencies

Figure 15 represents the analysis results obtained ap-
plying the different abstractions to benchmark 4 speci-
fied in Figure 4. The chart shows that MPA-RTC and
SymTA /S largely overestimate the worst-case delay 12-O2,

while MAST determines the exact worst-case performance
of the system. The overly pessimistic performance predic-
tion of the former two approaches results from the disregard
of data dependencies in the system. In particular, the ac-
tivation times of the tasks T2 and T3 are not independent.
The data dependency forces the two tasks to be executed
in a fixed order and imposes a temporal offset between their
activation. Let us consider, for instance, the system configu-
ration with an execution time of 15 ms for T'1. It is simple to
verify that in this configuration T1 can only preempt either
T2 or T3, but not both in a single execution and also T2
cannot preempt T3. Hence, the worst-case latency 12-O2 is
45 ms. However, MPA-RTC and SymTA/S ignore the data
dependencies between T2 and T3 and consider their activa-
tion times as independent. Thus, they suppose a worst-case
response time of 35 ms for T1 and 45 ms for T2 and esti-
mate the worst-case latency 12-O2 with 80 ms, the sum of
the two delays. In contrast, the MAST tool implements off-
set based analysis methods, that are designed to detect and
exploit data dependencies among tasks in order to determine
tighter performance bounds.

180

—&— MPA-RTC === Timed automata (exact)
—— SymTA/S (add) —*— Simulation [10s]
—o— SymTA/S (path)
—o— MAST

160 4

140 A

120 1

100 1

80K

60

Worst-case delay 12-O2 [ms]

40

201

0

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Execution time T1 [ms]

Figure 15: Analysis results for the worst case delay
I12-02 in benchmark 4

5.5 Analysis times

B1 B2 B3(1) | B3(2) B4
min 0.60 | 0.03 0.01 0.04 0.03

MPA-RTC med 1.06 | 0.04 0.01 0.15 0.05
max | 19.72 | 0.08 0.04 0.30 0.20

min 0.05 | 0.03 0.03 0.03 0.06

SymTA/S med 0.09 | 0.05 0.06 0.34 0.09
max 1.50 | 0.23 0.09 0.80 0.31

min B <0.5 <0.5 <05 <0.5

MAST?® med - <0.5 <0.5 <0.5 <0.5
max - <0.5 <0.5 <0.5 <0.5

min | 18.0 <0.5 <05 <05 <0.5

Timed aut.®? | med | 34.5 <0.5 1.0 <0.5 <0.5
max | 60.5 <0.5 | 52.0 5.5 <0.5

min 1.0 <0.5 0.5 0.5 <0.5

Simulation?® med 1.0 <0.5 0.5 0.5 <0.5
max 1.0 <0.5 0.5 0.5 <0.5

%For MAST, Timed automata and Simulation we have
timed the analysis duration by hand since the correspond-
ing tools do not support automatic measuring of the analysis
time. For these methods a ’<0.5’ in the table stands for a
value below the measuring accuracy of 0.5 seconds.

bFor the analysis approach based on timed automata the
analysis times are referred to one single step of binary search.

Table 1: Analysis times in seconds

201

In this subsection we report the measured analysis times
for all the considered benchmarks. Table 1 sums up the min-
imum, median and maximum analysis time for each perfor-
mance analysis tool and benchmark. The values show that
most of the considered abstractions permit a fast perfor-
mance analysis for all the specified benchmarks. However,
the analysis approach based on model checking of timed au-
tomata networks forms an exception, as in two out of four
benchmarks it suffers from very long verification times. For
instance in the first scenario of benchmark 3 the maximum
running time of the Uppaal model checker is more than a
hundred times larger than the analysis times of the other
methods. Especially in the presence of large jitters the state
space of the timed automata models grows considerably and
leads to long analysis times.

Another interesting observation is that in some cases there
is a remarkable difference between the minimum, median
and maximum analysis time. This shows that in general
the analysis times of the different approaches may depend
highly on the particular system parameters.

6. DISCUSSION

The results of Section 5 show that the accuracy of the
performance predictions determined with each abstraction
varies considerably for the different benchmarks. The only
exception is given by the analysis approach based on timed
automata, which provides the exact performance predictions
for all the considered benchmarks. However, we would like
to point out that the exact results are often paid for by
a large analysis effort, i.e. may require long verification
times. Thus, considering not only the achieved accuracy, but
also the necessary analysis times, we can state that none of
the considered abstractions performed best in all the bench-
marks.

Nevertheless, the results permit to give some indications
on which abstractions are more appropriate than others for
the analysis of a certain performance characteristic in a given
system. For instance benchmark 1 indicates that the ap-
proximation of complex event streams with standard event
models can be inappropriate for precise performance pre-
dictions at a local level. Benchmark 3 emphasizes that at
the current state systems with cyclic dependencies repre-
sent a serious pitfall for the accuracy of compositional anal-
ysis methods. The benchmarks 2 and 4 indicate that holis-
tic analysis approaches are generally more appropriate than
modular abstractions in the presence of correlations among
task activations and data dependencies. On the other hand,
holistic analysis methods are less appropriate for the analy-
sis of timing properties that are referred to the actual release
time of an event within a large jitter interval, as described
in the interpretation of the results obtained for benchmark
3. Overall, it is advisable for a system designer to use at
least two different performance analysis methods, to prevent
stepping in one of the mentioned analysis pitfalls.

Moreover, the results show that for the benchmarks con-
sidered simulation often provides more accurate results but
these results are not necessarily correct (i.e. valid perfor-
mance bounds), as the underestimation of the worst case
performance of benchmark 3 shows. While in general this
might be tolerable for soft real-time systems, it is not for
systems with hard real-time requirements.

We would also like to emphasize that most of the encoun-
tered pitfalls for analytic techniques are not related to sys-

tem characteristics that are conceptually impossible to in-
tegrate in the respective abstraction. Rather, the analysis
difficulties point out aspects that have not yet been con-
sidered for the corresponding methods. In this sense poor
analysis results indicate potential research directions for the
improvement of the single performance analysis approaches.

Furthermore, there are also questions that the proposed
set of small benchmarks cannot answer. For instance it
would be useful to analyze larger systems with the aim to
examine the scalability of the different abstractions with re-
spect to analysis accuracy and analysis times. It could also
be interesting to consider the combination of several system
properties that have been isolated in the single benchmarks.

7. CONCLUSIONS

We defined a set of benchmarks for the evaluation and
comparison of abstractions for performance analysis. We
applied a number of system level performance analysis meth-
ods to the benchmarks and examined the results in terms of
accuracy and analysis times. We pointed out several anal-
ysis pitfalls for the different analysis abstractions and in-
vestigated the reasons for pessimistic performance predic-
tions. We showed that the analysis results of different ap-
proaches are remarkable different even for apparently basic
distributed systems and that the choice of an appropriate
analysis abstraction matters. Moreover, we showed that the
analysis accuracy of the various approaches depends highly
on the particular system characteristics and that none of
the analysis methods performed best in all cases. Hence,
the problem to provide accurate performance predictions for
general systems is still far from solved, despite the availabil-
ity of promising formal analysis approaches.

8. ACKNOWLEDGEMENTS

This research has been supported by the Swiss National
Science Foundation (SNF) under the project Modular Per-
formance Analysis of Distributed Embedded Real-Time Sys-
tems (grant 200021-103580/2), by the Plan Nacional de
I+D+1 of the Spanish Government under the THREAD
project (grant TIC2005-08665-C03) and by the Artist2 Net-
work of Ezcellence (EU grant IST-004527).

9.
[1]
2]

REFERENCES

R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183-235, 1994.

G. Behrmann, A. David, K. G. Larsen, J. Hakansson,

P. Pettersson, W. Yi, and M. Hendriks. UPPAAL 4.0. In
Proc. of the 3rd Intl. Conference on the Quantitative
Evaluation of SysTems, IEEE Computer Society, pages
125-126, 2006.

S. Chakraborty, S. Kiinzli, and L. Thiele. A general
framework for analysing system properties in
platform-based embedded system designs. In Proc. of 6th
Design, Automation and Test in Europe, pages 190-195,
2003.

M. Gonzéalez Harbour, J. J. Gutiérrez Garcia, J. C.
Palencia Gutiérrez, and J. M. Drake Moyano. Mast:
Modeling and analysis suite for real time applications. In
Proc. of 13th Euromicro Conference on Real-Time
Systems, pages 125-134. IEEE Computer Society, 2001.
M. Hendriks and M. Verhoef. Timed automata based
analysis of embedded system architectures. In Workshop
on Parallel and Distributed Real-Time Systems, 2006.

[3]

[4]

[5]

202

[6] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst. System level performance analysis - the
SymTA/S approach. IEE Proc. Computers and Digital
Techniques, 152(2):148-166, March 2005.

J. Y. Le Boudec and P. Thiran. Network calculus: a theory
of deterministic queuing systems for the internet.
Springer-Verlag New York, Inc., 2001.

J. Lehoczky. Fixed priority scheduling of periodic task sets
with arbitrary deadlines. In Proc. of the Real-Time
Systems Symposium, pages 201-209, 1990.

J. L. Medina, M. Gonzéalez Harbour, and J. M. Drake.
Mast real-time view: A graphic uml tool for modeling
object-oriented real-time systems. In Proc. of the 22nd
Real-Time Systems Symposium, pages 245-256. IEEE
Computer Society Press, 2001.

C. Norstrém, A. Wall, and W. Yi. Timed automata as task
models for event-driven systems. In Proc. of the 6th Intl.
Conference on Real-Time Computing Systems and
Applications, page 182. IEEE Computer Society, 1999.

J. C. Palencia and M. Gonzélez Harbour. Exploiting
precedence relations in the schedulability analysis of
distributed real-time systems. In Proc. of the 20th
Real-Time Systems Symposium, pages 328-339. IEEE
Computer Society Press, 1999.

J. C. Palencia Gutiérrez and M. Gonzalez Harbour.
Schedulability analysis for tasks with static and dynamic
offsets. In Proc. of the 19th Real-Time Systems
Symposium. IEEE Computer Society, 1998.

S. Perathoner, E. Wandeler, and L. Thiele. Evaluation and
comparison of performance analysis methods for
distributed embedded systems. Technical Report 276,
Computer Engineering and Networks Laboratory, ETH
Zurich, Mar. 2006.

P. Pop, P. Eles, and Z. Peng. Performance estimation for
embedded systems with data and control dependencies. In
Proc. of the 8th intl. workshop on Hardware/software
codesign, pages 62—66. ACM Press, 2000.

T. Pop, P. Eles, and Z. Peng. Holistic scheduling and
analysis of mixed time/event-triggered distributed
embedded systems. In Proc. of the 10th intl. symposium on
Hardware/software codesign, pages 187-192. ACM Press,
2002.

K. Richter. Compositional Performance Analysis. PhD
thesis, Technical University of Braunschweig, 2004.

K. Richter, M. Jersak, and R. Ernst. A formal approach to
mpsoc performance verification. IEEE Computer,
36(4):60-67, 2003.

L. Thiele, S. Chakraborty, M. Gries, A. Maxiaguine, and
J. Greutert. Embedded software in network processors -
models and algorithms. In Proc. of the 1st intl. Workshop
on Embedded Software, pages 416-434. Springer-Verlag,
2001.

L. Thiele, S. Chakraborty, and M. Naedele. Real-time
calculus for scheduling hard real-time systems. In Proc.
Intl. Symposium on Circuits and Systems, volume 4, pages
101-104, 2000.

K. Tindell and J. Clark. Holistic schedulability analysis for
distributed hard real-time systems. Microprocessing and
Microprogramming - Euromicro Journal (Special Issue on
Parallel Embedded Real-Time Systems), 40:117-134, 1994.
E. Wandeler and L. Thiele. Characterizing workload
correlations in multi processor hard real-time systems. In
Proc. of the 11th Real Time on Embedded Technology and
Applications Symposium, pages 46-55. IEEE Computer
Society, 2005.

T.Y. Yen and W. Wolf. Performance estimation for
real-time distributed embedded systems. In Proc. of the
1995 Intl. Conference on Computer Design, pages 64—71.
IEEE Computer Society, 1995.

[7]

B

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

