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ABSTRACT
Key challenges in the performance estimation of distributed
real-time embedded (DRE) systems include the systematic
measurement of coverage by simulations, and the automated
generation of directed test vectors. This paper investigates
how DRE systems can be represented as discrete event sys-
tems (DES) in continuous time, and proposes an automated
method for the performance evaluation of such systems. The
proposed method also provides a way for the verification of
dense time properties for a large class of DRE systems. This
approach provides a formal executable model allowing to
bridge the gap between simulations and formal verification.
Our results show that the proposed DES-based evaluation
method can achieve better coverage in large-scale DRE sys-
tems than alternative methods.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis; C.4 [Computer Systems Organization]: Per-
formance of Systems – Modeling techniques

General Terms
Design, Performance, Verification

1. INTRODUCTION
Performance evaluation is a key challenge in the analysis

of distributed real-time embedded (DRE) systems. Major
design parameters that influence performance include real-
time properties, such as task execution times and commu-
nication delays, the degree of parallelism in computations,
and the throughput of the communication architecture.

Static schedulability methods [17, 11] provide guarantees
for schedulability, but are often overly pessimistic when ap-
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plied to event-driven systems. Moreover, they cannot model
dynamic effects, such as varying communication delays and
race conditions, as they do not capture the flow of data, and
are less accurate than dynamic estimation techniques.

Synchronous languages [2] are another approach to specify
timing constraints in globally synchronous and determinis-
tic real-time embedded systems. Although the synchronous
approach is popular in mission-critical systems, event-driven
embedded systems often exhibit non-deterministic behaviors
that synchronous languages cannot capture.

The current industry practice for the performance eval-
uation of large-scale DRE systems is mostly based on sim-
ulations. Common methods combine random simulations
with a smaller set of directed test vectors to obtain the best
possible coverage within a given time. However, the ad-hoc
application of simulations prevents the systematic measure-
ment of the coverage and quality of results.

Model checking provides alternative methods [7,8] for the
dynamic analysis of event-driven distributed systems. Most
symbolic representations – such as BDDs [4] – and temporal
logic – such as LTL [22], and CTL [6] – focus on answering
yes/no questions that turn performance evaluation into a
tedious process. Also, there is often no way for tradeoffs be-
tween accuracy and scalability; if the exhaustive state space
search is infeasible due to the large state space, the designer
is left without a partial estimate of system performance.

This paper proposes a discrete event simulation-based per-
formance evaluation method for DRE systems, that employ
fixed-priority scheduling. We introduce a formal model for
DRE systems based on discrete event scheduling [5] using
the concept of logical execution time [10], and the event or-
der tree shown in Section 4. Nodes in the event order tree
represent events, and edges represent causality between the
events. As events may arise non-deterministically, the tree
may branch when different event orderings are possible. The
proposed model explicitly captures the flow of data and com-
munication effects (such as non-deterministic delays etc.) in
event-driven systems for dynamic performance evaluation.

In the proposed approach we do not store timed states, like
timed automata model checking methods, just events and
constraints on the (global) timestamps of real-valued events.
Note that this approach represents real-time properties in
continuous time. Storing timed states is the most signifi-
cant contributor to memory consumption in model checking
tools. The proposed method has minimal memory require-
ments, providing a way for runtime on-the-fly analysis in
adaptable DRE systems.
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In this stage of development we do not address the termi-
nation problem, as we do not try to identify previously vis-
ited timed states, but use a constant horizon as a time limit
for the analysis. There are model checking methods that do
not have this limitation in theory, but in practice all model
checking methods suffer from the termination problem due
to the state space explosion problem. Our preliminary re-
sults show that the proposed DES-based evaluation method
can achieve better coverage in large-scale DRE systems than
alternative methods as shown in section 5. The abstract
symbolic model allows better simulation performance com-
pared to the actual simulations with comparable accuracy,
providing an efficient method for design space exploration.

The organization of the paper is the following: Section 2
discusses related work; Section 3 presents the problem for-
mulation and formalizes the model of computation (MoC)
used for the analysis of DRE systems; Section 4 presents
the DES-based performance evaluation and real-time verifi-
cation method; Section 5 presents a large-scale avionics case
study and performance comparisons to alternative methods;
and Section 6 presents concluding remarks.

2. RELATED WORK
Static analysis methods: Scheduling theory is a widely

used method for deciding the schedulability of DRE systems.
Rate Monotonic Analysis (RMA) [17,11] and Earliest Dead-
line First (EDF) [17] methods both provide polynomial-time
results with respect to the number of input tasks. SymTA/S
[9] is a formal analysis tool that applies methods from schedul-
ing theory for the performance analysis of complex het-
erogeneous multi-processor systems-on-chip (MPSoCs). A
generic, component-based formal framework for the schedul-
ing analysis and formal performance evaluation of platform-
based embedded systems was proposed in [23]. Modular
Performance Analysis [25] is an approach based on real-
time calculus that models dependencies as arrival curves.
Synchronous languages [2] provide a common mathemati-
cal domain for the analysis of globally synchronous systems
with deterministic concurrency. Giotto [10] defines a timed-
triggered language for the static analysis of schedulability in
embedded systems.

Although all static analysis methods provide scalable so-
lutions for performance evaluation they cannot model dy-
namic effects, such as varying delays and race conditions, as
they do not capture the flow of data, and are less accurate
than dynamic estimation methods. Communication in em-
bedded systems is often non-deterministic, data-dependent,
and hard to model as well-formed event streams.

In contrast, the method described in this paper is a formal
analysis technique that captures dynamic effects, such as
varying delays and race conditions in distributed systems, by
explicitly modeling dependencies and the event-based trig-
gering, and results in more accurate performance analysis at
the price of being computationally more intensive.

Dynamic analysis methods: Simulations are the pre-
ferred and widely accepted way to evaluate DRE system
designs in the industry today. A simulation-based design
space exploration method, however, has several disadvan-
tages. Developing the models for a design alternative may
take weeks or months therefore only a handful of alterna-
tives may be practically analyzed given the short product
development cycles. Moreover, designers typically notice
performance issues late in the design cycle - after the simu-

lation model is complete - therefore addressing changes can
be rather time-consuming and costly.

An approach for the formal model-based performance eval-
uation of DRE systems is demonstrated in Ptolemy II [16],
that addresses some of these issues. Ptolemy II is a general
modeling framework that composes heterogeneous models of
computation to evaluate embedded systems, and also pro-
vides a way for performance evaluation through symbolic
simulations of the formal MoCs. Ptolemy II focuses on de-
terministic models [15] and does not provide a systematic
method for the measurement of state space coverage in non-
deterministic models. Simulation-based performance evalu-
ation is a popular approach for the evaluation of MPSoC de-
signs as well. A semi-formal simulation-based performance
evaluation method for MPSoCs was proposed in [12]. The
authors represent execution traces as symbolic graphs for
performance analysis, annotated with execution times ob-
tained by simulating individual components of the system.

Although the approaches described in [12,16] improve sim-
ulation speed by utilizing symbolic representations of exe-
cution traces, the quality of results depends on the ad-hoc
selection of test vectors. The method described in this pa-
per builds on a symbolic simulation technique using DES
to represent DRE systems. However, unlike the methods
described in [12, 16], we focus on non-deterministic systems
with varying execution times, that we capture as intervals.
In contrast to their approaches, our symbolic model captures
all possible execution traces of the system, not just one exe-
cution trace. This is a more accurate model for event-driven
DRE systems, where execution times are rarely constant.
Moreover, we formalize our method for obtaining test vec-
tors based on the DES model, that provide better coverage
than random simulations.

Model checking methods: Model-checking provides
alternative methods for the dynamic analysis of DRE sys-
tems. Several authors have proposed timed automata as a
semantic domain for schedulability analysis [7, 8]. A timed
automata-based approach for the thread-level analysis of
DRE systems is presented in [24]. We have presented a for-
mal method for deciding the schedulability of DRE systems
based on timed automata in [20,18,19].

Although model checking provides the means for the for-
mal real-time verification of event-driven DRE systems, its
practical applicability to the performance evaluation of large-
scale DRE systems is limited. The exhaustive verification of
large-scale DRE systems is often infeasible in practice, and
is often unnecessary, as the performance can usually be esti-
mated accurately with less than perfect coverage. Moreover,
most model checkers are based on logics [22, 6, 4] tailored
towards yes/no questions which makes formal performance
evaluation a tedious process.

In this paper we propose a method based on DES for
the performance evaluation of large-scale DRE systems. Al-
though the proposed method provides a way for the formal
verification of real-time properties, fast symbolic simulations
are its main advantage, and is directly applicable to large-
scale systems, that cannot be analyzed using an exhaustive
state space search. The DES-based analysis increases the
coverage by gradually simulating the symbolic models, and
can answer complex questions on the symbolic executable
models. We show that this approach provides a way for fast
design space exploration, and can achieve better coverage in
some cases than alternative methods.
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3. PROBLEM FORMULATION
In this section we define a formal model for event-driven

DRE systems using fixed-priority scheduling. We utilize this
model to define the formal performance evaluation problem
using a continuous time model. We target asynchronous
distributed event-driven systems, therefore we propose a
non-preemptive scheduling model, that inherently captures
varying communication delays as special “tasks” with execu-
tion intervals. The non-preemptive model allows to capture
blocking waits and congestions in a formal setting.

3.1 Problem Elements
Our model of computation for event-driven DRE systems

is a tuple DRE = {T, M, C, TR, D} where:

• T is the set of tasks,

• M is the set of machines,

• C is the set of communication channels: C ⊆ T ,

• TR is the set of timers: TR ⊆ T ,

• D is the task dependency relationship: D ⊆ T × T .

In our proposed DRE model of computation we have a
set of machines M = {m1, m2, . . . , mq}, q ∈ N, and a set of
tasks T = {t1, t2, . . . , tn}, n ∈ N that we would like to exe-
cute on the machines. A task is an atomic non-preemptable
unit that executes on a given machine. Each task has to be
assigned to a machine and each machine can execute only
one task at one time. Tasks are assigned to a specific ma-
chine by the mapping machine(tk) : T → M . Each task
tk has an execution interval given by [bcetk,wcetk], rather
than a constant execution time, which is the major source of
non-determinism in the models (other major sources of non-
determinism are race conditions as described in Section 4.2).
bcetk is the best case execution time that denotes the short-
est execution time, wcetk is the worst case execution time
that denotes the longest execution time of task (tk).

Channels in set C can be viewed as special tasks that (1)
buffer events as FIFOs, and (2) represent communication
delays. They are not required in the models as tasks can
exchange events directly, but provide a mechanism to re-
duce blocking waits. Blocking waits occur when the source
task has to wait for the dependent task to return to the idle
state. We introduce a (hypothetical) machine mc ∈ M that
can execute an unbounded number of tasks at the same time.
We express delays between tasks tk and tj , {tk, tj} ∈ D by
introducing a channel cd ∈ C that has an execution inter-
val [bcetd,wcetd] as specified by the delay, and we assign cd

to the machine mc using the mapping M(cd) = mc, and
add the dependencies {tk, cd}, {cd, tj} to the set D. Note
that we only map channels to the hypothetical machine in
order to express delays as non-preemptive executions in a
formal setting, we do not restrict the actual implementation
of event channels. We call each task that is assigned to mc

a channel, and we refer to bcetd as the best case delay, wcetd

as the worst case delay.
Timers in the set TR are special tasks that trigger the ex-

ecution of tasks periodically as defined by their period. We
give a more formal definition for timers in the next section
by using the definition of events.

We define the set of dependencies D = {(ta, tb), (tc, td),
. . . , (tm, tn)}. If the dependency (tk, tj) is part of the set D
then task tj has to execute after task tk has finished. We
say that task tj depends on task tk. A task may depend on

Figure 1: Example DRE Model

several tasks and execute several times during the execution
of the model.

Note that when AND semantics are allowed, all parents
need to finish their execution to trigger the execution of
the (dependent) child task. This implies that events from
parents that send events at a higher rate need to be continu-
ously discarded to avoid buffer overflows. Therefore, at this
stage of development, we only allow OR semantics for task
dependency; any parent task can trigger the execution of
the (dependent) child task. This restriction prevents buffer
overflows in tasks that depend on parents, that send events
with different rates. Moreover, we assume that there are no
circular dependencies between tasks. Therefore, if task tk

depends on task tj , then task tj does not depend on task tk.
D is acyclic (a forest) with timers as root elements.

Figure 1 shows an example DRE model created using
the GME tool [14]. Timers, tasks, channels, and machines
are denoted by their respective icons in Figure 1. The
solid arrows show the dependencies (set D) in the model.
The mapping of tasks and timers to machines (the function
machine(tk) : T → M) is shown by the dashed arrows. All
channels are mapped to mc as defined above therefore we
do not show their mapping in Figure 1.

3.2 Events
We represent the DRE MoC as an extension to discrete

event systems in order to express execution intervals in con-
tinuous time. In DES, transitions depend only on the cur-
rent state and the event label. In the DRE MoC, we define
event labels as time stamped values from the domain of non-
negative real numbers (R+ ∪ {0}).

Timestamps model the (global) simulation time when the
event has occurred. We define the function time(e) : E →
(R+ ∪ {0}) to return the timestamp value of event e ∈ E
where E is the set of all (infinite) events generated by the
system.

In the DRE MoC, tasks receive a potentially infinite se-
quence of events (timestamped values as event labels) in
chronological order. The task then outputs a timestamped
event for each input event. We denote the sequence of input
events of a task tk as Ik = {ik0, ik1, . . . }, the sequence of
output events as Ok = {ok0, ok1, . . . }, t ∈ T, ik0, ik1, · · · ∈
E, ok0, ok1, · · · ∈ E. The order of events in the output se-
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quence of each task is the same as the order of events in
the input sequence of the task, ok0 is the response for ik0,
ok1 is the response for ik1, etc. The timestamps of input
events must be smaller than or equal to their correspond-
ing output events. We formalize this constraint as follows:
(∀tk ∈ T )(∀ik ∈ Ik)(∀ok ∈ Ok) (time (ik) ≤ time (ok)). Note
that the discrete event simulation is completely determinis-
tic if timestamps are unique constants.

Each task can process only one event at a time, for each
input event ikx ∈ Ik, the corresponding output event okx ∈
Ok has to be generated before the task can receive its next
input event iky ∈ Ik. Channels in the set C provide FIFO
buffers to store events that cannot be immediately processed
by their target tasks.

The set TR denotes a special class of tasks called timers.
A timer tr ∈ TR is a task that generates output events
such that for the timestamp of any two consecutive events
(otr, o

′
tr ∈ E) time(o′tr) − time(otr) = periodtr. We define

the period of the timer as periodtr = bcettr = wcettr.
To distinguish the special classes of tasks from non-special

tasks we refer to the set T−C−TR as the set of computation
tasks. Computation tasks model actual tasks being executed
on the machines.

Computation tasks, timers, and event channels in the
DRE MoC can be composed using events; the output event
of a task may serve as an input event to another task (tasks).
In these cases the same event label triggers multiple tran-
sitions. We make the restrictions that timers cannot have
input events and the output events of event channel can only
be inputs to computation tasks. Moreover, the event flow
has to satisfy the dependencies in set D; if the output of a
task t1 ∈ T is the input of task t2 ∈ T then the dependency
(t1, t2) has to be present in set D. Similarly, if a dependency
(ta, tb) is present in set D then the output event of ta has
to be the input event of tb.

3.3 Task States, Schedulers
We define three states for each computation task; init,

wait, and run. Whenever a task receives an event from an-
other task (including event channels and timers) the transi-
tion from the init state to the wait state is triggered. We
refer to tasks in the wait state as enabled tasks. Enabled
tasks are ready to execute.

We model scheduling policies by utilizing priorities. We
model schedulers as discrete event systems that compose
with tasks using events. Our model for schedulers keeps
track of enabled tasks by putting them in an execution
queue. Whenever the execution queue is non-empty the
scheduler chooses a task (or possibly several tasks) for exe-
cution by generating an event triggering the transition from
the wait state to the run state in the selected task(s). We
assume that tasks can distinguish between events coming
from tasks and schedulers in the DRE MoC. Events gener-
ated by schedulers are also labeled as timestamps.

Figure 2 shows a possible DES representation of the DRE
example shown in Figure 1. We create a finite state ma-
chine model for each task, channel, timer, and scheduler,
that compose using events. We denote input events as e?,
output events as e!. If the output event of a transition is the
input event of another transition then the two transitions are
synchronized; their events must have the same timestamps
when the transitions are taken. If two (or more) transitions
are synchronized either all of them has to be taken, or none

Figure 2: Composing DES Models using Events -
Partial Representation of the DRE Example Shown
in Figure 1

of them. We model scheduling policies by introducing priori-
ties between transitions. For example, a simple fixed priority
scheduling policy between tasks ta, tb, tc, and td may be im-
plemented by introducing priorities between the transitions
marked as s1!, s2!, s3!, s4!. The priorities may enforce a fixed
execution order between enabled tasks (a task is enabled if
it is in the wait state).

All schedulers in the DRE MoC implement a non-preemptive
scheduling policy; the transition from the run state to the
init state is triggered when the task generates an output
event, and we do not allow transition from the run state to
the wait state. Each computation task tk ∈ (T − C − TR)
generates an output event with a timestamp between [bcetk

+ time(sk), wcetk + time(sk)] where sk is the event gen-
erated by the scheduler that triggered the transition from
state wait to state run in task tk.

In the DRE MoC every task has to be mapped into a
machine. As a machine is a model for a single node in a dis-
tributed system each machine has its own scheduler with its
own execution queue, and each scheduler might implement
a different scheduling policy.

3.4 Performance Evaluation Problem
We now utilize the DRE MoC to define the performance

evaluation problem and schedulability problem for non-pre-
emptive DRE systems. We use the notation for the se-
quence of input events of a task tk as Ik = {ik0, ik1, . . . },
the sequence of output events as Ok = {ok0, ok1, . . . }, t ∈
T, ik0, ik1, · · · ∈ E, ok0, ok1, · · · ∈ E. We specify deadlines for
each computation task tk using the mapping dk : T → N.
Deadlines for each task and each input event are counted
from the timestamp of the input (enabling) event (time(ik)).

Definition 1. (Schedulability): A computation task
tk ∈ T is schedulable if it always finishes its execution before
its respective deadline. The DRE MoC is schedulable if all
tasks are schedulable. We formalize this condition using the
DRE MoC as follows: (∀tk ∈ (T−C−TR))(∀ik ∈ Ik)(∀ok ∈
Ok) time(ok) < time(ik) + dk.

Definition 2. (Run): A run or execution trace of the
DRE MoC is the chronological sequence of events occured in
the model. A run is valid if it is schedulable, that is if for
all input (ik) and their corresponding output (ok) events in
the execution trace time(ok) < time(ik) + dk, otherwise it
is invalid.
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Definition 3. (End-to-end computation time): We
define the end-to-end computation time between an input
event ijn of task tj and an output event okm of task tk as the
maximum possible difference between the events’ timestamps
along all the possible runs of the model end-to-end(okm, ijn)
= max[time(okm)−time(ijn)], if ∃{(tj , ta), (ta, tb), ..., (tb, tj)}
∈ D. If task tk does not depend on task tj in the DRE
MoC (@{(tj , ta), (ta, tb), ..., (tb, tj)} ∈ D), we define end-to-
end(okm, ijn) = ∞.

It is a well-known fact that the sum of local worst case exe-
cution times does not necessarily result in worst case end-to-
end computation times. We now demonstrate this problem
in non-preemptive DRE systems to motivate our approach
for formal performance evaluation using the simple DRE ex-
ample shown in Figure 1. We define the period of each timer
to be 100 time units, and the delay of each channel to be 0.

Figure 3 illustrates the first period of DRE model execu-
tion traces shown in Figure 1 using the parameters in Ta-
ble 1. In this example, for most tasks the bcetk time equals
the wcetk time to reduce complexity, for easier illustration.
We utilize fixed-priority scheduling in machine 1 between
tasks tA, tB , tC , and tD. Tasks tE and tF are executed con-
currently and have their own schedulers. Note that EDF
scheduling would result in a deadline miss by task tB , as it
scheduled the sequence tA, tC , tB . This illustrates that EDF
is not optimal in the non-preemptive DRE MoC.

The execution trace in the left of Figure 3 demonstrates
that the system is schedulable if all tasks execute using their
wcet. The trace in the middle of Figure 3 shows that the
system is schedulable when bcet are considered during the
execution trace. However, the trace in the right of Figure 3
shows that task tC might miss its deadline if task tE executes
for 71 time units. This example shows that the performance
evaluation of event-driven non-preemptive DRE systems has
to consider execution intervals rather than worst case exe-
cution times, and justifies the need for automated response
time analysis.

4. PERFORMANCE ESTIMATION OF
DRE SYSTEMS BY DES

This section describes the proposed DES-based perfor-
mance evaluation method for event-driven DRE systems ex-
pressed using the DRE MoC. We introduce the event order
tree and show how it can be utilized for performance esti-
mation.

4.1 Event Order Tree

Definition 4. (Equivalent execution traces): In the
DRE MoC two execution traces are equivalent, if the two ex-
ecution traces contain the same events, and the chronological
order of events in both execution traces is the same.

Note that for equivalence only the order of events have to
be the same, not the timestamps of events (untimed equiv-
alence). We propose a directed tree representation for the
valid traces of a DRE model, called event order tree. Each
node in the event order tree represents an event and the
(global) time constraint on the current event’s timestamp.
The path from the root of the event order tree to a node
represents possibly infinite number of equivalent execution
traces of a DRE model. There is a directed edge from node

Task tA tB tC tD tE tF

bcet 10 10 10 10 50 70
wcet 10 10 10 10 90 70

deadline 22 25 12 32 100 100

Table 1: Timing Information for the DRE Model
Shown in Figure 1

Figure 3: Execution Traces of the DRE Model
Shown in Figure 1

A to node B if event B may be raised after event A, and
there are no other events between them.

Figure 4 shows the event order tree for the DRE model
shown in Figure 1 (thicker borders explained in Section 5).
Computations in the model are triggered by the timers, that
generate events i1, i2, i5, i6, therefore we label the root as
i1i3i5i6. All these events are generated at (global) time 0,
therefore we represent the constraint on their timestamps as
[0, 0] in the root. The schedulers trigger the execution of
tasks tB , tE and tF by generating the s2, s5, s6 events. We
label the immediate child of the root in the event order tree
as s2s5s6. Scheduling tasks for execution after they become
enabled is instantaneous in our discrete event scheduler,
therefore the time constraint on the timestamps of events
s2s5s6 remains [0, 0]. Although the time constraints in the
root and the node marked as s2s5s6 are identical, there is
a causal ordering between them in the DES model; a task
can only be scheduled for execution after it has received an
input event. The causal orderings between events with the
same timestamp correspond to zero-time transitions in other
MoCs, such as timed automata.

Each path in the event order tree from the root to the
leaves imposes constraints on the execution intervals of tasks
by defining constraints on the timestamps of events. For
example, the path from the root to the leftmost leaf in the
same tree requires task tE to finish its execution after task
tD has finished its execution, and before task tF finishes it
execution in the (50, 70) interval as shown by the constraint
o5i3(50, 70) in the event order tree. Therefore, the leftmost
path in the event order tree shown in Figure 4 restricts the
execution time of task tE to (50, 70).

Definition 5. (Branching intervals): We refer to in-
tervals implied by equivalent execution traces as branching
intervals. Branching intervals are always subsets of the ex-
ecution intervals [bcetk, wcetk] of tasks.

For example, in the case of task tE its three branching in-
tervals are: [50, 50], (50, 70), [70, 70] ⊂ [50, 70], as shown by
the constraints o4o5i3[50, 50], o5i3(50, 70), o5o6i2i3[70,
70] in the event order tree.

4.2 Branches in the Event Order Tree
The execution of the DRE model on machine 1 is deter-

ministic, tasks execute in the order tB , tA, tC , tD, tD, while
tasks tE and tF execute on machine 2 and machine 3 in
parallel. We reach the first non-deterministic choice in the
ordering of events after task tD starts executing for the sec-
ond time within the period; if task tE executes for its bcet
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Figure 4: The Event Order Tree of the DRE Example in Figure 1 using the Parameters in Table 1

then tasks tD and tE finish their execution simultaneously
(constraint o4o5i3[50, 50]); otherwise task tD finishes its
execution first (constraint o4[50, 50]), and then task tE

finishes its execution. To capture this non-determinism the
event order tree has to branch at node s4[40, 40]. In the
DRE MoC we also consider race conditions between tasks
assigned to the same machine only if they receive events
from tasks assigned to other machines.

Definition 6. (Race condition): If for two tasks tk, tj ∈
T , machine(tk) = machine(tj)(∃ik ∈ Ik, ij ∈ Ij)(time(ik) =
time(ij)), and (machine(ts) 6= machine(tk) ∨ machine(tr) 6=
machine(tj), ts ∈ T, tr ∈ T, {ts, tk} ∈ D, {tr, tj} ∈ D then
there is a race condition between task tk and tj.

For example, if tasks tE and tF finish at the same time
there is a race condition between tasks tB and tC . We iden-
tify race conditions the following way: whenever a set of
tasks receives events with the same timestamp we check
whether the tasks that generated that event are assigned
to the same machine as the set of tasks. If not, race condi-
tions may be present. If race conditions are present between
a set of tasks we have to consider each task to receive its re-
spective event first, therefore in these cases the event order
tree has to branch for each task.

Consider the node o5o6i2i3[70, 70] in the event order
tree shown in Figure 4. This node represents the execution
trace where tasks tB , tA, tC , tD, tD execute in this order in
machine 1, and tasks tE and tF finish their execution at the
same time. The event order tree branches and we consider
both the case when task tB receives its start even first (s2),
or when task tC receives its start event first (s3) due to race
conditions.

Definition 7. (Branching point): We refer to nodes
in the tree, where the event order tree branches due to non-
deterministic execution times, or race conditions as branch-
ing points.

4.3 Real-time Verification by DES
In this subsection we propose a method for the real-time

verification of a large class of DRE models using the event
order tree. The event order tree is a symbolic representa-
tion of all distinguishable execution traces of the DRE model
from a timing perspective as we show in this section. We
build on the results of this section to propose a method for
the on-the-fly construction of the event order tree in Subsec-
tion 4.4, providing a way for formal performance evaluation
with a systematic measurement of state space coverage.

Timers in the DRE MoC introduce periodicity in the mod-
els. Since the DRE MoC allows the use of multiple timers
with different periods we need to find the least common mul-
tiplier of timer periods, which we refer to as time limit. We
make the restriction that all tasks have to be in the init

state when events timestamped with the time limit are gen-
erated.

∀(tk ∈ T − C − TR) state(tk, time limit) = init (1)

This restriction is sufficient, but not necessary for a schedu-
lable DRE model, as in pipeline architectures the process-
ing of older events may overlap with the processing of newer
events at different stages in the pipeline, therefore we may
not reach a condition where all tasks return to the idle

state at once. In pipelined systems we can either verify the
system to a limited horizon – which does not guarantee that
the system will work properly after the time limit – or use
other model checking techniques on the DRE MoC, such as
timed automata, as described in [20, 18, 19]. In the rest of
this section we show that if Equation 1 is satisfied, we can
verify DRE systems by exhaustively enumerating all the ex-
ecution traces corresponding to all paths in the event order
tree from the root to the leaves.

Theorem 1. (Repeatable property): The event order
tree of a given DRE model repeats itself from all its leaves.
We refer to this property of event order trees as repeatable.
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Proof (outline): We build on Equation 1 that tasks have
to be in their initial states (init) when the time limit is
reached, that is the least common multiplier of timer pe-
riods. The timers generate the same events that have ap-
peared in the root, with the timestamps of the time limit.
Since there is no relative difference between the timestamps
of events generated by the timers the DRE model can ex-
hibit the same execution traces as before. 2

We only build the event order tree until we reach the time
limit on the timestamps of events. For example, the event
order tree shown in Figure 4 repeats itself from all leaves. It
is important to note that even though a DRE system may
utilize several timers with different periods there is only one
event order tree, rather than a forest. New events generated
by faster timers are considered as branching points or are
simply appended to the leaves if no tasks are running when
the timer generates a new event.

Theorem 2. (Finite number of nodes): There is a
finite number of nodes in the event order tree.

Proof (outline): In the DRE MoC a finite number of
events are generated with timestamps within any interval,
because (1) we only consider the boundaries of intervals, (2)
timers generate events at discrete time steps, and (3) each
task generates finite number of output events for each in-
put event. Therefore, each branch has a finite number of
children in the event order tree. There is a finite number
of branches – at most one for each executing tasks, and one
for each enabled task that may be in race conditions. Since
there is a finite number of branches and each branch has a
finite number of children, the event order tree has a finite
number of nodes. 2

Theorem 3. (Worst case execution trace): We de-
fine the worst case execution trace of equivalent execution
traces as the execution trace where tasks produce output events
with maximum value timestamps from their branching inter-
vals (as introduced in Definition 5). If the worst case exe-
cution trace of equivalent execution traces is valid, then all
equivalent execution traces are valid.

Proof (outline): The order of events in equivalent execu-
tion traces is fixed. Therefore, none of the tasks is forced to
wait for longer when the execution times of some tasks are
decreased, than when execution times are left unchanged.
None of the tasks generate events with timestamps larger
than in the worst case execution trace, otherwise the or-
dering of events would change. If the worst case execution
trace is valid, then all equivalent traces are valid, since tasks
within those execution traces generate events with times-
tamps less than or equal to the worst case execution trace,
therefore they do not violate their deadlines. 2

We have shown that the event order tree has a finite num-
ber of leaves, therefore DRE models have finite number of
equivalent execution traces. We have also shown that the
real-time properties of equivalent execution traces can be
verified using a single discrete event simulation. The set of
paths in the event order tree from the root to the leaves
gives all the possible equivalent execution traces of a DRE
model. The exhaustive discrete event simulation of all the
possible equivalent execution traces in the event order tree
of a DRE model consists of a finite number of discrete event
simulations, therefore it is a valid method for the real-time
verification of DRE models that satisfy Equation 1.

4.4 On-the-fly Detection of Branching Points
in the Event Order Tree

This subsection describes how we can detect branching
points at runtime, providing a way for the on-the-fly con-
struction of the event order tree. By enumerating all execu-
tion traces corresponding to the paths from the root of the
event order tree to the leaves, we can estimate the system’s
performance with 100% coverage. However, the exhaustive
analysis of large-scale DRE systems is most often infeasible
in practice due to the state space explosion problem. There-
fore, in most practical scenarios we cannot build the whole
event order tree in advance due to storage constraints, and
we can only enumerate some paths of the event order tree
due to time constraints. In these cases we obtain results
using a partial state space search, and therefore we cannot
guarantee their correctness. We can, however, achieve bet-
ter coverage and confidence than with the existing methods,
as shown in Section 5.

There are two major ways for building and analyzing the
event order tree. The first option is to build the event order
tree in a breadth-first search (BFS) fashion. The BFS-based
approach stores the event order tree in the memory, and it-
eratively build the tree from the leaf-candidates. This ap-
proach requires that we store timing information (and times
states) for all leaf-candidates of the event order tree in order
to quickly restore the timed state of the system correspond-
ing to the actual leaf-candidates, and check for deadlines and
end-to-end computation times. The BFS-based approach
has significant memory overhead, and resembles an exhaus-
tive model checking method.

In this paper we propose a depth-first search (DFS)-based
approach to obtain the event order tree. The DFS-based ap-
proach has minimal memory overhead, as it does not store
the event order tree in the memory. We detect branching
points in the event order tree during simulation traces, and
then use this information to direct the discrete event sched-
uler to iteratively explore unique paths in the event order
tree.

Note that although there are several model checkers that
implement a BFS-based or/and a DFS-based search algo-
rithm to enumerate symbolic state spaces, they are opti-
mized to check simple properties using some logic - such as
LTL [22] or CTL [6]. For the evaluation of embedded sys-
tems designers often want to find the maximum/minimum
value of certain design parameters, or simply check whether
the system performance gets better or worse when they
change a design parameter. These conditions often require
multiple model checker runs in order to translate these prop-
erties into a set of yes/no questions, which becomes imprac-
tical, cumbersome, and time consuming.

The key problem that we need to address is to detect
branching points at runtime, and then exploit this infor-
mation to construct new directed simulation traces in the
future that enumerate traces representing unique branching
intervals. We now describe a simple and practical approach
to address this problem.

In our implementation all events are globally observable,
and each task detects its own branching intervals. As we dis-
cussed in Definition 5, branching intervals are always sub-
sets of the execution intervals [bcetk, wcetk] of tasks, since
the order of events in an execution trace can only change if
an event is raised earlier/later than another event. More-
over, all branching intervals represent different orderings of
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Algorithm 1 Obtaining and Enumerating the Event Order
Tree by Discrete Event Simulations

1: create the superset of race conditions R
2: set the execution time for all tasks tk ∈ T to their wcetk

time, and the next execution time for all tasks to their
bcetk time, respectively (∀tk ∈ T exec timek = wcetk,
next timek = bcetk)

3: // enumerate all branching intervals
4: for all permutations of exec timek assignments, ob-

tained using the next timek variables do
5: clear the superset R
6: call discrete event simulation () described in Algo-

rithm 2
7: // enumerate all race conditions with the current

exec timek assignments
8: for all permutations of events in superset R do
9: call discrete event simulation () described in Algo-

rithm 2
10: end for
11: end for

events, therefore we only need to consider events within
the [bcetk, wcetk] intervals of tasks to detect all branch-
ing points. Also, as described in Section 4.2, we consider
race conditions in the models as well. During a single ex-
ecution trace, whenever we encounter a race condition be-
tween events using Definition 6, we add the events in a set,
and then add the set to the superset containing all sets of
race conditions. For each event in a set we need to consider
the possibility that it is executed first due to a race condi-
tion, and we need to consider all permutations between the
sets in the superset. We detect all events on-the-fly during
simulations, and check all their possible permutations at the
boundaries of branching intervals, therefore we enumerate
all the paths in the event order tree. Algorithm 1 describes
our algorithm for generating all permutations of events by
iterative simulations. Note that we do not set all tasks’ ex-
ecution times to their next exec time simultaneously, rather
we generate all permutations.

Figure 5: Example DRE System Case Study

Algorithm 2 function discrete event simulation ()

1: run directed discrete event simulation, during which
each task stores its start time as start(k)

2: during the simulation all tasks tk observe events ei that
are raised in the [start(k) + bcetk, start(k) + exec timek)
interval

3: if startk + next timek < time(ei) then
4: // we have encountered a branching point in the

(bcetk, wcetk) interval
5: record time(ei) - startk in next timek

6: else
7: do nothing, event will be considered in subsequent

simulations
8: end if
9: // find all race conditions with the current exec timek

assignments
10: for all race conditions detected between events

ei, ej , . . . ek during the simulation do
11: search for the set containing events ei, ej , . . . ek in su-

perset R
12: if the set is found then
13: do nothing
14: else
15: add the set S = {ei, ej , . . . ek} to the superset R
16: end if
17: end for

5. PRACTICAL APPLICATION AND
PERFORMANCE

In this section we evaluate the proposed DES-based per-
formance estimation method as implemented in the open-
source Dream tool [21]. Figure 5 shows the case study
used for the performance estimation. The DRE model is
loosely based on a real-time CORBA avionics application
implemented in the Boeing Bold Stroke execution frame-
work. The model consists of 98 tasks (including FIFO chan-
nels and timers) and 57 dependencies between tasks. Due to
space constraints we can only illustrate the size and design
of the model used for the analysis. Our approach for the
modeling of the Bold Stroke framework is described in [20].
The case study shown in Figure 5 is described in [21], and
is distributed with the open-source Dream tool.

As described in Section 2, existing methods for real-time
analysis and performance estimation have limited use in
non-preemptive event-driven asynchronous systems. Static
schedulability methods are not directly applicable to this
scheduling model as demonstrated in Section 3.4, and are
often overly conservative, limiting the accuracy of perfor-
mance estimation results. Simulations capture dynamic ef-
fects in DRE systems, providing better accuracy, but the
coverage of simulations is hard to measure. Model checking,
on the other hand, provides a way for exhaustive analysis,
but the abstractions required to prevent the state space ex-
plosion problem often result in decreased accuracy. The pro-
posed DES-based performance estimation method combines
model checking with simulations, therefore we compare the
DES-based performance estimation results to random sim-
ulations, as implemented in the Dream tool, and to timed
automata model checking methods implemented in the Up-
paal model checker [13], and the Verimag IF toolset [3].

We focused on the analysis of two properties in our experi-
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ments; (1) we measured the end-to-end computation time of
the application, as defined in Definition 3, from the first
event generated by the timers, till the time when all tasks
have finished their execution, and (2) we performed schedu-
lability analysis, by formally analyzing whether any of the
tasks may violate their deadlines.

5.1 Comparison with Random Simulations
The main advantage of the DES-based method is that it

gradually increases coverage over time. Random simulation-
based methods do not have this property. Random simula-
tions assign execution times following a uniform distribution
from the [bcetk, wcetk] intervals of tasks. Let’s denote the
two endpoints of a branching interval as lki , hki , where lki

refers to the lower bound on the branching interval, and hki

refers to the higher bound on the branching interval bcetk

≤ lki ≤ hki ≤ wcetk. Then we can formalize the probabil-
ity that the random execution time is within the branching
interval as follows:

P =
hki − lki

wcetk − bcetk
(2)

Note that lim(hki
−lki

)→0 P = 0, therefore the probability

that an exact number is chosen randomly from a continuous-
time interval is close to 0, even if we execute infinite num-
ber of simulations. Also, the smaller the branching interval,
the less chance that we actually consider it during simula-
tion. Since there is a higher chance that the execution time
is picked from larger branching intervals, repetitive simula-
tions will pick execution times from branching intervals that
have already been chosen for simulation. To illustrate this
problem, consider the event order tree as shown in Figure 4.
The nodes with the thinner borders correspond to execu-
tion traces, that represent race conditions, and cases when
two (or more) events are released with the same timestamp.
We see that these cases represent the majority of possible
unique orderings of events in this simple example. In larger
systems we can expect even worse results, as the number of
branching intervals and race conditions may grow exponen-
tially with respect to the number of tasks in the system.

As we have seen from Equation 2, the chance to find
these execution traces using random simulations is close
to 0. However, in the actual system the execution times
rarely follow a uniform distribution; it is quite probable that
some execution times are more frequent than others, and
that the real system encounters execution traces that were
not considered during the simulation-based evaluation pro-
cess. Since these traces are not simulated, designers will also
fail to recognize how the system performance/schedulability
might change due to dynamic effects such as race conditions
or congestions. Therefore, we conclude that random simu-
lations may be useful for the first steps of performance eval-
uation, but can achieve only partial coverage of the possible
execution traces over time.

In contrast, the method presented in this paper gradu-
ally increases coverage over time. Moreover, we consider
each branching interval only once, and we check the worst
case times directly, rather than a random number from the
branching interval. Therefore, the proposed DES-based met-
hod can discover significantly more corner cases than ran-
dom simulation-based performance estimation techniques.

To check whether our observations are relevant in large-
scale systems, we ran experiments to compare random sim-
ulations and the DES-based method on the model shown in

Figure 5. We used a 1.7GHz Pentium 4-M machine for the
tests with 1GB Memory, running Linux kernel 2.6.20. On
this test configuration, the Dream 0.7 Beta release can
simulate one execution trace of the DRE case study shown
in Figure 5 in ∼30 ms. The fast performance is the result of
the symbolic DES-based representation. We ran both ran-
dom simulations and the DES-based method on the model
shown in Figure 5 for a week. We used the open-source
Dream tool for the random simulations as well, therefore
all improvements in the DES-based analysis are the result
of the better state space coverage. We were able to simulate
∼20 million (2 × 107) non-equivalent execution traces (the
execution order of tasks is different) of the case study us-
ing the DES-based method in one week. This coverage can
only be achieved using model checking techniques within
this short time. Our experiments show that the DES-based
analysis can obtain higher bounds on the worst case end-to-
end performance than random simulations [21].

The difference comes from the fact that the DES-based
method has better state space coverage, and therefore it
is more accurate for performance estimation than random
simulations. Even though the DES-based method cannot
always obtain the highest bounds on the end-to-end per-
formance, the combination of model checking and directed
simulations along the execution tree provided the best cov-
erage that we could achieve within a week on this case
study. This shows that the proposed DES-based verifica-
tion method is practically applicable for the performance
evaluation of large-scale systems.

5.2 Comparison with Timed Automata Model
Checking Methods

We have used Dream to generate timed automata repre-
sentation from DRE models as described in [20]. Uppaal
and the IF toolset are two leading model checkers for real-
time verification with several years of development history.
Although both Uppaal and IF build on the timed automata
model of computation they are inherently different. Uppaal
uses a traditional timed automata model [1] extended with
integer-valued variables, IF, on the other hand, uses transi-
tion priorities to express time constraints.

We have not conducted extensive comparisons between
Dream and timed automata model checkers yet to reach
meaningful conclusions on how their verification performance
compares in general. In the case studies that we’ve analyzed,
timed automata model checkers usually perform better than
the proposed DES-based method, on smaller models, that
have a high degree of non-determinism. Earlier we have suc-
cessfully used Uppaal for the real-time verification of DRE
systems consisting of ∼30 tasks/event channels as described
in [20]. Timed automata model checkers employ symbolic
state representations that allow for efficient heuristics and
compact state space representation. Therefore, both Up-
paal and IF implement memory-bounded model checking.

On large-scale models, such as the case study shown in
Figure 5, however, both timed automata model checkers
run out of memory, and are unable to give partial results
to designers. Although Dream does not run out of memory
on these examples, the verification time increases exponen-
tially. The impact of this problem could be potentially re-
duced by implementing the model checker on a distributed
platform. In our experience, timed automata model checkers
are useful for the performance evaluation of DRE systems
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that can be modeled with less than ∼60-100 clocks (occa-
sionally better on mostly deterministic models), but cannot
be applied for the performance estimation of large-scale sys-
tems in practice. Moreover, since performance estimation
has to be formalized as a yes/no question, designers have
to “guess” what a close bound on the end-to-end compu-
tation time could be, and check whether the performance
is smaller or not. Our experiences have shown that timed
automata model checkers are well-suited for the real-time
verification of small/medium size systems, but their practi-
cal application for the performance estimation of large-scale
DRE systems is limited, and cannot be compared to the
proposed DES-based method – or even random simulations
– on large-scale systems, due to the state space explosion
problem as a result of the exhaustive analysis.

6. CONCLUDING REMARKS
This paper presents an approach to model DRE systems

as discrete event systems using a continuous-time model,
and proposes a method for formal performance evaluation
and real-time verification. The proposed method explicitly
captures the data flow, and models communication and ex-
ecution intervals using a non-preemptive scheduling model.
The DRE MoC provides a formal executable model allow-
ing to bridge the gap between simulations and formal ver-
ification. Our benchmarks based on a large-scale avionics
case study show that the DES-based performance evaluation
method can achieve better coverage than alternative meth-
ods, and provides a way for the systematic measurement of
coverage. The DES-based performance estimation and ver-
ification method has been implemented in the open-source
Dream tool available at http://dre.sourceforge.net.
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