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ABSTRACT 
Non-volatile RAM (NVRAM) such as PRAM (Phase-change 
RAM), FeRAM (Ferroelectric RAM), and MRAM 
(Magnetoresistive RAM) has characteristics of both non-volatile 
storage and random access memory (RAM). These forms of 
NVRAM are currently being developed by major semiconductor 
companies and are expected to be an everyday component in the 
near future. The advent of NVRAM may possibly bring about 
drastic changes to the system software landscape. In this work, we 
develop a new Flash memory based file system that exploits 
NVRAM in order to improve system performance. Specifically, 
we discuss the initial design and implementation of a file system 
that stores all metadata in NVRAM, while storing all file data in 
Flash memory. In so doing, we make two contributions in this 
work. First, we present a model that analyzes the amount of 
NVRAM that is needed for specific Flash memory storage 
capacity. Experimentally, we verify that this model represents the 
exact NVRAM usage in the realistic environment. Second, we 
present quantitative experimental results that show how much 
performance gains are possible by exploiting NVRAM. Compared 
to YAFFS, a popular Flash memory based file system, we show 
that this file system requires only minimal time for mounting and 
that the execution time improves by a maximum of 600% and an 
average of 437% for the realistic workloads that we considered.  

Categories and Subject Descriptors 
C.3 [Computer Systems Organization]: Special-Purpose And 
Application-Based Systems – Real-time and embedded systems; 
D.4.3 [Operating Systems]: File System Management – Access 
methods, directory structures;  

General Terms 
Design, Experimentation, Measurement, Performance 

Keywords 
Non-Volatile RAM, Flash memory, File system, Metadata, 
Experimental evaluation 

1. INTRODUCTION 
NVRAM (Non-volatile Random Access Memory) is a form of 
next generation memory that retains the access characteristics of 
conventional RAM such as DRAM and SRAM, and yet, retaining 
the non-volatile characteristics of secondary storage such as Flash 
memory or disks. NVRAM in its various forms, such as PRAM 
(Phase-change RAM), FeRAM (Ferroelectric RAM), and MRAM 
(Magnetoresistive RAM), are being developed by major 
semiconductor companies such as Texas Instruments, IBM, 
Samsung, Fujitsu, Motorola, etc [5, 16]. As semiconductor 
technology continue to make progress, we can anticipate 
NVRAM to become a common component of embedded systems 
as well as commodity computers. In fact, Samsung recently 
announced its PRAM development plans as shown in Figure 1 
and is expected to ship 512Mbit PRAM commercial samples by 
the end of 2007 [21].  
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Though not yet as prevalent as Flash memory, NVRAM has 
specific advantages over Flash memory. First of all, its access 
time is faster than Flash memory, especially for write access. 
While write access time for Flash memory is in the hundreds of 
microsecond range, writes in NVRAM is in the hundred 
nanosecond range [6, 17, 19]. Furthermore, the poor write access 
time in Flash memory can be exacerbated into the millisecond 
range if erasure operations must be invoked before the write. This 
may occur because physically overwriting within Flash memory 
is not possible. To overwrite existing data, the new data must 
generally be written to a different location and the old data 
invalidated. This incurs complications in managing old and new 
data [8, 12, 13]. The erasure operation is also the key factor that 
disfavors Flash memory compared to NVRAM. As erasures must 
be done in block units, copying of valid information within the 
block to be cleaned must occur [8]. This type of overhead for 
writes are not necessary with NVRAM as writes are done simply 
like DRAM. Erasures also bring about another critical limitation 
with Flash memory, that is, of endurance. Block erasures are 
physically limited to around 10,000 to 100,000 times for Flash 
memory, while there is no such limitation for NVRAM [6, 17, 19]. 
This makes NVRAM suitable for situations where writes 
frequently occur. 

The question, then, is how to exploit these beneficial 
characteristics that NVRAM possesses, and to understand how 
much of it is needed to make such use possible. It seems the plan 
for now is simply to “replace NOR flash memory” [21]. 
Specifically, from a system software viewpoint, one of the options 
may be to use it as a write buffer cache [2]. In this paper, we take 
a different direction and explore the possibility of using NVRAM 
as a metadata store and examine what effects it has on the Flash 
file system. We choose to design a file system that puts all 
metadata of the file system in NVRAM as maintaining metadata 
safely, and doing it efficiently, is essential to keeping the file 
system consistent. All the file data, on the other hand, are stored 
in Flash memory. We name this new file system, the MiNV 
(Metadata in Non-Volatile ram) file system.  

To assess the amount of NVRAM that would be required in this 
new design we derive a model of the NVRAM space requirement 
that is needed to store all the metadata. This model is validated 
via a real implementation in an embedded board. We also conduct 
other experiments and measure the performance difference 
between the MiNV file system and YAFFS, which is a typical 
Flash memory based file system [1]. Our measurements show that 
by using NVRAM as a metadata store the performance benefits 
are substantial. Mount time is reduce to the minimum and for 
realistic workloads that we considered the execution time is 
improved by as much as 600%. 

The remainder of the paper is organized as follows. In the next 
section, we describe the design of the MiNV file system in detail. 
Then, in Section 3, we derive the NVRAM space requirement 
model and analyze the space requirement to deploy the MiNV file 
system in various settings. In Section 4, we present the 
experimental results. We first describe the experimental setup 
including the software and hardware platforms that we use. Then, 
we conduct various experiments and discuss their results. We 
briefly review some of the previous works related to this study in 
Section 5, and then, conclude with a summary and directions for 
future research in Section 6.  

2. DESIGN OF THE MiNV FILE SYSTEM 
In this section, we describe the design of the MiNV file system 
(MiNVFS) in detail. The overall structure of the design is similar 
to that of YAFFS, a popular file system designed for Flash 
memory currently used in operating systems such as Linux and 
WinCE [1]. The main difference in MiNVFS is that all its 
metadata are stored in NVRAM. Hence, we describe our design in 
contrast to that of YAFFS. Then, we explain how NVRAM is 
dynamically managed and how it maintains the corresponding 
metadata of the files and directories as their hierarchy changes. 

Figure 2 illustrates the state of the metadata and file data as 
maintained in RAM, Flash memory, and NVRAM for YAFFS and 
MiNVFS. As depicted in Figure 2(a), YAFFS stores the metadata 
including the file offset information as well as the file data in 
Flash memory. YAFFS allocates a page from Flash memory for 
the yaffs_ObjectHeader structure, which contains the inode 
information of the file, for each file (and directory). The contents 
of the file data are stored in page units, and for each page the 
corresponding file offset information is recorded in the spare area. 
This information is used for recovery from system failure as well 
as at mount time to construct the data structures for metadata 
management in SDRAM that is needed for normal operation. The 
SDRAM depicted in Figure 2(a) is how it would look like after 
YAFFS is mounted. 

(a) YAFFS 

(b) MiNVFS 

Figure 2: Metadata and file data maintained by (a) YAFFS 
and (b) MiNVFS 
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Similarly to YAFFS, MiNVFS maintains data structures for 
metadata management for normal operation, but in NVRAM 
instead of SDRAM, as depicted in Figure 2(b). As can be noted 
from the figure, instead of the yaffs_ObjectHeader structure 
MiNVFS maintains a different structure referred to as the 
NVRAM_Manager, along with other structures such as Inode and 
File_Offset. Note also that all these structures are maintained 
once and for all in NVRAM and that these structures do not have 
to be reconstructed at mount time. Also, none of this information 
exists in Flash memory. Only file data is stored in Flash memory 
and the spare area is also no longer used to store metadata.  

Let us now describe each of the data structures in more detail in 
the order they are laid out in NVRAM. At the top of the NVRAM, 
there is the NVRAM_Manager structure that contains information 
that is used to dynamically manage the NVRAM. Due to its 
simplicity, the BGET memory allocator is used for this purpose 
[22]. The Superblock structure comes next. This structure 
contains the current status information of each of the blocks, 
which consists of 32 pages, in Flash memory. In our 
implementation of MiNVFS, we associate 16 bytes for each block 
in Flash memory to maintain information such as its current 
allocation status and the number of currently allocated pages in 
the block. Within this information, we associate 2 bits for each 
page comprising the block to specify whether the page is 
available or not and whether it is clean or dirty. Next comes the 
Inode_Table. This is the hash table that links all existing Inode 
structures, which we describe shortly. By maintaining this table in 
NVRAM, MiNVFS has instant access to all the files immediately 
after booting.  

Finally, the information for managing each of the files and 
directories are contained in the Inode structure. This structure is 
allocated from the bottom of the NVRAM. This structure contains 
information typically maintained in any file system such as 
ownership, access permission, creation time, modification time, 

access time of either a file or directory, and so on. When the 
structure is associated with a data file, the Inode structure 
contains a pointer to the File_Offset structure that contains the 
mapping information between the file data offset and the page (or 
possibly, block) address in Flash memory. As an example, Figure 
3(a) shows a logical hierarchy of directories and a file and, in 
Figure 3(b), how this would be represented with the Inode and 
File_Offset metadata structures in MiNVFS. As depicted in 
Figure 3(a), there is the root directory, 2 subdirectories, and a file, 
and this is represented as an Inode structure for each of the three 
directories and the one file. These Inode structures are linked to 
each other to form the directory hierarchy. Different from the 
Inode structure for the directory, the Inode structure for the file 
has a pointer to the structure File_Offset that contains 
information mapping the file offset to the address of the page in 
Flash memory. The File_Offset structure has a fixed size that 
is equivalent to the size of the Inode structure to keep NVRAM 
management simple and minimize external fragmentation. By 
using a fixed size File_Offset structure, the size of a file that 
can be represented may be limited. To represent large files, we 
allow File_Offset structures to be linked to each other as 
shown in Figure 3(b).  

3. NVRAM SPACE REQUIREMENT FOR 
MiNVFS 
MiNVFS uses NVRAM as an extension of storage to maintain all 
the metadata of the file system. To assess the feasibility of 
deploying MiNVFS in real embedded systems, we analyze the 
amount of NVRAM that is needed to deploy MiNVFS in theory 
as well as in practice. We first present an analytical model that 
assesses the amount of NVRAM required for MiNVFS. Then 
based on the model, we analyze the amount of NVRAM needed 
for MiNVFS to be deployed in the real world by considering 
various Flash memory capacities, number of files, and sizes of 
files. 

3.1 NVRAM Space Requirement Model 
In MiNVFS, the data structures for the metadata that are to be 
stored in NVRAM consists of the NVRAM_Manager, Superblock, 
Inode_Table, Inode, and File_Offset structures. Space for 
the first three of these data structures are allocated and initialized 
in NVRAM when the Flash memory partition is formatted by 
MiNVFS. The space needed here is determined based on the 
capacity of the Flash memory partition that MiNVFS manages 
and is fixed once determined. On the other hand, space needed for 
structures Inode and File_Offset is dynamically allocated and 
freed as files are created and deleted. Space required by these data 
structures is all that is required of by MiNVFS. Hence, to analyze 
the NVRAM capacity requirement, we now need to model the 
space used by these structures. 

Let us now model the space required by these data structures. 
Let the Flash memory size be S NAND , the total number of files 
(including directories) managed by MiNVFS be n , with each file 
size denoted as S k )1,,2,1,0( −= nk K . Files are allocated space in 
Flash memory in either block units or page units. We will denote 
this unit in which files are allocated COffset . Then, the relation 
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−

=

≤
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(b) Corresponding metadata structures in MiNVFS 

Figure 3: Management of metadata in MiNVFS 
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Let us now represent the amount of NVRAM required by 
MiNVFS as function ( )SS kNAND nR ,, . Then, ( )SS kNAND nR ,,  (Equation 
(1)) can be represented as a sum of function ( )S NANDf , which is the 
fixed space required by structures NVRAM_Manager, Superblock, 
and Inode_Table determined at initialization, function ( )ng , the 
space needed for the Inode structures, and function ( )S

k
nh , , the 

space needed for the File_Offset structures. Each of the 
functions ( )S NANDf , ( )ng , and ( )S

k
nh ,  can be represented as 

Equations (2)-(4) as follows and are described in detail below. 
 

( ) ( ) ( ) ( )SSSS kNANDkNAND nhngfnR ,,, ++=  -------------------------------- (1) 

( ) CCCC
SCS InodeSizeInodeTableizeBlockInfoS
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C NVRAMmm  and C InodeTable in Equation (2) are constants that 
represents the fixed space required by the NVRAM_Manager and 
the Inode_Table structures, respectively. The second element of 
this equation is the space needed for the Superblock structure. 
As the Superblock maintains a fixed sized status information for 
each of the blocks, denoted as C izeBlockInfoS , the space requirement in 
NVRAM is the number of blocks, that is, the full Flash memory 
capacity, S NAND , divided by the block size, CBlockSize , of the Flash 
memory multiplied by constant C izeBlockInfoS . Finally, the last element 
of Equation (2) is CInodeSize , which denotes the space needed for the 
one Inode structure for the root directory. 

Equation (3) represents the space needed for the Inode 
structures. The number of files that are maintained by MiNVFS 
determines this space requirement, and hence, is simply the 
number of files, n , multiplied by the size of the Inode structure, 
C InodeSize . Finally, Equation (4) represents the space needed for the 
File_Offset structures. The number of files and the size of each 
of these files determine this space. The larger a file, the more 
File_Offset structures are needed. We denote the size, in bytes, 
of the File_Offset structure as COffSize  and the number of 
mapping information, that is the number of page or block pointers 
it can hold, within the File_Offset structure as CNumOff . Then, 
Equation (4) sums all the File_Offset structures consumed by 
each file multiplied by the size of the File_Offset structure. 
Table 1 summarizes the parameters used in the model. 

3.2 Analysis Based on the Model 
There are many parameters that are used to model the NVRAM 
space requirement for MiNVFS. These parameters can be 
categorized into three groups. First, there are parameters 
determined by the hardware platform. The full Flash memory 
capacity, S NAND , and the block size, C BlockSize , are such parameters. 
The second group of parameters is those that are determined by 
the specific implementation details and choices made for 
MiNVFS. C NVRAMmm , C izeBlockInfoS , C InodeTable , C InodeSize , COffset , C NumOff , and 
COffSize  are such parameters. Finally, the last group of parameters is 
determined by the workload. The number of files, n, and the size 
of each of these files, S k , are such parameters.  

In the following analyses, we set the following parameters to 
constant values: C BlockSize  and COffset  to 16KB and 512B, 
respectively, as it is the block size and page size, respectively, of 
the Flash memory that we consider, and C NVRAMmm , C izeBlockInfoS , 
C InodeTable , C InodeSize , CNumOff , and COffSize  to values 28B, 16B, 3072B, 
140B, 32, and 140B, respectively, as these are the numbers that 
were used in our specific implementation of MiNVFS. To 
consider various hardware platforms and workloads we vary the 
parameters S NAND , n , and S k , that is, the Flash memory size, the 
number of files, and the size of these files, respectively. However, 
owing to the fact that it is practically impossible to exhaustively 
consider all possible numbers of files and their sizes, we initially 
assume that all the files that are considered in a particular setting 
to be of the same size. We relax this assumption somewhat in 
later analyses. 

Table 2 shows the NVRAM space requirement obtained from 
the model to operate MiNVFS in a system with 32MB NAND 
Flash memory. Each row represents the particular file size of 
interest and each column represents the number of files that exists 
in MiNVFS for that particular file size. The number 
corresponding to the particular row and column refers to the 
NVRAM space that is required for the number of files of that 
particular file size. For example, for ‘File Size’ row 2MB and 
‘Number of Files’ column 16, we find the value 317. This means 
for MiNVFS to maintain sixteen 2MB sized files the NVRAM 
space requirement is 317KB.  

Parameters 
Dependency Name 

Descriptions 

S NAND  Flash memory capacity 
Hardware

C BlockSize  Block size in Flash memory 

C NVRAMmm Size of NVRAM_Manager structure (bytes) 

C izeBlockInfoS Size of status information for each block (bytes) 

C InodeTable Size of Inode_Table structure (bytes) 

C InodeSize  Size of Inode structure (bytes) 

COffset  Size of file data allocation unit (bytes) 

CNumOff  Number of pointers within File_Offset structure

Implemen-
tation 

COffSize  Size of File_Offset structure (bytes) 

n  Number of files 
Workload S k  Size of each file 

Table 1: Summary of the parameters in the model 

Table 2: NVRAM space requirement in MiNVFS for 32MB 
NAND Flash memory (unit: KB) 

Number of Files 

 

1 4 16 64 256 1,024 4,096 16,384 65,536

0.5KB 35 36 40 53 105 315 1,155 4,515 17,955

2KB 35 36 40 53 105 315 1,155 4,515 - 

8KB 35 36 40 53 105 315 1,155 - - 

32KB 36 37 42 61 140 455 - - - 

128KB 36 40 55 114 350 - - - - 

512KB 40 53 107 324 - - - - - 

2MB 53 106 317 - - - - - - 

8MB 105 316 - - - - - - - 

File Size 

32MB 315 - - - - - - - - 
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Note that the numbers in the diagonal represents the maximum 

NVRAM space requirement that is needed when the 32MB Flash 
memory space is fully utilized with files of the particular size. 
From these results, we can see that the NVRAM space 
requirement increases proportionally to the number of files, even 
though the total size of all the files stored in Flash memory is 
identically 32MB. In the best case, MiNVFS needs only 315KB 
of NVRAM when a single 32MB file fills up the 32MB Flash 
memory. In the worst case, however, the NVRAM requirement is 
around 18MB when MiNVFS fills Flash memory with 65,536 
files that are 512B in size. Hereafter, we will refer to the case 
when we store the minimum number of files, thus requiring 
minimum NVRAM space as the “Best case”. Conversely, the case 
when we store the most number of files and thus require the 
maximum NVRAM space will be referred to as the “Worst case”. 

Figure 4 shows the MiNVFS NVRAM usage when the 
underlying Flash memory capacity ranges from 4MB to 8GBs. 
Note that the latest MP3 players, such as iPod nano, are being 
shipped with a maximum of 8GB NAND Flash memory. The 
“Worst case” and “Best case” results, again, show the maximum 
and minimum NVRAM space requirements for each Flash 
memory capacity, respectively. In this figure, we also show 
graphs denoted as “MP3 case” and “Photo case”. A typical MP3 
file takes up approximately 4MBs, while a typical size of photo 
takes up approximately 330KBs. (Note that the iPod nano 
advertises that the 8GB version can hold 2000 tunes or 25,000 
photos.) Hence, each of the “MP3 case” and the “Photo case” 
show the amount of NVRAM needed to deploy MiNVFS when 
the maximum number of 4MB and 330KB sized files, 
respectively, are stored in Flash memory of the specified capacity.  

The NVRAM space requirement increases linearly, for all four 
cases, as the Flash memory capacity increases. (Note that the x-
axis is represented in log-scale.) We observe that the results for 
both the “MP3 case” and “Photo case” are very similar to that of 
the “Best case”. For clarity, we show the results of the “Best 
case”, “MP3 case”, and “Photo case” for 1GB and above Flash 
memory capacity in table form in Figure 4. Considering 1GB 
Flash memory, NVRAM usage is approximately 10MBs for 
“MP3 case”, “Photo case”, and “Best case”; specifically, 
10,022KB for the “MP3 case”, 10,584KB for the “Photo case”, 
and 9,987KB for the “Best case”. In contrast, the NVRAM space 
required in the “Worst case” is more than half the Flash memory 
capacity, which may be impractical. However, in real-world 
products, such as MP3 players, mobile phones, and digital 
cameras, this “Worst case” scenario will rarely happen, if ever. 
Though the results for both the “MP3 case” and “Photo case” are 
promising, in real life, systems may retain metadata files along 
with the content files such as music and digital image files. For 
example, it is possible that with each music file, information such 
as the performer or composer may be stored in a separate play list 
or database metadata file. To consider this scenario, we examine 
the NVRAM space requirement when there is a mix of content 
and metadata files. We assume that each content file is of 4MBs 
for MP3 files, 330KBs for photo files and that each metadata file 
is of 0.5KBs. Figure 5 shows the NVRAM usage when MiNVFS 
manages a device with 1GB Flash memory capacity for various 
rates of content and metadata files. The x-axis represents the 
proportion of the whole Flash memory capacity that is consumed 
for all the metadata files. For example, consider the somewhat 
realistic case where metadata files occupy 1% of the Flash 
memory capacity and the 4MB content files take up the rest. With 
1GB Flash memory, this means that we are storing approximately 
20,000 metadata files along with 250 content files. For the 330KB 
photo content files and metadata files, this is like storing 20,000 
metadata files along with around 3,000 content files. Our results 
show that in this case, we require 15,667KB and 16,223KB of 
NVRAM space for the 4MB content files and the 330KB content 
files, respectively. In the common case, we believe that the 
number of metadata files will not exceed a few hundred. Hence, 
the results in Figure 5 show that MiNVFS may be safely deployed 
with 10-20MBs of NVRAM for embedded consumer products of 
today.  

Figure 4: MiNVFS NVRAM usage for various Flash 
memory capacities  
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4. PERFORMANCE EVALUATION  
We implement MiNVFS in Linux and evaluate its performance by 
deploying it in a real embedded system board. In this section, first, 
we describe briefly the implementation and the experimental 
setup. Then, we present results of the performance evaluation 
conducted on this setup. 

4.1 Experimental Setup 
We implement MiNVFS in Linux 2.4.x according to the design 
that we described in Section 2. The Linux kernel loads MiNVFS 
as a kernel module implemented in between the VFS (Virtual File 
System) and MTD (Memory Technology Device) layers. Our 
implementation includes the file system formatting tool and 
supports all the common basic file system operations.  

Figure 6 shows the actual NVRAM daughter board (Figure 
6(a)) and the embedded development board with the NVRAM 
daughter board attached to the motherboard through the PCI 
interface (Figure 6(b)). The NVRAM daughter board was 
developed in-house and has 12MB of FeRAM. The NVRAM 
appears in physical memory address space and can be accessed 
via memory mapped addressing. The embedded development 
board that we use is the EZ-M28 board, which supports PCI 
interfaces, developed by Falinux [7]. The EZ-M28 board has a 
S3C2800 processor, which is based on the ARM920T, 32MB 
SDRAM, and 64MB NAND Flash memory.  

4.2 Performance Evaluation Results 
In this section, we present the experimental results. We first 
present results that validate the correctness of the NVRAM space 
requirement model presented in Section 3. Then, quantitative 
comparisons of experimental results when using MiNVFS and 
YAFFS are presented. 

4.2.1 Correctness of the Model 
In Section 3, we presented a model calculating the NVRAM space 
used by MiNVFS. In this subsection, we validate the model using 
the experimental setup. We use 32MBs of the 64MB Flash 
memory available on the experimental board and generate as 
many equal sized files as possible, the sizes ranging from 1KB to 
32MB. (Since we have only 12MB of FeRAM in our 
experimental setup, we were not able to verify the results for files 
of size 0.5KB.) 

 

Figure 7 shows both the NVRAM space requirement calculated 
through the model, denoted “Model”, and the actual maximum 
amount of NVRAM that was used that was measured through the 
experiments, denoted “Experiment”. In fact, the two lines overlap 
each other and cannot be distinguished implying that the model is 
accurate. 

4.2.2 Mount Time 
In the experiments presented in this subsection, we compare the 
mount time for YAFFS and MiNVFS. With YAFFS, the metadata 
of the file system is scattered in Flash memory space. The 
scattered metadata are collected and organized in SDRAM for use, 
as explained in Section 2. This implies that as the Flash memory 
size grows, mount time will proportionally increase. In MiNVFS, 
however, all metadata is in NVRAM; hence, mount time should 
be constant and almost instantaneous. This is verified through the 
experiments.  

Figure 8 shows the mount time for YAFFS and MiNVFS. The 
x-axis of this graph is the utilization of Flash memory ranging 
from 0% to 100%. We see that the mount time for MiNVFS is 
constant at 67 microseconds for all cases. For YAFFS, mount 
time increases linearly with utilization peaking at slightly over 3 
seconds when Flash memory is fully utilized. The reason behind 
the linear increase is that the Flash memory space that YAFFS has 
to scan grows. Moreover, the linear increase observed is 
optimistic and it is a result of the way the experiments were 
conducted. For each measurement, we erased all the blocks and 
wrote out files to consume the designated percentage of Flash 

(a) 12MB FeRAM board (b) EZ-M28 Embedded board

Figure 6: System environment for the experiments 

Figure 8: Mount time for YAFFS and MiNVFS 
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Figure 7: NVRAM space requirement as estimated by model 
and as measured through experiments 
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memory. By so doing, YAFFS actually used only those blocks at 
the lower end of the Flash memory space leaving all the other 
blocks clean, because YAFFS consumes blocks, and the pages 
within the blocks, in sequential order. Hence, when scanning the 
blocks to obtain the metadata, blocks with a clean first page are 
all skipped. This results in considerable savings in scanning time. 
In reality, however, as files are manipulated, this optimal layout 
will generally not occur increasing the scan time, hence the mount 
time.  

Note that as Flash memory capacity grows, YAFFS type of 
scanning for metadata when mounting can become a significant 
overhead. Today’s handheld devices commonly have gigabyte 
capacity Flash memory, and its capacity is growing at a fast pace. 
With such large capacity Flash memory devices mounting could 
take 10’s to 100’s of seconds making such devices intolerable. 
Additionally, if a YAFFS type file system is employed as the root 
file system, its long mount time could cause significant delays 
during system boot time. In this respect, NVRAM hardware and 
file systems that make use of this hardware such as MiNVFS, 
which incurs extremely short mount time, can be quite an 
attractive alternative. 

4.2.3 Performance Evaluation with Synthetic 
Workloads 
In this subsection, we compare the performance results of 
MiNVFS and YAFFS using a synthetic workload. The workload 
comprises sequentially creating files and then deleting these files 
over and over five consecutive times. No updates on these files 
occur. The files created are all of the same particular size for each 
experiment. Table 3 shows the size of the file and the number of 
files that are created for each particular file size as used in the 
experiments. The number of files is determined by the size of the 
data file and the extra space that is needed for the metadata in 
YAFFS to fill up the 32MB Flash memory space. For example, 
for file size of 0.5KB, we can only create 32,768 files as the rest 
of the Flash memory space is needed to store the metadata 
information of these files. Note also that for particular file sizes, 
the number presented in Table 3 is not exact. For example, for a 
32MB file, this file alone will consume all of the Flash memory 
space, not leaving any space for the metadata. Hence, we reduce 

the actual file size used in the experiments just enough to provide 
space for the metadata. However, since the file size is close to 
32MBs, we simply represent it as such, for simplicity. With this 
experimental setup MiNVFS will have extra space in Flash 
memory that is not being used. Also, it may seem like MiNVFS is 
being given an unfair advantage with the extra NVRAM resource. 
However, since MiNVFS does not need SDRAM space for the 
metadata as in YAFFS, NVRAM is, in fact, replacing SDRAM 
resource, not adding extra resources, plus it saves on the Flash 
memory resource. 

Figure 9 shows the number of read, write, and erase operations 
performed in Flash memory for the synthetic workload. The x-
axis for the three graphs is the file sizes ranging from 0.5KB to 
32MB, in log scale. The value within the parentheses is the 
number of files created and is the same as those listed in the 
second row of Table 3. Figure 9(a) shows that MiNVFS has no 
read operation regardless of the number of files in contrast to that 
of YAFFS. Although the synthetic workload has no read request 
for files, YAFFS executes Flash memory page read operations 
proportional to the number of files. The reason behind this is that 
YAFFS has to execute read operations in order to update the 
metadata and also to copy pages to other blocks during garbage 
collection that occasionally occurs. (Garbage collection occurs 
because of the way YAFFS creates files. It first creates and writes 
metadata for the file to be created, then writes out the file data, 
and then, creates and writes a newly updated metadata, and then, 
invalidates the old metadata, all in Flash memory. This incurs 3 
extra writes to manipulate metadata and consumes two pages for 
the metadata. This incurs garbage collection, as eventually clean 
pages will run out in Flash memory.) MiNVFS, on the other hand, 
writes all metadata on NVRAM and does not incur any garbage 
collection. Hence, we do not observe any read operations in Flash 
memory with MiNVFS.  
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Figure 9: Number of read, write, and erase operations performed in Flash memory for the synthetic workload 
(a) Read operation count (b) Write operation count (a) Erase operation count 

Table 3: Number of files created for each particular file size 

Each file size (Bytes) 
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Figure 9(b) shows the number of page write operations incurred 
for MiNVFS and YAFFS. For all cases, MiNVFS incurs less 
writes than YAFFS. Since both file systems are being driven by 
the exact same workload, they incur the same number of write 
operations for the file data writes. However, as described in the 
previous paragraph, YAFFS incurs 3 additional write operations 
to manage the metadata when creating a file, with additional 
writes being incurred during garbage collection. With YAFFS, 
hence, the number of write operations increases proportionally to 
the number of files that are created.  

The number of erase operations incurred by MiNVFS and 
YAFFS is shown in Figure 9(c). From this graph, we again 
observe that the number of erase operations increases as the 
number of files increase. YAFFS has many more garbage blocks 
that need to be collected because of the frequently updated 
metadata that pollutes the pages in Flash memory. 

A peculiar observation in Figure 9(c) is that the number of 
erase operations incurred for MiNVFS is greater than that of 
YAFFS when the file is 128KB and greater. The reason behind 
this is that while MiNVFS actually cleans, that is, erases blocks 
when files are deleted YAFFS tends to simply mark the file as 
deleted and delays the actual block erase operations for as long as 
possible. The consequence of this is that, since the last set of 
operations conducted in our experiments is to delete all the files, 
after each experiment is over, YAFFS leaves behind around 2,000 
blocks that still needs to be erased, while MiNVFS leaves none 
such blocks behind. Hence, even though the results reported in 
Figure 9(c) appear to favor YAFFS, if we consider the blocks that 
still need to be erased before reuse, the erase count is actually 
almost identical. 

Finally, Figure 10 shows how the difference in read, write, and 
erase operation counts are reflected in the execution time. Figure 
10(a) shows the total time elapsed executing the synthetic 
workload. As can be observed from the figure MiNVFS takes 
shorter time than YAFFS in all cases. MiNVFS outperforms 
YAFFS by a maximum of 156% and an average of 81%. Figure 
10(b) gives a closer look at the results for file sizes 4KB to 32MB. 
It is noted that MiNVFS has shorter elapsed time than YAFFS for 
file sizes greater or equal to 128KB even though MiNVFS has a 
larger erase count for this file size range. This is due to the 
implementation details regarding YAFFS and MiNVFS, with 
MiNVFS being implemented much more efficiently. We do not 
go into the details of this, as this is more an issue of code 
optimization rather than file system design. 

4.2.4 Performance Evaluation with Realistic 
Workloads 
In this subsection, we evaluate MiNVFS for more realistic 
workloads. To the best of our knowledge, there is no de facto 
“realistic” file system workload that reflects the characteristics of 
embedded systems using Flash memory that is accepted by the 
research community. Hence, for this study, we reproduce the 
TFFS benchmark program from the workload scenario used to 
evaluate the performance of the TFFS file system proposed by 
Gal and Toledo [8].  

The TFFS benchmark generates the Fax, Mobile Phone, and 
Event Recorder file system workloads. The Fax workload can be 
said to represent the operations of not just the Fax machine, but 
also of devices that manage relatively large files such as 
answering machines and music players. The Mobile Phone 
workload represents the operations of devices that manage small 
files such as beepers as well as mobile phones. The Event 
Recorder workload represents the operations of devices that 
create record files and update logs in the record files. 

 Figure 11 shows the total elapsed time for both MiNVFS and 
YAFFS for the three workloads. Compared to YAFFS, MiNVFS 
outperforms YAFFS by 152% for the Fax workload, 559% for 
Mobile Phone workload, and 600% for the Event Recorder 
workload, the average of these three being 437%. These results 
imply that MiNVFS is especially efficient for workloads where 
file sizes are relatively small and where these files are frequently 
updated. 
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Figure 10: Total time elapsed executing the synthetic workload 

Figure 11: Total elapsed time executing the TTFS workload 
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5. RELATED WORKS 
Considerable research has already been conducted on the issues 
related to NVRAM and/or file systems for Flash memory. We 
summarize some of these works in this section.  

File systems for storage systems based on Flash memory has 
recently been a popular area of research. The research conducted 
in this area can be divided into two directions. One is on 
efficiently supporting legacy file systems on Flash memory 
devices. Much of the work in this direction has been in 
developing an efficient software layer called the Flash Translation 
Layer (FTL), which is a layer that makes the Flash memory 
device look like a disk device. Hence, the file system need not be 
aware of the difference in the storage media. The Flash memory 
driver proposed by Kawaguchi et al. is one of the first FTLs to be 
proposed [11]. A few improvements have been suggested since 
then. Specifically, the FTL proposed by Kim et al. provides high 
performance by using log blocks to support hybrid mapping, 
which combines page-based mapping and block-based mapping 
[12]. More recently, Lee et al. propose a new scheme called 
FAST that improves on the log block scheme by making more 
efficient use of the log blocks [13].  

The other direction of research on file systems for Flash 
memory is the development of file systems that are aware of the 
underlying Flash storage device. A majority of these file systems 
are based on the design philosophy of the Log-structured File 
System (LFS), but adapted to support NAND or NOR Flash 
memory [18]. Well known among these are YAFFS and JFFS2 [1, 
23]. These file systems, however, have a significant drawback in 
that they require long mount times as they generally have to scan 
the whole Flash memory space. To avoid this scanning process, 
Yim et al. suggest that they copy the metadata information 
maintained in RAM to a reserved portion of Flash memory before 
unmounting the file system [26]. On a similar issue, Wu et al. 
suggests logging additional information for future fast mount as 
well as for recovery after failure [24]. Both these schemes require 
additional Flash memory and additional operations for fast 
mounting. Gal and Toledo also provide a nice survey of popular 
file systems and works related to Flash memory [9]. 

Research on the issue related to NVRAM is not new. In the 
early 1990s, research on making use of NVRAM in general 
purpose computer systems were conducted. However, NVRAM 
being considered at the time was mostly battery-backed RAM. 
Specifically, Baker et al. showed that write traffic can be 
significantly reduced with the help of NVRAM in a network file 
system environment [2]. Chen et al. proposed the Rio file cache 
that supports fault tolerance in file systems without degrading 
performance by using NVRAM [4, 14].  

There are also previous studies that consider using NVRAM as 
an extension of storage for file systems and thus, maintain 
metadata in this part of storage. These studies are closely related 
to our work. The HeRMES file system proposed by Miller et al. 
makes use of MRAM to store metadata, while storing file data in 
disk [15]. Another file system, MRAMFS, uses a similar approach 
as HeRMES, but it utilizes compression for the metadata to 
conserve NVRAM space [20]. Conquest is another file system 
developed with NVRAM in mind [25]. In these works NVRAM is 
considered in conjunction with the hard disk drive, which serves 
as the main storage, whereas in MiNVFS we are considering an 

embedded platform with the Flash memory media being the main 
storage.  

There are also studies on NVRAM based file systems, in 
particular, PRAMFS and the NEB file system, that consider 
NVRAM as the main storage [3, 10]. Our study differs from these 
studies in that we consider NVRAM as a supplement to the main 
Flash memory storage, whereas these studies consider NVRAM 
to be the main storage. 

6. SUMMARY AND FUTURE WORK 
NVRAM technology is becoming a reality. NVRAM of 
considerable capacity is soon to become available for use in 
embedded systems. In this study, we presented a design and 
implementation of the MiNV file system that exploits NVRAM to 
store all of the file system’s metadata. The design itself is in line 
with the YAFFS file system. We model and analyze the NVRAM 
space required to deploy the MiNV file system. For applications 
of today such as MP3 players or digital image retainers, the 
amount of NVRAM required is in the 10’s of megabytes.  

We conduct a series of experiments on a real embedded board 
that has 12MBs of FeRAM, a form of NVRAM. The performance 
results show that mount time is drastically reduced as Flash 
memory need not be scanned. For synthetic and realistic 
workloads, the performance improvement is significant with the 
MiNV file system execution time improving as much as 600% 
compared to YAFFS for the workloads that we considered. 

There is still much work that needs to be done. The use of 
NVRAM will certainly have an effect on the energy consumption 
of the system. As Flash memory operations are reduced, overall 
energy consumption will likely be reduced. Also, as writes to 
Flash memory is reduced, the issue of wear-leveling in Flash 
memory may be simplified. These are some immediate issues that 
we are currently taking a look at. Also, further optimizations in 
our design and implementation are also being contemplated. 
Finally, how the manner in which NVRAM was used in this study 
can benefit embedded systems that employ legacy file systems 
should be considered as well. 
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