
Exploiting Non-Volatile RAM to Enhance
Flash File System Performance

In Hwan Doh
Department of Computer Engineering

Hongik University
Seoul 121-791, Korea

ihdoh@cs.hongik.ac.kr

Donghee Lee
School of Computer Science

University of Seoul
Seoul 130-743, Korea

dhl_express@uos.ac.kr

Jongmoo Choi
Division of Information and Computer Science

Dankook University
Seoul 140-714, Korea

choijm@dankook.ac.kr

Sam H. Noh
School of Information and Computer Engineering

Hongik University
Seoul 121-791, Korea

samhnoh@hongik.ac.kr

ABSTRACT
Non-volatile RAM (NVRAM) such as PRAM (Phase-change
RAM), FeRAM (Ferroelectric RAM), and MRAM
(Magnetoresistive RAM) has characteristics of both non-volatile
storage and random access memory (RAM). These forms of
NVRAM are currently being developed by major semiconductor
companies and are expected to be an everyday component in the
near future. The advent of NVRAM may possibly bring about
drastic changes to the system software landscape. In this work, we
develop a new Flash memory based file system that exploits
NVRAM in order to improve system performance. Specifically,
we discuss the initial design and implementation of a file system
that stores all metadata in NVRAM, while storing all file data in
Flash memory. In so doing, we make two contributions in this
work. First, we present a model that analyzes the amount of
NVRAM that is needed for specific Flash memory storage
capacity. Experimentally, we verify that this model represents the
exact NVRAM usage in the realistic environment. Second, we
present quantitative experimental results that show how much
performance gains are possible by exploiting NVRAM. Compared
to YAFFS, a popular Flash memory based file system, we show
that this file system requires only minimal time for mounting and
that the execution time improves by a maximum of 600% and an
average of 437% for the realistic workloads that we considered.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose And
Application-Based Systems – Real-time and embedded systems;
D.4.3 [Operating Systems]: File System Management – Access
methods, directory structures;

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Non-Volatile RAM, Flash memory, File system, Metadata,
Experimental evaluation

1. INTRODUCTION
NVRAM (Non-volatile Random Access Memory) is a form of
next generation memory that retains the access characteristics of
conventional RAM such as DRAM and SRAM, and yet, retaining
the non-volatile characteristics of secondary storage such as Flash
memory or disks. NVRAM in its various forms, such as PRAM
(Phase-change RAM), FeRAM (Ferroelectric RAM), and MRAM
(Magnetoresistive RAM), are being developed by major
semiconductor companies such as Texas Instruments, IBM,
Samsung, Fujitsu, Motorola, etc [5, 16]. As semiconductor
technology continue to make progress, we can anticipate
NVRAM to become a common component of embedded systems
as well as commodity computers. In fact, Samsung recently
announced its PRAM development plans as shown in Figure 1
and is expected to ship 512Mbit PRAM commercial samples by
the end of 2007 [21].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EMSOFT’07, September 30-October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009...$5.00. Figure 1: Anticipated trend for growth of PRAM capacity

Growth of PRAM capacity

4Gbit

2Gbit

1Gbit

512Mbit

256Mbit64Mbit

8Gbit

0

2,000

4,000

6,000

8,000

10,000

2004 2005 2006 2007 2008 2009 2010 2011

Year

C
ap

ac
ity

 (M
bi

t)

164

Though not yet as prevalent as Flash memory, NVRAM has
specific advantages over Flash memory. First of all, its access
time is faster than Flash memory, especially for write access.
While write access time for Flash memory is in the hundreds of
microsecond range, writes in NVRAM is in the hundred
nanosecond range [6, 17, 19]. Furthermore, the poor write access
time in Flash memory can be exacerbated into the millisecond
range if erasure operations must be invoked before the write. This
may occur because physically overwriting within Flash memory
is not possible. To overwrite existing data, the new data must
generally be written to a different location and the old data
invalidated. This incurs complications in managing old and new
data [8, 12, 13]. The erasure operation is also the key factor that
disfavors Flash memory compared to NVRAM. As erasures must
be done in block units, copying of valid information within the
block to be cleaned must occur [8]. This type of overhead for
writes are not necessary with NVRAM as writes are done simply
like DRAM. Erasures also bring about another critical limitation
with Flash memory, that is, of endurance. Block erasures are
physically limited to around 10,000 to 100,000 times for Flash
memory, while there is no such limitation for NVRAM [6, 17, 19].
This makes NVRAM suitable for situations where writes
frequently occur.

The question, then, is how to exploit these beneficial
characteristics that NVRAM possesses, and to understand how
much of it is needed to make such use possible. It seems the plan
for now is simply to “replace NOR flash memory” [21].
Specifically, from a system software viewpoint, one of the options
may be to use it as a write buffer cache [2]. In this paper, we take
a different direction and explore the possibility of using NVRAM
as a metadata store and examine what effects it has on the Flash
file system. We choose to design a file system that puts all
metadata of the file system in NVRAM as maintaining metadata
safely, and doing it efficiently, is essential to keeping the file
system consistent. All the file data, on the other hand, are stored
in Flash memory. We name this new file system, the MiNV
(Metadata in Non-Volatile ram) file system.

To assess the amount of NVRAM that would be required in this
new design we derive a model of the NVRAM space requirement
that is needed to store all the metadata. This model is validated
via a real implementation in an embedded board. We also conduct
other experiments and measure the performance difference
between the MiNV file system and YAFFS, which is a typical
Flash memory based file system [1]. Our measurements show that
by using NVRAM as a metadata store the performance benefits
are substantial. Mount time is reduce to the minimum and for
realistic workloads that we considered the execution time is
improved by as much as 600%.

The remainder of the paper is organized as follows. In the next
section, we describe the design of the MiNV file system in detail.
Then, in Section 3, we derive the NVRAM space requirement
model and analyze the space requirement to deploy the MiNV file
system in various settings. In Section 4, we present the
experimental results. We first describe the experimental setup
including the software and hardware platforms that we use. Then,
we conduct various experiments and discuss their results. We
briefly review some of the previous works related to this study in
Section 5, and then, conclude with a summary and directions for
future research in Section 6.

2. DESIGN OF THE MiNV FILE SYSTEM
In this section, we describe the design of the MiNV file system
(MiNVFS) in detail. The overall structure of the design is similar
to that of YAFFS, a popular file system designed for Flash
memory currently used in operating systems such as Linux and
WinCE [1]. The main difference in MiNVFS is that all its
metadata are stored in NVRAM. Hence, we describe our design in
contrast to that of YAFFS. Then, we explain how NVRAM is
dynamically managed and how it maintains the corresponding
metadata of the files and directories as their hierarchy changes.

Figure 2 illustrates the state of the metadata and file data as
maintained in RAM, Flash memory, and NVRAM for YAFFS and
MiNVFS. As depicted in Figure 2(a), YAFFS stores the metadata
including the file offset information as well as the file data in
Flash memory. YAFFS allocates a page from Flash memory for
the yaffs_ObjectHeader structure, which contains the inode
information of the file, for each file (and directory). The contents
of the file data are stored in page units, and for each page the
corresponding file offset information is recorded in the spare area.
This information is used for recovery from system failure as well
as at mount time to construct the data structures for metadata
management in SDRAM that is needed for normal operation. The
SDRAM depicted in Figure 2(a) is how it would look like after
YAFFS is mounted.

(a) YAFFS

(b) MiNVFS

Figure 2: Metadata and file data maintained by (a) YAFFS
and (b) MiNVFS

File A's
ObjectHeader

File A’s Data

File A’s Data

Directory K’s
ObjectHeader

Offset
0

Offset
1

File B's
ObjectHeader

File B’s Data

File B’s Data

File B’s Data

Offset
0

Offset
1

Offset
510

File A’s Object
(ObjectHeader + Offset)

Directory K’s Object

Available Space

File B’s Object
(ObjectHeader + Offset)

SDRAM NAND Flash Memory

Block SpareData

Page

Page

Page

Page

Super Block

Inode Table

NVRAM Manager

Super Block

Inode Table

Available Space

File B’s Offset
File B’s Inode

Directory K’s Inode
File A’s Offset
File A’s Inode

NVRAM

File A’s Data

File A’s Data

File A’s Data

File B’s Data

File B’s Data

File B’s Data

File B’s Data

NAND Flash Memory

Page

Page

Page

Page

Block SpareData

165

Similarly to YAFFS, MiNVFS maintains data structures for
metadata management for normal operation, but in NVRAM
instead of SDRAM, as depicted in Figure 2(b). As can be noted
from the figure, instead of the yaffs_ObjectHeader structure
MiNVFS maintains a different structure referred to as the
NVRAM_Manager, along with other structures such as Inode and
File_Offset. Note also that all these structures are maintained
once and for all in NVRAM and that these structures do not have
to be reconstructed at mount time. Also, none of this information
exists in Flash memory. Only file data is stored in Flash memory
and the spare area is also no longer used to store metadata.

Let us now describe each of the data structures in more detail in
the order they are laid out in NVRAM. At the top of the NVRAM,
there is the NVRAM_Manager structure that contains information
that is used to dynamically manage the NVRAM. Due to its
simplicity, the BGET memory allocator is used for this purpose
[22]. The Superblock structure comes next. This structure
contains the current status information of each of the blocks,
which consists of 32 pages, in Flash memory. In our
implementation of MiNVFS, we associate 16 bytes for each block
in Flash memory to maintain information such as its current
allocation status and the number of currently allocated pages in
the block. Within this information, we associate 2 bits for each
page comprising the block to specify whether the page is
available or not and whether it is clean or dirty. Next comes the
Inode_Table. This is the hash table that links all existing Inode
structures, which we describe shortly. By maintaining this table in
NVRAM, MiNVFS has instant access to all the files immediately
after booting.

Finally, the information for managing each of the files and
directories are contained in the Inode structure. This structure is
allocated from the bottom of the NVRAM. This structure contains
information typically maintained in any file system such as
ownership, access permission, creation time, modification time,

access time of either a file or directory, and so on. When the
structure is associated with a data file, the Inode structure
contains a pointer to the File_Offset structure that contains the
mapping information between the file data offset and the page (or
possibly, block) address in Flash memory. As an example, Figure
3(a) shows a logical hierarchy of directories and a file and, in
Figure 3(b), how this would be represented with the Inode and
File_Offset metadata structures in MiNVFS. As depicted in
Figure 3(a), there is the root directory, 2 subdirectories, and a file,
and this is represented as an Inode structure for each of the three
directories and the one file. These Inode structures are linked to
each other to form the directory hierarchy. Different from the
Inode structure for the directory, the Inode structure for the file
has a pointer to the structure File_Offset that contains
information mapping the file offset to the address of the page in
Flash memory. The File_Offset structure has a fixed size that
is equivalent to the size of the Inode structure to keep NVRAM
management simple and minimize external fragmentation. By
using a fixed size File_Offset structure, the size of a file that
can be represented may be limited. To represent large files, we
allow File_Offset structures to be linked to each other as
shown in Figure 3(b).

3. NVRAM SPACE REQUIREMENT FOR
MiNVFS
MiNVFS uses NVRAM as an extension of storage to maintain all
the metadata of the file system. To assess the feasibility of
deploying MiNVFS in real embedded systems, we analyze the
amount of NVRAM that is needed to deploy MiNVFS in theory
as well as in practice. We first present an analytical model that
assesses the amount of NVRAM required for MiNVFS. Then
based on the model, we analyze the amount of NVRAM needed
for MiNVFS to be deployed in the real world by considering
various Flash memory capacities, number of files, and sizes of
files.

3.1 NVRAM Space Requirement Model
In MiNVFS, the data structures for the metadata that are to be
stored in NVRAM consists of the NVRAM_Manager, Superblock,
Inode_Table, Inode, and File_Offset structures. Space for
the first three of these data structures are allocated and initialized
in NVRAM when the Flash memory partition is formatted by
MiNVFS. The space needed here is determined based on the
capacity of the Flash memory partition that MiNVFS manages
and is fixed once determined. On the other hand, space needed for
structures Inode and File_Offset is dynamically allocated and
freed as files are created and deleted. Space required by these data
structures is all that is required of by MiNVFS. Hence, to analyze
the NVRAM capacity requirement, we now need to model the
space used by these structures.

Let us now model the space required by these data structures.
Let the Flash memory size be S NAND , the total number of files
(including directories) managed by MiNVFS be n , with each file
size denoted as S k)1,,2,1,0(−= nk K . Files are allocated space in
Flash memory in either block units or page units. We will denote
this unit in which files are allocated COffset . Then, the relation

C
S

Offset

NANDn ≤≤0 and ∑
−

=

≤
1

0

n

k
NANDk SS holds.

(b) Corresponding metadata structures in MiNVFS

Figure 3: Management of metadata in MiNVFS

(a) Logical hierarchy of directories and a file

/

usr var

file.c

/
*list, metadata information

usr
*list, metadata information

var
*list, metadata information

file.c
*list, metadata information,

*file_offset

Inode

*next

File Offsets

*next

File Offsets

Inode

Inode

Inode

File_Offset File_Offset

166

Let us now represent the amount of NVRAM required by
MiNVFS as function ()SS kNAND nR ,, . Then, ()SS kNAND nR ,, (Equation
(1)) can be represented as a sum of function ()S NANDf , which is the
fixed space required by structures NVRAM_Manager, Superblock,
and Inode_Table determined at initialization, function ()ng , the
space needed for the Inode structures, and function ()S

k
nh , , the

space needed for the File_Offset structures. Each of the
functions ()S NANDf , ()ng , and ()S

k
nh , can be represented as

Equations (2)-(4) as follows and are described in detail below.

() () () ()SSSS kNANDkNAND nhngfnR ,,, ++= -------------------------------- (1)

() CCCC
SCS InodeSizeInodeTableizeBlockInfoS

BlockSize

NAND
NVRAMmmNAND

f ++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×+= --------- (2)

() nng CInodeSize
⋅= -- (3)

() CCC

SS OffSize

n

k
NumOff

Offset

k

k
nh ×

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
= ∑

−

=

1

1
, --------------------------------- (4)

C NVRAMmm and C InodeTable in Equation (2) are constants that
represents the fixed space required by the NVRAM_Manager and
the Inode_Table structures, respectively. The second element of
this equation is the space needed for the Superblock structure.
As the Superblock maintains a fixed sized status information for
each of the blocks, denoted as C izeBlockInfoS , the space requirement in
NVRAM is the number of blocks, that is, the full Flash memory
capacity, S NAND , divided by the block size, CBlockSize , of the Flash
memory multiplied by constant C izeBlockInfoS . Finally, the last element
of Equation (2) is CInodeSize , which denotes the space needed for the
one Inode structure for the root directory.

Equation (3) represents the space needed for the Inode
structures. The number of files that are maintained by MiNVFS
determines this space requirement, and hence, is simply the
number of files, n , multiplied by the size of the Inode structure,
C InodeSize . Finally, Equation (4) represents the space needed for the
File_Offset structures. The number of files and the size of each
of these files determine this space. The larger a file, the more
File_Offset structures are needed. We denote the size, in bytes,
of the File_Offset structure as COffSize and the number of
mapping information, that is the number of page or block pointers
it can hold, within the File_Offset structure as CNumOff . Then,
Equation (4) sums all the File_Offset structures consumed by
each file multiplied by the size of the File_Offset structure.
Table 1 summarizes the parameters used in the model.

3.2 Analysis Based on the Model
There are many parameters that are used to model the NVRAM
space requirement for MiNVFS. These parameters can be
categorized into three groups. First, there are parameters
determined by the hardware platform. The full Flash memory
capacity, S NAND , and the block size, C BlockSize , are such parameters.
The second group of parameters is those that are determined by
the specific implementation details and choices made for
MiNVFS. C NVRAMmm , C izeBlockInfoS , C InodeTable , C InodeSize , COffset , C NumOff , and
COffSize are such parameters. Finally, the last group of parameters is
determined by the workload. The number of files, n, and the size
of each of these files, S k , are such parameters.

In the following analyses, we set the following parameters to
constant values: C BlockSize and COffset to 16KB and 512B,
respectively, as it is the block size and page size, respectively, of
the Flash memory that we consider, and C NVRAMmm , C izeBlockInfoS ,
C InodeTable , C InodeSize , CNumOff , and COffSize to values 28B, 16B, 3072B,
140B, 32, and 140B, respectively, as these are the numbers that
were used in our specific implementation of MiNVFS. To
consider various hardware platforms and workloads we vary the
parameters S NAND , n , and S k , that is, the Flash memory size, the
number of files, and the size of these files, respectively. However,
owing to the fact that it is practically impossible to exhaustively
consider all possible numbers of files and their sizes, we initially
assume that all the files that are considered in a particular setting
to be of the same size. We relax this assumption somewhat in
later analyses.

Table 2 shows the NVRAM space requirement obtained from
the model to operate MiNVFS in a system with 32MB NAND
Flash memory. Each row represents the particular file size of
interest and each column represents the number of files that exists
in MiNVFS for that particular file size. The number
corresponding to the particular row and column refers to the
NVRAM space that is required for the number of files of that
particular file size. For example, for ‘File Size’ row 2MB and
‘Number of Files’ column 16, we find the value 317. This means
for MiNVFS to maintain sixteen 2MB sized files the NVRAM
space requirement is 317KB.

Parameters
Dependency Name

Descriptions

S NAND Flash memory capacity
Hardware

C BlockSize Block size in Flash memory

C NVRAMmm Size of NVRAM_Manager structure (bytes)

C izeBlockInfoS Size of status information for each block (bytes)

C InodeTable Size of Inode_Table structure (bytes)

C InodeSize Size of Inode structure (bytes)

COffset Size of file data allocation unit (bytes)

CNumOff Number of pointers within File_Offset structure

Implemen-
tation

COffSize Size of File_Offset structure (bytes)

n Number of files
Workload S k Size of each file

Table 1: Summary of the parameters in the model

Table 2: NVRAM space requirement in MiNVFS for 32MB
NAND Flash memory (unit: KB)

Number of Files

1 4 16 64 256 1,024 4,096 16,384 65,536

0.5KB 35 36 40 53 105 315 1,155 4,515 17,955

2KB 35 36 40 53 105 315 1,155 4,515 -

8KB 35 36 40 53 105 315 1,155 - -

32KB 36 37 42 61 140 455 - - -

128KB 36 40 55 114 350 - - - -

512KB 40 53 107 324 - - - - -

2MB 53 106 317 - - - - - -

8MB 105 316 - - - - - - -

File Size

32MB 315 - - - - - - - -

167

Note that the numbers in the diagonal represents the maximum

NVRAM space requirement that is needed when the 32MB Flash
memory space is fully utilized with files of the particular size.
From these results, we can see that the NVRAM space
requirement increases proportionally to the number of files, even
though the total size of all the files stored in Flash memory is
identically 32MB. In the best case, MiNVFS needs only 315KB
of NVRAM when a single 32MB file fills up the 32MB Flash
memory. In the worst case, however, the NVRAM requirement is
around 18MB when MiNVFS fills Flash memory with 65,536
files that are 512B in size. Hereafter, we will refer to the case
when we store the minimum number of files, thus requiring
minimum NVRAM space as the “Best case”. Conversely, the case
when we store the most number of files and thus require the
maximum NVRAM space will be referred to as the “Worst case”.

Figure 4 shows the MiNVFS NVRAM usage when the
underlying Flash memory capacity ranges from 4MB to 8GBs.
Note that the latest MP3 players, such as iPod nano, are being
shipped with a maximum of 8GB NAND Flash memory. The
“Worst case” and “Best case” results, again, show the maximum
and minimum NVRAM space requirements for each Flash
memory capacity, respectively. In this figure, we also show
graphs denoted as “MP3 case” and “Photo case”. A typical MP3
file takes up approximately 4MBs, while a typical size of photo
takes up approximately 330KBs. (Note that the iPod nano
advertises that the 8GB version can hold 2000 tunes or 25,000
photos.) Hence, each of the “MP3 case” and the “Photo case”
show the amount of NVRAM needed to deploy MiNVFS when
the maximum number of 4MB and 330KB sized files,
respectively, are stored in Flash memory of the specified capacity.

The NVRAM space requirement increases linearly, for all four
cases, as the Flash memory capacity increases. (Note that the x-
axis is represented in log-scale.) We observe that the results for
both the “MP3 case” and “Photo case” are very similar to that of
the “Best case”. For clarity, we show the results of the “Best
case”, “MP3 case”, and “Photo case” for 1GB and above Flash
memory capacity in table form in Figure 4. Considering 1GB
Flash memory, NVRAM usage is approximately 10MBs for
“MP3 case”, “Photo case”, and “Best case”; specifically,
10,022KB for the “MP3 case”, 10,584KB for the “Photo case”,
and 9,987KB for the “Best case”. In contrast, the NVRAM space
required in the “Worst case” is more than half the Flash memory
capacity, which may be impractical. However, in real-world
products, such as MP3 players, mobile phones, and digital
cameras, this “Worst case” scenario will rarely happen, if ever.
Though the results for both the “MP3 case” and “Photo case” are
promising, in real life, systems may retain metadata files along
with the content files such as music and digital image files. For
example, it is possible that with each music file, information such
as the performer or composer may be stored in a separate play list
or database metadata file. To consider this scenario, we examine
the NVRAM space requirement when there is a mix of content
and metadata files. We assume that each content file is of 4MBs
for MP3 files, 330KBs for photo files and that each metadata file
is of 0.5KBs. Figure 5 shows the NVRAM usage when MiNVFS
manages a device with 1GB Flash memory capacity for various
rates of content and metadata files. The x-axis represents the
proportion of the whole Flash memory capacity that is consumed
for all the metadata files. For example, consider the somewhat
realistic case where metadata files occupy 1% of the Flash
memory capacity and the 4MB content files take up the rest. With
1GB Flash memory, this means that we are storing approximately
20,000 metadata files along with 250 content files. For the 330KB
photo content files and metadata files, this is like storing 20,000
metadata files along with around 3,000 content files. Our results
show that in this case, we require 15,667KB and 16,223KB of
NVRAM space for the 4MB content files and the 330KB content
files, respectively. In the common case, we believe that the
number of metadata files will not exceed a few hundred. Hence,
the results in Figure 5 show that MiNVFS may be safely deployed
with 10-20MBs of NVRAM for embedded consumer products of
today.

Figure 4: MiNVFS NVRAM usage for various Flash
memory capacities

NAND Flash Size

1G 2G 4G 8G

Best case 9,987 19,971 39,939 79,875

MP3 case 10,022 20,041 40,079 80,155

Photo case 10,584 21,166 42,328 84,654

NVRAM usage of MiNVFS

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

4M 16M 64M 256M 1G 4G

Size of NAND flash

N
V

R
A

M
 u

sa
ge

 (K
B

)

Worst case Best case MP3 case Photo case Figure 5: MiNVFS NVRAM usage for various rates of
metadata files that consume Flash memory

NVRAM usage of MiNVFS
(4M MP3, 330K Photo, 0.5K metadata in 1G NAND)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0.0
1%

0.1
0% 0.5

% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10
%

Rate of metadata files

N
V

R
A

M
 u

sa
ge

 (K
B

)

MP3 case Photo case

168

4. PERFORMANCE EVALUATION
We implement MiNVFS in Linux and evaluate its performance by
deploying it in a real embedded system board. In this section, first,
we describe briefly the implementation and the experimental
setup. Then, we present results of the performance evaluation
conducted on this setup.

4.1 Experimental Setup
We implement MiNVFS in Linux 2.4.x according to the design
that we described in Section 2. The Linux kernel loads MiNVFS
as a kernel module implemented in between the VFS (Virtual File
System) and MTD (Memory Technology Device) layers. Our
implementation includes the file system formatting tool and
supports all the common basic file system operations.

Figure 6 shows the actual NVRAM daughter board (Figure
6(a)) and the embedded development board with the NVRAM
daughter board attached to the motherboard through the PCI
interface (Figure 6(b)). The NVRAM daughter board was
developed in-house and has 12MB of FeRAM. The NVRAM
appears in physical memory address space and can be accessed
via memory mapped addressing. The embedded development
board that we use is the EZ-M28 board, which supports PCI
interfaces, developed by Falinux [7]. The EZ-M28 board has a
S3C2800 processor, which is based on the ARM920T, 32MB
SDRAM, and 64MB NAND Flash memory.

4.2 Performance Evaluation Results
In this section, we present the experimental results. We first
present results that validate the correctness of the NVRAM space
requirement model presented in Section 3. Then, quantitative
comparisons of experimental results when using MiNVFS and
YAFFS are presented.

4.2.1 Correctness of the Model
In Section 3, we presented a model calculating the NVRAM space
used by MiNVFS. In this subsection, we validate the model using
the experimental setup. We use 32MBs of the 64MB Flash
memory available on the experimental board and generate as
many equal sized files as possible, the sizes ranging from 1KB to
32MB. (Since we have only 12MB of FeRAM in our
experimental setup, we were not able to verify the results for files
of size 0.5KB.)

Figure 7 shows both the NVRAM space requirement calculated
through the model, denoted “Model”, and the actual maximum
amount of NVRAM that was used that was measured through the
experiments, denoted “Experiment”. In fact, the two lines overlap
each other and cannot be distinguished implying that the model is
accurate.

4.2.2 Mount Time
In the experiments presented in this subsection, we compare the
mount time for YAFFS and MiNVFS. With YAFFS, the metadata
of the file system is scattered in Flash memory space. The
scattered metadata are collected and organized in SDRAM for use,
as explained in Section 2. This implies that as the Flash memory
size grows, mount time will proportionally increase. In MiNVFS,
however, all metadata is in NVRAM; hence, mount time should
be constant and almost instantaneous. This is verified through the
experiments.

Figure 8 shows the mount time for YAFFS and MiNVFS. The
x-axis of this graph is the utilization of Flash memory ranging
from 0% to 100%. We see that the mount time for MiNVFS is
constant at 67 microseconds for all cases. For YAFFS, mount
time increases linearly with utilization peaking at slightly over 3
seconds when Flash memory is fully utilized. The reason behind
the linear increase is that the Flash memory space that YAFFS has
to scan grows. Moreover, the linear increase observed is
optimistic and it is a result of the way the experiments were
conducted. For each measurement, we erased all the blocks and
wrote out files to consume the designated percentage of Flash

(a) 12MB FeRAM board (b) EZ-M28 Embedded board

Figure 6: System environment for the experiments

Figure 8: Mount time for YAFFS and MiNVFS

Mount Time (32M NAND)

0

0.5

1

1.5

2

2.5

3

3.5

0% 20% 40% 60% 80% 100%

Utilization (%)

M
ou

nt
 ti

m
e

(s
ec

)

YAFFS MiNVFS

Figure 7: NVRAM space requirement as estimated by model
and as measured through experiments

NVRAM usage of MiNVFS (32M NAND)

0

2000

4000

6000

8000

10000

1K 4K 16K 64K 256K 1M 4M 16M

Each file size

N
V

R
A

M
 u

sa
ge

 (K
B

)

Model Experiment

169

memory. By so doing, YAFFS actually used only those blocks at
the lower end of the Flash memory space leaving all the other
blocks clean, because YAFFS consumes blocks, and the pages
within the blocks, in sequential order. Hence, when scanning the
blocks to obtain the metadata, blocks with a clean first page are
all skipped. This results in considerable savings in scanning time.
In reality, however, as files are manipulated, this optimal layout
will generally not occur increasing the scan time, hence the mount
time.

Note that as Flash memory capacity grows, YAFFS type of
scanning for metadata when mounting can become a significant
overhead. Today’s handheld devices commonly have gigabyte
capacity Flash memory, and its capacity is growing at a fast pace.
With such large capacity Flash memory devices mounting could
take 10’s to 100’s of seconds making such devices intolerable.
Additionally, if a YAFFS type file system is employed as the root
file system, its long mount time could cause significant delays
during system boot time. In this respect, NVRAM hardware and
file systems that make use of this hardware such as MiNVFS,
which incurs extremely short mount time, can be quite an
attractive alternative.

4.2.3 Performance Evaluation with Synthetic
Workloads
In this subsection, we compare the performance results of
MiNVFS and YAFFS using a synthetic workload. The workload
comprises sequentially creating files and then deleting these files
over and over five consecutive times. No updates on these files
occur. The files created are all of the same particular size for each
experiment. Table 3 shows the size of the file and the number of
files that are created for each particular file size as used in the
experiments. The number of files is determined by the size of the
data file and the extra space that is needed for the metadata in
YAFFS to fill up the 32MB Flash memory space. For example,
for file size of 0.5KB, we can only create 32,768 files as the rest
of the Flash memory space is needed to store the metadata
information of these files. Note also that for particular file sizes,
the number presented in Table 3 is not exact. For example, for a
32MB file, this file alone will consume all of the Flash memory
space, not leaving any space for the metadata. Hence, we reduce

the actual file size used in the experiments just enough to provide
space for the metadata. However, since the file size is close to
32MBs, we simply represent it as such, for simplicity. With this
experimental setup MiNVFS will have extra space in Flash
memory that is not being used. Also, it may seem like MiNVFS is
being given an unfair advantage with the extra NVRAM resource.
However, since MiNVFS does not need SDRAM space for the
metadata as in YAFFS, NVRAM is, in fact, replacing SDRAM
resource, not adding extra resources, plus it saves on the Flash
memory resource.

Figure 9 shows the number of read, write, and erase operations
performed in Flash memory for the synthetic workload. The x-
axis for the three graphs is the file sizes ranging from 0.5KB to
32MB, in log scale. The value within the parentheses is the
number of files created and is the same as those listed in the
second row of Table 3. Figure 9(a) shows that MiNVFS has no
read operation regardless of the number of files in contrast to that
of YAFFS. Although the synthetic workload has no read request
for files, YAFFS executes Flash memory page read operations
proportional to the number of files. The reason behind this is that
YAFFS has to execute read operations in order to update the
metadata and also to copy pages to other blocks during garbage
collection that occasionally occurs. (Garbage collection occurs
because of the way YAFFS creates files. It first creates and writes
metadata for the file to be created, then writes out the file data,
and then, creates and writes a newly updated metadata, and then,
invalidates the old metadata, all in Flash memory. This incurs 3
extra writes to manipulate metadata and consumes two pages for
the metadata. This incurs garbage collection, as eventually clean
pages will run out in Flash memory.) MiNVFS, on the other hand,
writes all metadata on NVRAM and does not incur any garbage
collection. Hence, we do not observe any read operations in Flash
memory with MiNVFS.

Read Count (32M NAND)

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

0.5K (3
2,6

73)

2K (1
3,06

9)

8K (3
,844

)

32K
 (1

,00
6)

128
K (2

56)

512
K (6

4)

2M (1
6)

8M (4
)

32M
 (1

)

Each file size (Yaffs's MAX file #)

of

 R
ea

d
(x

10
00

MiNVFS YAFFS

Write Count (32M NAND)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

0.5K (3
2,6

73)

2K (1
3,06

9)

8K (3
,844

)

32K
 (1

,00
6)

128
K (2

56)

512
K (6

4)

2M (1
6)

8M (4
)

32M
 (1

)

Each file size (Yaffs's MAX file #)

of
 W

rit
e

(x
10

00
MiNVFS YAFFS

Erase Count (32M NAND)

0

20,000

40,000

60,000

80,000

100,000

0.5K (3
2,6

73)

2K (1
3,06

9)

8K (3
,844

)

32K
 (1

,00
6)

128
K (2

56)

512
K (6

4)

2M (1
6)

8M (4
)

32M
 (1

)

Each file size (Yaffs's MAX file #)

of

 E
ra

se

MiNVFS YAFFS

Figure 9: Number of read, write, and erase operations performed in Flash memory for the synthetic workload
(a) Read operation count (b) Write operation count (a) Erase operation count

Table 3: Number of files created for each particular file size

Each file size (Bytes)

0.5K 2K 8K 32K 128K 512K 2M 8M 32M

of files 32,673 13,069 3,844 1,006 256 64 16 4 1

170

Figure 9(b) shows the number of page write operations incurred
for MiNVFS and YAFFS. For all cases, MiNVFS incurs less
writes than YAFFS. Since both file systems are being driven by
the exact same workload, they incur the same number of write
operations for the file data writes. However, as described in the
previous paragraph, YAFFS incurs 3 additional write operations
to manage the metadata when creating a file, with additional
writes being incurred during garbage collection. With YAFFS,
hence, the number of write operations increases proportionally to
the number of files that are created.

The number of erase operations incurred by MiNVFS and
YAFFS is shown in Figure 9(c). From this graph, we again
observe that the number of erase operations increases as the
number of files increase. YAFFS has many more garbage blocks
that need to be collected because of the frequently updated
metadata that pollutes the pages in Flash memory.

A peculiar observation in Figure 9(c) is that the number of
erase operations incurred for MiNVFS is greater than that of
YAFFS when the file is 128KB and greater. The reason behind
this is that while MiNVFS actually cleans, that is, erases blocks
when files are deleted YAFFS tends to simply mark the file as
deleted and delays the actual block erase operations for as long as
possible. The consequence of this is that, since the last set of
operations conducted in our experiments is to delete all the files,
after each experiment is over, YAFFS leaves behind around 2,000
blocks that still needs to be erased, while MiNVFS leaves none
such blocks behind. Hence, even though the results reported in
Figure 9(c) appear to favor YAFFS, if we consider the blocks that
still need to be erased before reuse, the erase count is actually
almost identical.

Finally, Figure 10 shows how the difference in read, write, and
erase operation counts are reflected in the execution time. Figure
10(a) shows the total time elapsed executing the synthetic
workload. As can be observed from the figure MiNVFS takes
shorter time than YAFFS in all cases. MiNVFS outperforms
YAFFS by a maximum of 156% and an average of 81%. Figure
10(b) gives a closer look at the results for file sizes 4KB to 32MB.
It is noted that MiNVFS has shorter elapsed time than YAFFS for
file sizes greater or equal to 128KB even though MiNVFS has a
larger erase count for this file size range. This is due to the
implementation details regarding YAFFS and MiNVFS, with
MiNVFS being implemented much more efficiently. We do not
go into the details of this, as this is more an issue of code
optimization rather than file system design.

4.2.4 Performance Evaluation with Realistic
Workloads
In this subsection, we evaluate MiNVFS for more realistic
workloads. To the best of our knowledge, there is no de facto
“realistic” file system workload that reflects the characteristics of
embedded systems using Flash memory that is accepted by the
research community. Hence, for this study, we reproduce the
TFFS benchmark program from the workload scenario used to
evaluate the performance of the TFFS file system proposed by
Gal and Toledo [8].

The TFFS benchmark generates the Fax, Mobile Phone, and
Event Recorder file system workloads. The Fax workload can be
said to represent the operations of not just the Fax machine, but
also of devices that manage relatively large files such as
answering machines and music players. The Mobile Phone
workload represents the operations of devices that manage small
files such as beepers as well as mobile phones. The Event
Recorder workload represents the operations of devices that
create record files and update logs in the record files.

 Figure 11 shows the total elapsed time for both MiNVFS and
YAFFS for the three workloads. Compared to YAFFS, MiNVFS
outperforms YAFFS by 152% for the Fax workload, 559% for
Mobile Phone workload, and 600% for the Event Recorder
workload, the average of these three being 437%. These results
imply that MiNVFS is especially efficient for workloads where
file sizes are relatively small and where these files are frequently
updated.

Total Elasped Time (32M NAND)

0

10,000

20,000

30,000

40,000

0.5K (3
2,67

3)

2K (1
3,069

)

8K (3
,84

4)

32K
 (1

,006
)

128
K (2

56)

512
K (6

4)

2M (1
6)

8M (4
)

32M
 (1

)

Each file size (Yaffs's MAX file #)

El
as

pe
d

tim
e

(s
ec

)

MiNVFS YAFFS

0

1,000

2,000

3,000

4,000

5,000

4K
 (7

,2
61

)

8K
 (3

,8
44

)

16
K

 (1
,9

81
)

32
K

 (1
,0

06
)

64
K

 (5
07

)

12
8K

 (2
56

)

25
6K

 (1
28

)

51
2K

 (6
4)

1M
 (3

2)

2M
 (1

6)

4M
 (8

)

8M
 (4

)

16
M

 (2
)

32
M

 (1
)

Figure 10: Total time elapsed executing the synthetic workload

Figure 11: Total elapsed time executing the TTFS workload

Elapsed Time for TFFS Workload

0

40

80

120

160

YAFFS MiNVFS
File Systems

El
ap

se
d

tim
e

(s
ec

)

Fax Mobile Phone Event Recorder

171

5. RELATED WORKS
Considerable research has already been conducted on the issues
related to NVRAM and/or file systems for Flash memory. We
summarize some of these works in this section.

File systems for storage systems based on Flash memory has
recently been a popular area of research. The research conducted
in this area can be divided into two directions. One is on
efficiently supporting legacy file systems on Flash memory
devices. Much of the work in this direction has been in
developing an efficient software layer called the Flash Translation
Layer (FTL), which is a layer that makes the Flash memory
device look like a disk device. Hence, the file system need not be
aware of the difference in the storage media. The Flash memory
driver proposed by Kawaguchi et al. is one of the first FTLs to be
proposed [11]. A few improvements have been suggested since
then. Specifically, the FTL proposed by Kim et al. provides high
performance by using log blocks to support hybrid mapping,
which combines page-based mapping and block-based mapping
[12]. More recently, Lee et al. propose a new scheme called
FAST that improves on the log block scheme by making more
efficient use of the log blocks [13].

The other direction of research on file systems for Flash
memory is the development of file systems that are aware of the
underlying Flash storage device. A majority of these file systems
are based on the design philosophy of the Log-structured File
System (LFS), but adapted to support NAND or NOR Flash
memory [18]. Well known among these are YAFFS and JFFS2 [1,
23]. These file systems, however, have a significant drawback in
that they require long mount times as they generally have to scan
the whole Flash memory space. To avoid this scanning process,
Yim et al. suggest that they copy the metadata information
maintained in RAM to a reserved portion of Flash memory before
unmounting the file system [26]. On a similar issue, Wu et al.
suggests logging additional information for future fast mount as
well as for recovery after failure [24]. Both these schemes require
additional Flash memory and additional operations for fast
mounting. Gal and Toledo also provide a nice survey of popular
file systems and works related to Flash memory [9].

Research on the issue related to NVRAM is not new. In the
early 1990s, research on making use of NVRAM in general
purpose computer systems were conducted. However, NVRAM
being considered at the time was mostly battery-backed RAM.
Specifically, Baker et al. showed that write traffic can be
significantly reduced with the help of NVRAM in a network file
system environment [2]. Chen et al. proposed the Rio file cache
that supports fault tolerance in file systems without degrading
performance by using NVRAM [4, 14].

There are also previous studies that consider using NVRAM as
an extension of storage for file systems and thus, maintain
metadata in this part of storage. These studies are closely related
to our work. The HeRMES file system proposed by Miller et al.
makes use of MRAM to store metadata, while storing file data in
disk [15]. Another file system, MRAMFS, uses a similar approach
as HeRMES, but it utilizes compression for the metadata to
conserve NVRAM space [20]. Conquest is another file system
developed with NVRAM in mind [25]. In these works NVRAM is
considered in conjunction with the hard disk drive, which serves
as the main storage, whereas in MiNVFS we are considering an

embedded platform with the Flash memory media being the main
storage.

There are also studies on NVRAM based file systems, in
particular, PRAMFS and the NEB file system, that consider
NVRAM as the main storage [3, 10]. Our study differs from these
studies in that we consider NVRAM as a supplement to the main
Flash memory storage, whereas these studies consider NVRAM
to be the main storage.

6. SUMMARY AND FUTURE WORK
NVRAM technology is becoming a reality. NVRAM of
considerable capacity is soon to become available for use in
embedded systems. In this study, we presented a design and
implementation of the MiNV file system that exploits NVRAM to
store all of the file system’s metadata. The design itself is in line
with the YAFFS file system. We model and analyze the NVRAM
space required to deploy the MiNV file system. For applications
of today such as MP3 players or digital image retainers, the
amount of NVRAM required is in the 10’s of megabytes.

We conduct a series of experiments on a real embedded board
that has 12MBs of FeRAM, a form of NVRAM. The performance
results show that mount time is drastically reduced as Flash
memory need not be scanned. For synthetic and realistic
workloads, the performance improvement is significant with the
MiNV file system execution time improving as much as 600%
compared to YAFFS for the workloads that we considered.

There is still much work that needs to be done. The use of
NVRAM will certainly have an effect on the energy consumption
of the system. As Flash memory operations are reduced, overall
energy consumption will likely be reduced. Also, as writes to
Flash memory is reduced, the issue of wear-leveling in Flash
memory may be simplified. These are some immediate issues that
we are currently taking a look at. Also, further optimizations in
our design and implementation are also being contemplated.
Finally, how the manner in which NVRAM was used in this study
can benefit embedded systems that employ legacy file systems
should be considered as well.

7. ACKNOWLEDGMENTS
This work was partly supported by the IT R&D program of
MIC/IITA [2006-S-040-01, Development of Flash Memory-based
Embedded Multimedia Software]] and supported in part by grant
No. R01-2004-000-10188-0 from the Basic Research Program of
the Korea Science & Engineering Foundation.

8. REFERENCES
[1] Aleph One Company, YAFFS (Yet Another Flash File

System), http://www.aleph1.co.uk/yaffs/yaffs.html/.
[2] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer,

Non-Volatile Memory for Fast, Reliable File System, In
Proceedings of the 5th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-V), pp. 10-22, Oct. 1992.

[3] CE Linux Public, PramFs,
http://www.celinuxforum.org/CelfPubWiki/PramFs/.

[4] P. M. Chen, W. T. Ng, S. Chandra, and D. E. Lowell, The
Rio File Cache: Surviving Operating System Crashes, In
Proceedings of the 7th International Conference on

172

Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VII), pp. 74-83, Oct. 1996.

[5] Freescale Semiconductor, http://www.freescale.com/.
[6] Freescale Semiconductor, MR2A16A MRAM Datasheet,

http://www.freescale.com/files/microcontrollers/doc/data_sh
eet/MR2A16A.pdf.

[7] FALINUX, EZ-M28, http://falinux.com/zproducts/ez-
m28.php/.

[8] E. Gal and S. Toledo, A Transactional Flash File System for
Microcontrollers, In Proceedings of the USENIX Annual
Technical Conference (USENIX 2005), pp. 89-104, Apr.
2005.

[9] E. Gal and S. Toledo, Algorithms and Data Structures for
Flash Memories, ACM Computing Surveys (CSUR), 37, 2
(Jun. 2005), 138-163.

[10] C. Hyun, S. Baek, S. Ahn, J. Choi, and D. Lee, Experimental
Evaluation of an Extent-based File System for Nonvolatile-
RAM, In Proceedings of the 2nd International Workshop on
Software Support for Portable Storage (IWSSPS 2006), pp.
18-24, Oct. 2006.

[11] A. Kawaguchi, S. Nishioka, and H. Motoda, A Flash-
Memory Based File System, In Proceedings of the 1995
USENIX Winter 1995 Technical Conference, pp. 155-164,
Jan. 1995.

[12] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, A
Space-efficient Flash Translation Layer for CompactFlash
Systems, IEEE Transactions on Consumer Electronics, 28,
2 (May 2002), 366-375.

[13] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and H. Song, A
Log Buffer based Flash Translation Layer using Fully
Associative Sector Translation, To appear in ACM
Transactions on Embedded Computer Systems.

[14] D. E. Lowell and P. M. Chen, Free Transactions with Rio
Vista, In Proceedings of the 4th Symposium on Operating
Systems Design and Implementation (OSDI 2000), pp. 119-
134, Oct. 2000.

[15] E. L. Miller, S. A. Brandt, and D. D. E. Long, HeRMES:
High Performance Reliable MRAM-Enabled Storage, In

Proceedings of the 8th IEEE Workshop on Hot Topics in
Operating Systems (HotOS-VIII), pp. 83-87, 2001.

[16] Ramtron International – Nonvolatile Memory, Integrated
Memory and Microcontrollers, http://www.ramtron.com/.

[17] Ramtron International, FM24C512 FRAM Datasheet,
http://www.ramtron.com/lib/literature/datasheets/FM24C512
ds_r1.0.pdf.

[18] M. Rosenblum and J. K. Ousterhout, The design and
implementation of a log-structured file system, ACM
Transactions on Computer Systems, 10, 1 (Feb. 1992), 26-52.

[19] Samsung Electronics, NAND Flash Memory Datasheet,
http://www.samsung.com/Products/Semiconductor/NANDFl
ash/SLC_LargeBlock/64Gbit/K9NCG08U5M/ds_k9xxg08ux
m_rev10.pdf.

[20] A. B. Szczurowska, MRAM-preliminary analysis for file
system design, Master’s thesis, University of California,
Santa Cruz, Mar. 2002.

[21] Tech-On News,
http://techon.nikkeibp.co.jp/english/NEWS_EN/20070226/1
28173/.

[22] The BGET Memory Allocator,
http://www.fourmilab.ch/bget/.

[23] D. Woodhouse, JFFS: The Journaling Flash File System,
Ottawa Linux Symposium, 2001.

[24] C. H. Wu, T. W. Kuo and L. P. Chang, Efficient
Initialization and Crash Recovery for Log-based File
Systems over Flash Memory, In Proceedings of the 2006
ACM Symposium on Applied Computing (SAC 2006), pp.
896-900, Apr. 2006.

[25] A. A. Wang, P. Reiher, G. J. Popek, and G. H. Kuenning,
Conquest: Better Performance Through a Disk/Persistent-
RAM Hybrid File System, In Proceedings of the USENIX
Annual Technical Conference (USENIX 2002), pp. 15-28,
Jun. 2002.

[26] K. S. Yim, J. Kim, and K. Koh, A Fast Start-Up Technique
for Flash Memory Based Computing Systems, In
Proceedings of the 2005 ACM Symposium on Applied
Computing (SAC 2005), pp. 843-849, Mar. 2005.

173

