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ABSTRACT  
Flash memory is a storage medium that is becoming more and 
more popular. Though not yet fully embraced in traditional com-
puting systems, Flash memory is prevalent in embedded systems, 
materialized as commodity appliances such as the digital camera 
and the MP3 player that we enjoy in our everyday lives. This 
paper considers an issue in file systems that use Flash memory as 
a storage medium and makes the following two contributions. 
First, we identify the cost of block cleaning as the key perform-
ance bottleneck for Flash memory analogous to the seek time in 
disk storage. We derive and define three performance parameters, 
namely, utilization, invalidity, and uniformity, from characteris-
tics of Flash memory and present a formula for block cleaning 
cost based on these parameters. We show that, of these parameters, 
uniformity most strongly influences the cost of cleaning and that 
uniformity is a file system controllable parameter. This leads us to 
our second contribution, designing the modification-aware 
(MODA) page allocation scheme and analyzing how enhanced 
uniformity affects the block cleaning cost with various workloads. 
Real implementation experiments conducted on an embedded 
system show that the MODA scheme typically improves 20 to 
30% in cleaning time compared to the traditional sequential allo-
cation scheme that is used in YAFFS.  

Categories and Subject Descriptors 

D.4.2 [Operating System]: Storage Management--Secondary stor-

                                                 
 

age; D.4.3 [Operating System]: File Systems Management--File 
organization; C.4 [Computer Systems Organization]: Performance 
of Systems--Modeling techniques;  

General Terms: Performance, Design, Experimentation, 
Verification. 

Keywords: Flash memory, File system, Modeling, Uniform-
ity, Implementation, Performance Evaluation 

1. INTRODUCTION 
Characteristics of storage media has been the key driving force 
behind the development of file systems.  The Fast File System’s 
(FFS) introduction of cylinder groups and the rule of thumb of 
keeping 10% of the disk as a free space reserve for effective lay-
out was, essentially, to reduce seek time, which is the key bottle-
neck for user perceived disk performance [1]. Likewise, develop-
ment of the Log-structured File System (LFS) was similarly moti-
vated by the want to make large sequential writes so that the head 
movement of the disk would be minimized and to fully utilize the 
limited bandwidth that is available [2]. Various other optimization 
techniques that take into consideration the mechanical movement 
of the disk head has been proposed both at the file system level 
and the device level [3].  

Similar developments have occurred for the MEMS-based storage 
media. Various scheduling algorithms that consider physical char-
acteristics of MEMS devices such as the disparity of seek dis-
tances in the x and y dimensions have been suggested [4,5].  

Recent developments in Flash memory technology have brought 
about numerous products that make use of Flash memory. In this 
paper, we explore and identify the characteristics of Flash mem-
ory and analyze how they influence the latency of data access. 
We identify the cost of block cleaning as the key characteristic 
that influences latency. A performance model for analyzing the 
cost of block cleaning is presented based on three parameters that 
we derive, namely, utilization, invalidity, and uniformity, which 
we define clearly later.  

The model reveals that the cost of block cleaning is strongly in-
fluenced by uniformity just like seek is a strong influence for disk 
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based storage. Also, we observe that most of algorithms trying to 
improve block cleaning time in Flash memory are, essentially, 
trying to maintain high uniformity of Flash memory. Furthermore, 
the model gives the upper bound of performance gain expected by 
developing a new algorithm. To validate the model and to analyze 
our observations in real environments, we design a new modifica-
tion-aware (MODA) page allocation scheme that strives to main-
tain high uniformity by grouping files based on their update fre-
quencies.  

We implement the MODA page allocation scheme on an embed-
ded system that has 64MB of NAND Flash memory running the 
Linux kernel 2.4.19. The NAND Flash memory is managed by 
YAFFS (Yet Another Flash File System) [7] supported in Linux. 
We modify the page allocation scheme in YAFFS to MODA and 
compare its performance with the original scheme. Experimental 
results show that, by enhancing uniformity, the MODA scheme 
can reduce block cleaning time up to 47.8 seconds with an aver-
age of 9.8 seconds for the benchmarks considered. As the utiliza-
tion of Flash memory increases, the performance enhancements 
become even larger. Performance is also compared with the DAC 
(Dynamic dAta Clustering) scheme that was previously proposed 
[8]. Results show that both the MODA and the DAC scheme per-
forms better than the sequential allocation scheme used in YAFFS, 
though there are some delicate differences causing performance 
gaps between them. 

The rest of the paper is organized as follows. In Section 2, we 
elaborate on the characteristics of Flash memory and explain the 
need for cleaning, which is the key issue that we deal with. We 
then review previous works that have dealt with this issue in Sec-
tion 3. Then, we present a model for analyzing the cost of block 
cleaning in Section 4. In Section 5, we present the new page allo-
cation scheme, which we refer to as MODA, in detail. The im-
plementation details and the performance evaluation results are 
discussed in Section 6. We conclude the paper with a summary 
and directions for future works in Section 7. 

2. FLASH MEMORY AND BLOCK  
CLEANING 
Flash memory as a storage medium has characteristics that are 
different from traditional disk storage. These characteristics can 
be summarized as follows [9].  

 No seek time: Access time in Flash memory is location 
independent similar to RAM. There is no “seek time” in-
volved. 

 Overwrite limitation: Overwrite is not possible in Flash 
memory. Flash memory is a form of EEPROM (Electrically 
Erasable Programmable Read Only Memory), so it needs to 
be erased before new data can be overwritten. 

 Asymmetric execution time: Execution time for the basic 
operations in Flash memory is asymmetric. Traditionally, 
three basic operations, namely, read, write, and erase, are 
supported. An erase operation is used to clean used pages so 
that the page may be written to again. In general, a write op-
eration takes an order of magnitude longer than a read op-
eration, while an erase operation takes another order or more 
magnitudes longer than a write operation [21]. 

 Different operation unit: The unit of operation is also dif-
ferent for the basic operations. While the erase operation is 
performed in block units, read/write operations are per-
formed in page units.  

 Wear-leveling: The number of erasures possible on each 
block is limited, typically, to 100,000 or 1,000,000 times.  

These characteristics make designing software for Flash memory 
challenging and interesting [11].  

Now, let us discuss why block cleaning is required and how it 
affects the performance of Flash memory file systems. Reading 
data or writing totally new data into Flash memory is simply like 
reading/writing to disk. A page in Flash is referenced/allocated 
for the data and data is read/written from/to that particular page. 
The distinction from a disk is that all reads/writes take a (much 
shorter) constant amount of time (though writes take longer than 
reads). 

However, for updates of existing data, the story is totally different. 
As overwriting updated pages is not possible, various mechanisms 
for non-in-place update have been developed [7,12,13,14]. 
Though specific details differ, the basic mechanism is to allocate 
a new page, write the updated data onto the new page, and then, 
invalidate the original page that holds the (now obsolete) original 
data. The original page now becomes a dead or invalid page.  

Note that, from the above discussions, a page can be in three dif-
ferent states, as shown in Figure 1. That is, a page can be holding 
legitimate data making it a valid page; we will say that a page is 
in a valid state if the page is valid. If the page no longer holds 
valid data, that is, it was invalidated by being deleted or by being 
updated, then the page is a dead/invalid page, and the page is in 
an invalid state. Note that a page in this state cannot be written to 
until the block it resides in is first erased. Finally, if the page has 
not been written to in the first place or the block in which the 
page resides has just been erased, then the page is clean. In this 
case, we will say that the page is in a clean state. Note that only 
pages that are in a clean state may be written to. Recall that in 
disks, there is no notion of an invalid state as in-place overwrites 
to sectors is always possible. 

From the tri-state characteristics, we find that the number of clean 
pages diminishes not only as new data is written, but also as exist-
ing data is updated. In order to store more data and even to make 
updates to existing data, it is imperative that invalid pages be 
continually cleaned. Since cleaning is done via erase operation, 
which is done in block units, valid pages in the block to be erased 
must be copied to a clean block. This exacerbates the already 

Figure 1. Page state transition diagram 
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large overhead incurred by the erase operation needed for clean-
ing a block.  

3. RELATED WORK 
The issue of segment/block cleaning is not new and has been dealt 
with in both the disk and Flash memory realms. In this section, we 
discuss previous research in this area, especially in relation to the 
work presented in this paper. 

Conceptually, the need for block cleaning in Flash memory is 
identical to the need of segment cleaning in the Log-structured 
File System (LFS). LFS writes data to a clean segment and per-
forms segment cleaning to reclaim space occupied by obsolete 
data just like invalid pages are cleaned in Flash memory [2]. 
Segment cleaning is a vital issue in the Log-structured File Sys-
tem (LFS) as it greatly affects performance [15,16,17,18]. Black-
well et al. use the terms ‘on-demand cleaning’ and ‘background 
cleaning’ separately and try to reduce user-perceived latency by 
applying heuristics to remove on-demand cleaning [15]. Matthews 
et al. propose a scheme that adaptively incorporates hole-plugging 
into cleaning according to the changes in disk utilization [16]. 
They also consider how to take advantage of cached data to re-
duce the cost of cleaning.  

Some of the studies on LFS are in line with an aspect of our study, 
that is, exploiting modification characteristics. Wang and Hu pre-
sent a scheme that gathers modified data into segment buffers and 
sorts them according to the modification frequency and writes two 
segments of data to the disk at one time [17]. This scheme writes 
hot and cold modified data into different segments. Wang et al. 
describe a scheme that applies non-in-place update for hot-
modified data and in-place updates for cold-modified data [18]. 
These two schemes, however, are disk-based approaches, and 
hence, are not appropriate for Flash memory.  

In the Flash memory arena, studies for improving block cleaning 
have been suggested in many studies [8,11,12,19,20]. Kawaguchi 
et al. propose using two separate segments for cleaning: one for 
newly written data and the other for data to be copied during 
cleaning [12]. Wu and Zwaenepoel present a hybrid cleaning 
scheme that combines the FIFO algorithm for uniform access and 
locality gathering algorithm for highly skewed access distribution 
[19]. These approaches differ from ours in that their classification 
is mainly based on whether data is newly written or copied. 

Chiang et al. propose the CAT (Cost Age Time) and DAC (Dy-
namic dAta Clustering) schemes [8]. CAT chooses blocks to be 
reclaimed by taking into account the cleaning cost, age of data in 
blocks, and the number of times the block has been erased. The 
DAC partitions Flash memory into several regions and place data 
into different regions according to their update frequencies. Later, 
we compare the performance of DAC that we implemented with 
the MODA scheme we propose, and explain what the differences 
are between the two schemes. One key difference between this 
work and ours is that we identify the parameters that influence the 
cost of block cleaning in Flash memory and provide a model for 
the cost based on these parameters. The model gives us what fun-
damental we need to focus on and how much gain we can expect, 
when we develop a new algorithm for Flash memory such as page 

allocation, block selection for cleaning, and background cleaning 
scheme. 

There are also some noticeable studies regarding Flash memory. 
Kim et al. describe the difference between block level mapping 
and page level mapping [21]. They propose a hybrid scheme that 
not only handles small writes efficiently, but also reduces re-
sources required for mapping information. Gal and Toledo present 
a recoverable Flash file system for embedded systems [13]. They 
conjecture that a better allocation policy and a better reclamation 
policy would improve endurance and performance of Flash mem-
ory. The same authors also present a nice survey, where they 
provide a comprehensive discussion of algorithms and data struc-
tures regarding Flash memory [11]. Chang et al. discuss a block 
cleaning scheme that considers deadlines in real-time environ-
ments [20]. Ben-Aroya analyzes wear-leveling problems mathe-
matically and suggests separating the allocation and cleaning 
policies from the wear-leveling problems [24]. 

4. BLOCK CLEANING COST ANAYSIS 
4.1. Model for Flash Memory 
As mentioned in Section 3, Log-structured File System (LFS) 
requires segment cleaning to reclaim space occupied by obsolete 
data [2]. The authors of LFS have presented a formula for estimat-
ing the cleaning cost, that is:  

The above formula provides a reasonable model for LFS, reveal-
ing that the cleaning cost increases as the utilization increases. It 
also serves as a policy-making guideline when choosing the block 
to be cleaned. However, there are some limitations in adopting 
this formula to Flash memory file systems. First, the cleaning cost 
depends not only on the utilization, but also on the distribution of 
invalid pages. However, Equation (1) does not reflect this in the 
cost model. Second, due to the overwrite limitation of Flash 
memory, block cleaning includes the erase operation for invalid 
pages, which also affects the block cleaning cost. Hence, a model 
for Flash memory should have the capability to reflect the amount 
of invalid pages on the cost analysis. Finally, the equation pro-
vides a relative performance measure. That is, the write cost in 
Equation (1) is expressed as a multiple of the time required when 
there is no cleaning overhead. What we desire in a model, how-
ever, is the absolute time required to clean blocks for a given 
Flash memory. 

To derive an appropriate model for Flash memory, we first iden-
tify three parameters that affect the cost of block cleaning. They 
are defined as follows: 

 Utilization (u): the fraction of valid pages in Flash memory 
 Invalidity (i):  the fraction of invalid pages in Flash memory 
 Uniformity (p): the fraction of blocks that are uniform in 

Flash memory, where a uniform block is a block that does 
not contain both valid and invalid blocks simultaneously. 

Figure 2 shows three page allocation situations where utilization 
and invalidity are the same, but uniformity is different. Since 
there are eight valid pages and eight invalid pages among the 20 
pages for all three cases, utilization and invalidity are both 0.4. 
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However, there is one, three, and five uniform blocks in Figure 
2(a), (b), and (c), respectively, hence uniformity is 0.2, 0.6, and 1, 
respectively. (Another definition of uniformity would be “1 – the 
fraction of blocks that have both valid and invalid pages.”)  Note 
that, for the case of Figure 2(a), 8 page copies and 4 block erases 
are required to reclaim all invalid pages. For the case of Figure 
2(b), 4 page copies and 3 block erases are required, while only 2 
block erases are needed for case Figure 2(c). 

Utilization determines, on average, the number of valid pages that 
need to be copied. Invalidity determines the number of blocks that 
are candidates for erasing. Finally, uniformity determines the 
actual number of pages and blocks to be copied and erased. From 
these observations, we can formulate the cost of block cleaning as 
follows:  

In Equation (2), B*((1‐ p)+i*p)) represents the number of blocks 

to be erased. Specifically, B*(1‐ p) denotes the number of non-
uniform blocks (containing both valid and invalid pages) and 
B*(i*p) denotes the number of uniform blocks that have invalid 
pages only. The number of pages to be copied is represented as 
the term P*(1‐ p)*u / (u+i). P*(1‐ p)*u refers to the average 

number of valid pages in non-uniform blocks. However, when 

there are clean blocks in Flash memory, P*(1‐ p)*u has a ten-
dency to underestimate the number of valid pages by uniformly 
distributing u evenly among the clean blocks. To handle this spe-
cial case, we divide P*(1‐ p)*u by (u+i). Validation of this 
model is presented in Section 6.3.2. 

 
4.2. Implication of the Parameters on Block 
Cleaning Costs 
Figure 3 shows the analytic results of the cost of block cleaning 
based on the derived model. In the figure, the x-axis is utilization, 
the y-axis is uniformity, and the z-axis is the cost of block clean-
ing. For this graph, we set invalidity as 0.1 and use the raw data of 

a small block 64MB NAND Flash memory [10]. The execution 
times for read, write, and erase operations are 15us, 200us, and 
2000us, respectively.  Each block has 32 pages where the size of 
each page is 0.5KB. 

The main observation from Figure 3 is that the cost of cleaning 
increases dramatically when utilization is high and uniformity is 
low. We also conduct analysis with different values of  invalidity 
and with the raw data of a large block 1GB NAND Flash mem-
ory[10], which shows similar trends observed in Figure 3. 

Figure 4 depicts how each parameter affects the cost of block 
cleaning. In each figure, the initial values of the three parameters 
are all set to 0.5. Then, we decrease utilization in Figure 4(a), 
decrease invalidity in Figure 4(b), and increase uniformity in 

Figure 4(c). From these figures, we find that the impact of utiliza-
tion and uniformity on block cleaning cost is higher than that of 
invalidity. Since utilization is almost uncontrollable at the file 
system level, this implies that to keep cleaning cost down keeping 
uniformity high may be a better approach than trying to keep 
invalidity low through frequent cleaning.  

5. PAGE ALLOCATION SCHEME THAT 
STRIVES FOR UNIFORMITY 
When pages are requested in file systems, in general, pages are 
allocated sequentially [7,12]. Flash file systems tend to follow this 
approach and simply allocate the next available clean page when 
a page is requested, not taking into account any of the characteris-
tics of the storage media. 

We propose an allocation scheme that takes into account the file 
modification characteristics such that uniformity may be maxi-
mized. The allocation scheme is modification-aware (MODA) as 
it distinguishes data that are hot-modified, that is, modified fre-
quently and data that are cold-modified, that is, modified infre-
quently. Allocation of pages for the distinct type of data is done 
from distinct blocks.  

 

Figure 2. Situation where utilization (u=0.4) and in-
validity (i=0.4) remains unchanged, while uniformity 
(p) changes (a) p = 0.2 (b) p = 0.6 (c) p = 1 

Figure 3. Block cleaning costs  
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The motivation behind this scheme is that by classifying hot-
modified pages and allocating them to the same block, we will 
eventually turn the block into a uniform block filled with invalid 
pages. Likewise, by classifying cold-modified pages and allocat-
ing them together, we will turn this block into a uniform block 
filled with valid pages. Pages that are neither hot-modified nor 
cold-modified are sequestered so that they may not corrupt the 
uniformity of blocks that hold hot and cold modified pages. 

The natural question, then, is how to classify hot/cold-modified 
data. Our solution is to use two levels of modification-aware clas-
sifications as shown in Figure 5. At the first level, we make use of 
static properties, and dynamic properties are used at the second 
level. This classification is based on the skewness in page modifi-
cation distribution [18, 20], exploited many other previous re-
search [8, 11, 17, 18, 25]. 

As static property, we distinguish system data and user date as the 
modification characteristics of the two are quite different. The 
superblock and inodes are examples of system data, while data 
written by users are examples of user data. We know that inodes 
are modified more intensively than user data, since any change to 
the user data in a file causes changes to its associated inode.  

User data is further classified at the second level, where its dy-
namic property is used. In particular, we make use of the modifi-
cation count. Keeping the modification count for each page, how-
ever, may incur considerable overhead. Therefore, we choose to 
monitor at a much larger granularity and keep a modification 

count for each file which is updated when the modification time is 
updated. 

For classification with the modification count, we adopt the MQ 
(Multi Queue) algorithm [25]. Specifically, it uses multiple LRU 
queues numbered Q0, Q1,…, Qm-1. Each file stays in a queue for a 
given lifetime. When a file is first written (created), it is inserted 
into Q0. If a file is modified within its lifetime, it is promoted from 
Qi to  Qi+1.On the other hand, if a file is not modified within its 
lifetime, it is demoted from Qi to Qi-1. Then, we classify a file 
promoted from Qm-1 as hot-modified data, while a file demoted 
from Q0 as cold-modified data. Files within queues are defined as 
unclassified data. In our experiments, we set m as 2 and lifetime 
as 100 time-ticks (time is virtual that ticks at each modification 
request). In other words, a file modified more than 2 times is clas-
sified as hot, while a file in Q0 that has not been modified within 
the recent 100 modification requests is classified as cold. We find 
that MODA with different values of m = 3 and/or lifetime = 500 
shows similar behavior. 

 

6. PERFORMANCE EVALUATION 
6.1. Platform and Implementation 
We have implemented the MODA scheme on an embedded sys-
tem. Hardware components of the system include a 400MHz 
XScale PXA CPU, 64MB SDRAM, 64MB NAND Flash memory, 
0.5MB NOR Flash memory, and embedded controllers such as 
LCD, UART and JTAG [22]. The same NAND Flash memory 
that was used to analyze the cost of block cleaning in Figures 3 
and 4 is used here.  

The Linux kernel 2.4.19 was ported on the hardware platform and 
YAFFS is used to manage the NAND Flash memory [7]. We 
modify the page allocation scheme in YAFFS and compare the 
performance with the native YAFFS. We will omit a detailed 
discussion regarding YAFFS, but only describe the relevant parts 
below. Interested readers are directed to [6,7] for details of 
YAFFS. 

The default page allocation scheme in YAFFS is the sequential 
allocation scheme. We implemented the MODA scheme in 
YAFFS and will refer to this version of YAFFS, the MODA-
YAFFS or simply MODA. In MODA-YAFFS, we modified func-
tions such as yaffs_WriteChunkDataToObject(), yaffs_FlushFile(), 
yaffs_UpdateObjectHeader() in yaffs_guts.c and init_yaffs_fs(), 
exit_yaffs_fs() in yaffs_fs.c. 
 

Figure 5. Two level (static and dynamic property)  
classification used in MODA scheme 

Invalidity 

Figure 4. How block cleaning cost is affected by (a) utilization, (b) invalidity, and (c) uniformity as the other 
two parameters are kept constant at 0.5 
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The block cleaning scheme in YAFFS is invoked at each write 
request. There are two modes of cleaning: normal and aggressive. 
In normal mode, YAFFS chooses the block that has the largest 
number of invalid pages among the predefined number of blocks 
(default setting is 200). If the chosen block has less than 3 valid 
pages, it reclaims the block. Otherwise, it gives up on the reclaim-
ing. If the number of clean blocks is lower than a predefined 
number (default setting is 6), the mode is converted to aggressive. 
In aggressive mode, YAFFS chooses a block that has invalid 
pages and reclaims the block without checking the number of 
valid pages in it. The block cleaning scheme in MODA-YAFFS is 
exactly the same. We do add a new interface for block cleaning 
that may be invoked at the user level for ease of measurement.  

6.2. The Workload 
To gather sufficient workloads for evaluating our scheme, a com-
prehensive survey of Flash memory related papers was done. The 
result of this survey is the following 7 benchmarks used in our 
implementation experiments. 

 Camera benchmark : This benchmark executes a number of 
transactions repeatedly, where each transaction consists of 
three steps; creating, reading and deleting some of these 
files randomly. Such actions of taking, browsing, and eras-
ing pictures are common behaviors of digital camera users, 
as observed in [21, 26]. 

  Movie player benchmark : This benchmark simulates the  
workload of a Portable Media Players [26].  

  Phone benchmark : This benchmark simulates the behavior 
of a cellular phone [13].  

  Recorder benchmark : This benchmark models the behav-
ior of an event recorder such as an automotive black box and 
remote sensors [13].  

  Fax machine benchmark : This benchmark initially creates 
two files. Then, it creates four new files and updates a his-
tory file (200 bytes) when it receives a fax. This behavior 
can be observed in fax machines, answering machines, and 
music players [13].  

  Postmark benchmark: This benchmark creates a large 
number of randomly sized files. It then executes read, write, 
delete, and append transactions on these files [23].  

  Andrew benchmark : This benchmark was originally de-
veloped for testing disk based file systems, but many Flash 
memory studies have used it for performance evaluation [12, 
21]. The Andrew benchmark consists of 5 phases, but in our 
study, we only execute the first two phases. 

These benchmarks can be roughly grouped into three categories: 
sequential read/write intensive workloads, update intensive work-
loads, and multiple files intensive workloads. The first group 
includes the Camera and Movie benchmarks that access large files 
sequentially. The Phone and Recorder benchmarks are typical 
examples of update intensive workloads that manipulate a small 
number of files and update them intensively. The Fax, Postmark 
and Andrew benchmarks access multiple files with different ac-
cess probabilities and can be group into the third category. 
 
6.3. Performance Evaluation 
6.3.1 Performance results 
Table 1 shows performance results both measured by executing 
benchmarks and estimated by the model. Before each execution 
the utilization of Flash memory is set to 0, that is, the Flash mem-
ory is reset completely. Then, we execute each benchmark on 
YAFFS and MODA-YAFFS and measure its execution time re-
ported in the ‘Benchmark Running Time’ column. Note that the 
only difference between YAFFS and MODA-YAFFS is the page 

Performance 
Parameters Estimated Results Measured Results 

Benchmark Scheme 
Benchmark 

Running 
Time U I P # of 

Erase 
# of 

Copy 
Cleaning 

Time 
# of 

Erase 
# of 

Copy 
Cleaning 

Time 

YAFFS 38 0.3 0.002 0.98 76 2192 2.83 69 1516 9.60 
Camera 

MODA 37 0.3 0.002 0.99 17 317 0.42 10 62 7.56 

YAFFS 481 0.99 0.0001 0.99 10 319 0.41 10 7 24.56 
Movie 

MODA 481 0.99 0.0001 0.99 1 31 0.04 1 3 24.54 

YAFFS 90 0.05 0.32 0.62 2151 6047 11.18 1398 6047 12.08 
Phone 

MODA 90 0.05 0.22 0.72 1606 6052 10.24 1011 6063 10.80 

YAFFS 32 0.005 0.16 0.83 1128 692 2.81 626 699 2.00 
Recorder 

MODA 32 0.005 0.08 0.90 636 692 1.95 344 690 1.76 

YAFFS 100 0.86 0.0087 0.73 1024 31710 40.74 1001 30996 60.99 Fax 
machine MODA 99 0.86 0.0087 0.97 76 2407 3.14 76 1383 23.19 

YAFFS 17 0.08 0.0107 0.90 393 10158 13.17 357 10147 16.18 
Postmark 

MODA 17 0.08 0.0107 0.93 285 7057 9.17 248 6652 11.39 

YAFFS 33 0.09 0.0008 0.90 372 10174 13.16 345 10060 16.32 
Andrew 

MODA 32 0.09 0.0008 0.98 92 1828 2.40 62 1004 3.64 
            

Table 1. Performance comparison of YAFFS and MODA-YAFFS for the benchmarks when utilization at 
start of execution is 0 (The unit of time measurement is in seconds)  
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allocation scheme. Also, after executing the benchmark, we 
measure the performance parameters, namely utilization, invalid-
ity, and uniformity of Flash memory denoted as ‘U’, ‘I’, ‘P’ in the 
Table 1 

Using the measured performance parameters and the model pro-
posed in Section 4.1, we can estimate the number of erase and 
copy operations required to reclaim all the invalid pages. Also, 
the model gives us the expected cleaning time. These estimated 
results are reported  in the ‘Estimated Results’ column. Finally, 
we actually measure the number of erase and copy operations and 
cleaning times to reclaim all invalid pages, which are reported in  

the ‘Measured Results’ column. The measured results reported are 
averages of three executions for each case unless otherwise stated.  

6.3.2 Model Validation 
Table 1 shows that the number of erase and copy operations 
estimated by the model are similar to those measured by real 
implementaion, though the model tends to overestimate the erase 
operations when invalidity is high. These similarities imply that 
the model is fairly effective to predict how many operations are 
required under given status of Flash memory. 

However, there are noticable differences between the measured 
and estimated block cleaning times. Through sensitive analysis, 
we find two main reasons behind these differences. The first 
reason is that the model requires the read, write, and erase times 
to estimate the block cleaning time. The simplest way to 
determine these values is by using the data sheet provided by the 
Flash memory chip vendor. However, through experiments we 
observe that the values reported in the datasheet and the actual 
time seen at various levels of the system differ considerably. 
Figure 6 shows these results. The results shows that while the 
datasheet reports read, write, and erase times of 0.01ms, 0.2ms, 
and 2ms, respectively, for the Flash memory used in our 
experiments, the times observed for directly accessing Flash 
memory at the device driver level is 0.19ms, 0.3ms, and 1.7ms, 
respectively. Furthermore, when observed just above the 
MTD(Memory Technology Device) layer, the read, write, and 
erase times are 0.2ms, 1.03ms, and 1.74ms, respectively, with 
large variances. These variances influence the accuracy of the 
model drastically. Since the YAFFS runs on the basis of the MTD 
layer, the estimated results reported in Table 1 use the times 
observed above the MTD layer.  

The second reason is that block cleaning not only causes copy and 
erase overhead, but it also incurs software manipulating overhead. 
Specifically, YAFFS does not manage block and page status 
information in main memory in order to minimize the RAM 
footprint. Hence, it needs to read Flash memory to detect the 
blocks to be cleaned and how many valid pages the blocks have. 
Due to this overhead, there are differences between the measured 
and estimated cleaning times. The overhead also explains why the 
difference increases as utilization increases. However, the 
cleaning time difference between YAFFS and MODA for the 
estimates derived from the model and the measurements are quite 
similar, which implies that the model is a good indicator of the 
performance characteristics of Flash memory. 

6.3.3 Effects of Uniformity 
By comparing the results of YAFFS and those of MODA, we 
make the following observations. 

 The benchmark execution time is the same for YAFFS and 
MODA. This implies that there is minimal overhead for the 
additional computation that may be incurred for data classi-
fication.  

  The MODA scheme maintains high uniformity, which leads 
to block cleaning time reductions of up to 47.8 seconds (for 
Fax machine benchmark) with an average of 9.8 seconds for 
the benchmarks considered. 

  The performance gains of MODA for Movie and Camera 
benchmarks are minimal. Our model reveals that the original 
sequential page allocation scheme used in YAFFS also 
keeps high uniformity making it difficult to obtain consider-
able gains. 

  The gains of MODA for Phone and Recorder benchmark 
are also trivial, even though there is room for enhancing uni-
formity. Careful analysis reveals these benchmarks access 
only a small number of files; six files for Phone and two 
files for Recorder. Since the MODA classifies hot/cold data 
on the file-level granularity, the classification turns out to be 
ineffective. These experiments disclose the limitation of the 
MODA scheme and suggest that page-level classification 
may be more effective for some benchmarks. 

We also experiment with combinations of two or more bench-
marks such as ‘Camera + Phone’ simulating activities of recent 
cellular phone that have digital camera capabilities and ‘Movie + 
Recorder + Postmark’ simulating a PMP player that uses an em-
bedded database to maintain movie titles, actor libraries and digi-
tal rights. Experiments show that the trends for multiple bench-
mark executions are similar to those of the Postmark results re-
ported in Table 1. For example, for the combination of ‘Movie + 
Recorder + Postmark’, the block cleaning time of YAFFS and 
MODA are 34.82 and 22.58 seconds, while uniformity are 0.73 
and 0.84, respectively. We also find that the interferences among 
benchmarks drive uniformity of Flash memory low, even for large 
sequential multimedia files. 

6.3.4 Effects of Utilization 
 
In real life, utilization of Flash memory will rarely be 0. Hence, 
we conduct similar measurements as was done for Table 1, but 
varying the initial utilization value. Figure 7 shows the results of 
executing Postmark under the various initial utilization values. 

Figure 6. Execution time at each level 
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Utilization was artificially increased by executing the Andrew 
benchmark before each of the measurements. Exact same experi-
ments were conducted with utilization adjusted by pre-executing 
the Postmark benchmark, but the result trend is similar, hence we 
only report one set of these results. 

For the moment, ignore the results reported when utilization is 0.9, 
which shows somewhat different behavior. We come back to 
discuss these results shortly. The results in Figure 7 show that 
block cleaning time increases as utilization increases confirming 
what we had observed in Figure 4(a). In Figure 3, our model 
shows that under high utilization, enhancement of uniformity 
leads to greater reduction in cleaning time. Figure 7 validates this 
expectation by showing that the difference in block cleaning time 
between YAFFS and MODA-YAFFS increases as utilization 
increases. 

Let us now discuss results reported when the initial utilization is 
0.9. Observe that the results are different from results with lower 
utilization values, in that the benchmark running time is much 

higher, more so for YAFFS. This is because YAFFS is confronted 
with a lack of clean blocks during execution, and hence, turns the 
block cleaning mode to aggressive. As a result, on-demand block 
cleaning occurs frequently increasing the benchmark running time 
to 72 seconds, four times the running time compared to when 
utilization is lower. Note that in MODA-YAFFS, the running time 
does increase, but not as significantly. This is because the MODA 
allocation scheme allows for more blocks to be kept uniform, and 
hence aggressive on-demand block cleaning is invoked less.  

6.3.5 Effects of Periodic block cleaning 
In YAFFS, block cleaning is invoked at each write request and 
attempts to reclaim at most one block at each trial. In other file 
system, block cleaning is invoked when free space becomes 
smaller than a predefined lower threshold and attempts to reclaim 
blocks until it becomes larger than an upper threshold [2, 12]. On 
the contrary, block cleaning can happen when the system is idle 
[15]. Ideally, if this can happen, then all block cleaning costs may 
be hidden from the user. Whether this is possible or not will de-
pend on many factors including the burstiness of request arrival, 
idle state detection mechanism, and so on. 

To see how periodic block cleaning affects performance we con-
duct the following sequence of executions. Starting from utiliza-
tion zero, that is, a clean Flash memory state, we repeatedly exe-
cute Postmark until the benchmark can no longer complete as 
Flash memory completely fills up. During this iteration, two dif-
ferent actions are taken. For Figures 8(a) and (c), nothing is done 
between each execution. That is, no form of explicit cleaning is 
performed. For Figures 8(b) and (d), block cleaning is performed 
between benchmark executions. This represents a case where 
block cleaning is occurring periodically. Figures 8(a) and (b) are 
the measurement results for YAFFS, while Figures 8(c) and (d) 
are results for MODA. The utilization values reported on the x-
axis is the value before each benchmark execution. 

Figure 7.  Results reported under various initial 
utilization values 

Figure 8. Execution time for Postmark  for YAFFS (a) without periodic cleaning, (b) with periodic 
cleaning and for MODA (c) without periodic cleaning, (d) with periodic cleaning 
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The results here verify what we would expect based on observa-
tions from Section 6.3.4. As utilization is kept under some value, 
YAFFS and MODA perform the same (with or without periodic 
cleaning). Without periodic cleaning, once past that threshold, 
0.87 in Postmark, the benchmark execution time abruptly in-
creases for YAFFS, while for MODA, it increases only slightly. 
This is because enough clean blocks are being maintained in 
MODA. When block cleaning is invoked periodically, the bench-
mark execution time may be maintained at a minimum. However, 
the problem with this approach is that periodic cleaning itself 
incurs overhead, and the issue becomes whether this overhead can 
be hidden from the user or not. As this issue is beyond the scope 
of this paper, we leave this matter for future work. Note that the 
periodic cleaning times are smaller in MODA than those in 
YAFFS, implying the periodic cleaning also get benefits from 
keeping uniformity high. 

6.4. MODA vs DAC 
In this subsection, we compare MODA with the DAC scheme 
proposed by Chiang et al. [8]. In the DAC scheme, Flash memory 
is partitioned into several regions and data are moved toward 
top/bottom region if their update frequencies increase/decrease. 
Both MODA and DAC try to cluster data not only at block clean-
ing time, but also at data updating time. We implement the DAC 
schemes into YAFFS and set the number of regions as 4 as this is 
reported to have shown the best performance [8]. 

Figure 9 shows the results between for the MODA and DAC 
schemes. (The results for YAFFS are shown for comparisons 
sake.) We execute each benchmark under the same conditions 
described in Table 1. The results show that the MODA scheme 
performs better than the DAC scheme.  

Detailed examinations reveal that the performance gap between 
the MODA and the DAC schemes comes from two sources. One 
is that the DAC scheme clusters data into the cold region if their 
update frequency is low. This may cause the real cold-modified 
data and newly written data (which may actually be hot-modified 
data) to coexist on the same block, which reduces uniformity. 
However, the MODA scheme groups newly written data into 
separate blocks managed by the unclassified manager shown in 
Figure 5, segregating them from the cold-modified data. 

The second source is that the MODA scheme uses a two-level 
classification scheme distinguishing system data and user data 

(static property) at the first level, then further classifying user data 
based on their modification counts (dynamic property) at the sec-
ond level. But, by only considering the dynamic property of the 
data, the DAC scheme is not able to gather enough information to 
make a timely distinction between the two types. When we apply 
static property based classification into the DAC scheme, its per-
formance comes close to MODA. 

7. CONCLUSION 
Two contributions are made in this paper. First, we identify the 
cost of block cleaning as the key performance bottleneck for 
Flash memory analogous to the seek time in disk storage. We 
derive three performance parameters from features of Flash mem-
ory and present a formula for block cleaning cost based on these 
parameters. We show that, of these parameters, uniformity is the 
key controllable parameter that has a strong influence on the cost. 
This leads us to our second contribution, which is a new modifi-
cation-aware (MODA) page allocation scheme that strives to 
maintain high uniformity. Using the MODA scheme, we validate 
our model and evaluate performance characteristics with the 
views of uniformity, unitization and periodic cleaning.  

We are considering two research directions for future work. One 
direction is enhancing the proposed MODA scheme that can keep 
uniformity high for benchmarks manipulating small number of 
files. Another direction is in the development of an efficient block 
cleaning scheme. Uniformity is influenced by not only the page 
allocation scheme, but also by the block cleaning scheme. We 
need to investigate issues such as defining and finding idle time to 
initiate block cleaning and deciding which blocks and how many 
of these blocks should be reclaimed once reclaiming is initiated.  
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