HW/SW Co-Design for Esterel Processing

Sascha Gadtke, Claus Traulsen, and Reinhard von Hanxleden
Real-Time and Embedded Systems Group
Dept. of Computer Science
Christian-Albrechts-Universitat zu Kiel
Olshausenstr. 40, D-24098 Kiel, Germany
{sga,ctr,rvh}@informatik.uni-kiel.de

ABSTRACT

We present a co-synthesis approach that accelerates reactive soft-
ware processing by moving the calculation of complex expressions
into external combinational hardware. The starting point is a sys-
tem model written in the synchronous language Esterel, which can
be mapped to both hardware and software. Our approach performs
the partitioning at the source-code level and preserves the original,
strictly synchronous semantics. It is thus platform-independent and
allows to use standard simulation and synthesis tools. Furthermore,
the source-level partitioning approach presented here should be ap-
plicable to non-reactive processing platforms as well. However, the
challenge is to partition the program without changing its meaning
under any circumstances. In particular, signal scopes and inter-
partition signal dependencies must be maintained, which rules out
a naive top-level partitioning.

We have implemented the co-synthesis approach based on the
Columbia Esterel Compiler and have validated it on the Kiel Es-
terel Processor. As the experimental results confirm, this can sig-
nificantly reduce execution times and energy consumption per re-
action, with minimal additional hardware requirements.

Categories and Subject Descriptors

C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: Real-time and embedded systems

General Terms

Design, Performance

Keywords

HW/SW Co-Design, Synchronous Languages, Esterel, Reactive Pro-
cessing

1. INTRODUCTION

Most embedded systems are reactive, i. e., they must react con-
tinuously to stimuli from their physical environment, with the speed
that is imposed by the environment. The requirements for these sys-
tems differ from usual software systems. Raw processing power

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+1SSS°07, September 30—October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

99

is typically less important than deterministic functional behavior
and predictable timing. Since the physical environment behaves
in parallel, they often have to run concurrent tasks, each of which
has hard deadlines. In order to allow deterministic behavior, the
threads should be statically schedulable and the execution times
should have low jitter. Low power consumption is mandatory for
battery-powered embedded systems.

To deal with these specific requirements synchronous languages [2]
were designed, especially to support preemption and concurrency.
They rely on the synchrony hypothesis, which assumes that the
computation takes no time, or, more practically, the computation
time is small compared to the time between significant changes of
the input. This assumption allows to define a clear formal seman-
tics for these languages.

An imperative synchronous language is ESTEREL [4]. An ES-
TEREL program interacts internally and with the environment through
signals. The execution is divided into multiple, discrete (logical)
ticks or instants, where signals are considered constant during one
tick. ESTEREL supports different types of preemption as well as
deterministic concurrency. ESTEREL programs can be compiled
to VHDL for hardware generation, or they can be executed in soft-
ware. The latter traditionally involves the synthesis of a C program,
which is then executed on a regular processor. An alternative, more
recent software synthesis approach employs reactive processors,
which are specifically designed to execute reactive programs effi-
ciently and with predictable timing [14]. Unlike traditional proces-
sors, they directly support preemption and concurrency. However,
like other processors, they are inefficient for computing complex
expressions relative to a hardware implementation.

Reactive processors can very efficiently test for the presence of
specific signals and change control flow accordingly. However,
ESTEREL also permits the usage of signal expressions, which are
arbitrary boolean combinations of signals, and here any software-
based approach, including reactive processors, must perform ex-
plicit, time-consuming computations. The aim of the work pre-
sented here is to accelerate software implementations of ESTEREL
programs by delegating the computation of complex expressions
into external combinational hardware. Further objectives were to
maintain a strictly semantics, to require minimal modifications of
the reactive processing platform, and to still allow the use of stan-
dard simulation and synthesis tools.

The main contribution of the paper is a source-level partitioning
and co-synthesis approach that, unlike earlier co-design approaches
based on ESTEREL, fully preserves the original synchronous ES-
TEREL semantics. Source-level partitioning offers the advantage of
being platform-independent and allows to use standard simulation
and synthesis tools. Furthermore, the partitioning approach should
be applicable to non-reactive processing platforms as well.

We have validated our approach by extending a reactive proces-
sor, the Kiel Esterel Processor (KEP), by an additional logic block
that computes signal expressions. Signal expressions are extracted
automatically from an ESTEREL program and translated into hard-
ware. The results are fed as additional inputs into the Kiel Esterel
Processor (KEP), which executes a modified program version that
tests these additional inputs instead of computing the signal ex-
pressions explicitly. The behavior of the transformed program and
the original program do not differ, except that the transformed pro-
gram is accelerated by the elimination of expression computations.
As the external combinational hardware does not affect the critical
path of the processor, the maximal clock rate is not reduced. As
the experimental results indicate, this co-synthesis approach low-
ers overall energy consumption per tick and can also decrease the
Worst Case Reaction Time (WCRT).

In the remainder of this section, we give a short overview on
ESTEREL and the KEP and consider related work. In Section 2 we
describe the co-synthesis approach in further detail. Experimental
results are presented in Section 3, the paper concludes in Section 4.

1.1 Esterel

The concurrent synchronous programming language ESTEREL is
tailored for implementing control-dominated reactive systems. In
the synchronous programming model the execution of an ESTEREL
program is divided into logical ticks, where the execution of one
tick is conceptually instantaneous. ESTEREL’s signals take exactly
one state per tick: present or absent. Input signals are sampled at
the beginning of a tick and output signals are written at the end of it.
The status of a signal S can be tested by present S and set to present
by emit S for one instant and sustain S for all following instants.
Signals can carry additional values, such as integers or booleans,
which are constant during one tick. In contrast, simple variables
may take multiple values. The status and value of a signal S in the
previous tick can be tested by pre(S) and pre(?S), respectively.

The key statements of ESTEREL are: wait until a signal ex-
pression becomes true (await £) and abortion and suspension of a
program-part (abort p when E, suspend p when E). Furthermore,
it is possible to execute program parts in parallel, combined by the
|| operator. Causality cycles, where the status of a signal dynami-
cally depends on itself, are forbidden and detected at compile time.
ESTEREL programs are structured by modules, where each module
has a set of input and output signals; a module may be instantiated
in another module.

A simple ESTEREL program is shown at the top of Fig. 1. The
inputs A and B are pure signals, while D, E, F carry additional val-
ues. In the initial tick, the program checks whether one of the input
signals A or B and the local signal C are present; if this is the case, it
emits output signal O1. (For this program, the local signal C is not
emitted, hence O1 is never emitted either.) Similarly, O2 is emit-
ted depending on D, E, and F. This example program terminates
instantaneously, meaning that it completes within the initial tick.

1.2 The Kiel Esterel Processor

The upper-left part of Fig. 1 shows the KEP Assembler (KASM)
code for a SW-only synthesis variant. The statement present (A or
B) and C in line 10 of the example ESTEREL program is decom-
posed into the KASM instructions in lines 13—16. If signal C is
absent, the whole signal expression is false, and PRESENT C, A0
(line 13) will perform a conditional jump to AO. If C is present, we
have to evaluate A or B (lines 14-16). If for example A is present,
then the following GOTO A1 instruction is executed and O1 will be
emitted. The condition if ((?D<5) or (?E and ?F)) is calculated in
lines 18-27. As a first step, in line 18 the value of signal D is loaded

100

into register REGO. The instruction CMP REGO,#1 compares the
register with the numerical constant for true. JW EE, A5 is a con-
ditional jump for values. If the last comparison was true, GOTO
A4 is executed and finally O2 with value 1 (true) will be emitted.
Otherwise the program jumps to A5. The remaining instructions
are executed accordingly.

As mentioned before, one of the characteristics of reactive pro-
cessors is their timing predictability, which results from the direct
mapping from the synchronous behavioral description to the in-
struction set architecture. This makes it feasible to analytically de-
rive conservative, yet fairly accurate WCRT estimates, which give
an upper bound on how many instructions the computation of one
logical tick can consume. Per default, the KEP reacts as fast as pos-
sible, which may cause a jitter of the reaction time. Alternatively,
the KEP allows to specify a maximum number ¢ of instruction cy-
cles for a logical tick. This is done by initializing a tick manager, by
emitting 7 on the reserved valued signal _TICKLEN. If a tick com-
pletes before ¢ instruction cycles have been executed, the execution
is stalled until ¢ instruction cycles have passed, in order to reduce
the jitter of the reaction time. This results in a constant reaction
time, which is often desirable for stable control. For the example,
the WCRT analysis built into the KEP compiler has computed that
at most ¢ = 19 instructions will be needed per tick, line 7 of the
KASM code initializes the tick manager accordingly.

As the example illustrates, complex signal and valued expres-
sions have to be computed with numerous KASM instruction, and
it might even be necessary to introduce new auxiliary signals. This
is likely to increase the WCRT and the resource usage. On the other
hand, the types of expressions that appear to be most common—
boolean functions and value comparisons—can be computed effi-
ciently in combinational hardware. Therefore, we propose to com-
pute signal and valued expressions in an external logic block wired
to the reactive processor.

1.3 Related Work

The work presented here links two areas, namely compilation of
Esterel programs and HW/SW co-design, which are discussed in
turn. As previously introduced, the most common ways for execut-
ing ESTEREL programs are hardware and software synthesis [3, 7].
This is supported by established compilers like the Columbia Es-
terel Compiler (CEC) [6] or the Esterel V5 compiler from Esterel
Technologies. Another way to run ESTEREL programs are reactive
processors. The first generations only permitted sequential pro-
grams. Later versions, such as the EMPEROR [12] or the KEP3 [9]
also permit concurrency. The reactive processing approach aims to
make reactive programs more efficient by providing a well-adapted
instruction set architecture; our approach complements this by pro-
viding dedicated logic that supplements signal-testing instructions.

There have been numerous approaches to perform HW/SW co-
design, where a (high-level) system description is somehow parti-
tioned into hardware and software [10]. The POLIS project [1] is
based on Esterel as description language, and builds on an execu-
tion platform consisting of a micro controller combined with a user-
specific hardware block. The ESTEREL program is divided into a
software part, a hardware part and an interface in between. The
HW and SW parts are identified manually or by a fairly complex
performance analysis, whereas our partitioning approach is purely
structural. The POLIS system allows an arbitrary partitioning, but
this comes at the expense of departing from Esterel’s strictly syn-
chronous semantics in favor of a globally asynchronous, locally
synchronous (GALS) semantics. We restrict hardware partitions to
those that are computable within one tick, which makes it feasible
to preserve strict synchrony.

%6% Esterel Module:
INPUT A.B

INPUTV D E,F
OUTPUT O1

OUTPUTV 02

VAR REGO

EMIT _TICKLEN,#19

SETV D,#0
SETV E,#0
SETV F,#0
SIGNAL C
PRESENT C,A0
PRESENT A,A2
GOTO Al

A2: PRESENT B, A0

Al: EMIT 01

AO: LOAD REGO,?D
CMPS REGO,#1
W EE, A5
GOTO A4

A5: LOAD REGO,?F
CMPS REGO,#1
JW EE, A3
LOAD REGO,?E
CMPS REGO,#1
W EE, A3

A4: EMIT 02,#1

A3: HALT

intro_exampld

KEP Assembler Code

T module Tntro_example:
2 input A,B;
3
1

output O
input D false: boolean;
5 input E false: boolean;
6 input F := false: boolean;
7 output 02: boolean;
8
9 signal C in N
o present (A or B) and C then|
5y emit O1
12 end present;
13 if(?D or ?E and ?F) then
4 emit 02(true)
L5 end if

6 end signal

s end module

Source Esterel Program

1% step: Partitioning

module intro example sw:
input A,B;
output O1;
input D =
input E =
input F =
output O2

boolean;
false : boolean;
false : boolean;
boolean ;

false :

signal D_OR_E AND_F := false

trap COSYN_TRAP in
run intro_example_hw_1

I
signal C,
A OR B_AND C in
trap COSYN_TRAP 0 in
[

run intro_example_hw_2

present A_OR_B_AND_

emit Ol
end present;

if 7D_OR_E_AND F then

emit O2(true)
end if;
exit COSYN_TRAP_0

end trap
end signal;
exit COSYN_TRAP
end trap
end signal

end module

: boolean in

C then

2" Step: HW/SW Synthesis)

SW-Module
1 %% Esterel Module: intro_example_s
2 INPUT AB
3 INPUTV D,E F
4 OUTPUT O1
5 OUTPUTV 02
6 VAR REGO
7 EMIT _TICKLEN, #14
8
9 SETV D,#0
o SETV E,#0
1 SETV F,#0
2 SIGNALV D_OR E_AND F
13 SETV D_OR_E_AND_F.#0
14 SIGNAL C
5 SIGNAL A_OR_B_AND_C
6 PRESENT A_OR_B_AND_C, A0
h7 EMIT O1
is AO: LOAD REGO,?D_OR_E_AND_F
o CMPS REGO,#1
Ro JwW EE, Al
p1 EMIT 02,#1
1: HALT
KEP assembler code
of the SW-Module

Executed on the KEP

— KEP 0

T module mtro_example hw 1
2 input D := false : boolean;
5 input E false : boolean;
s

input F := false : boolean;
output D_OR_E AND_F := false

v _end module

boolean |

sustain D_OR_E_AND_F(?D or ?E and 7F

module Intro_example _hw_2
input A,B,C;
output A OR B AND C;

TE T e

=

emit A_OR_B_AND_C
end every

=

end module

every immediate [(A or B) and C] do

HW-Modules

Tibrary IEEE;
use |EEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use |EEE.STD_LOGIC_UNSIGNED.ALL;

entity intro_example is

port(
A:in std_logic;
B:in std_logic;
C:in std_logic;
D:in std_logic_vector(l downto 0);
E:in std_logic_vector(1 downto 0);

zin std_logic_vector(l downto 0);

F
A_OR_B_AND C:out std_logic;
D

)_OR_E_AND_F: out std_logic_vector(1 downto

end intro_example;

0

architecture intro_example_BEH of intro_example is

begin

D_OR_E_AND_F(1) <= (D(1) or (E(1) and F(1)));

ATOR'B AND C <= (A or B) and C;
end intro_example BEH;

VHDL description of the

logic block

A

B

c

A_OR_B_AND C

E

F

D_OR_E_AND_F

e (Synthesized into the logic block

Logic Block

Schematic of the KEP with external logic block

101

Figure 1: Overview of Esterel synthesis paths. Dashed lines indicate the traditional, software-only (KEP Assembler or C/Java) or hardware-
only (HDL) synthesis alternatives. Solid lines indicate the co-synthesis flow presented here; the first step partitions the ESTEREL program
into one software module and an arbitrary number of hardware modules, the second step compiles these to KEP assembler and VHDL,
respectively. Note that the schematic at the bottom does not match the example, it instead illustrates how the resource usage in the logic
block is minimized by reusing subexpressions.

2. HW/SW CO-SYNTHESIS

HW/SW co-synthesis of an ESTEREL program for the KEP is
performed in the following steps.

Step 1: Partition the ESTEREL program into software and hard-
ware modules on the source code level.

Step 2a: Compile the software module to KASM, for execution on
the KEP.

Step 2b: Compile the hardware modules to a VHDL description
of a combinational logic, which is interfaced to the KEP.

Step 3: Provide the interface between KEP and combinational logic.

We have implemented the complete co-synthesis design flow for
the KEP, based on the CEC compiler infrastructure. Fig. 1 illus-
trates the resulting HW and SW modules for the example. The
individual synthesis steps are discussed in more detail in the fol-
lowing.

2.1 Step 1: HW/SW Partitioning

The ESTEREL program is divided into a software module and
hardware modules. The SW module is similar to the original, ex-
cept that complex (non-atomic) expressions are replaced by fresh
auxiliary signals. The HW modules are responsible for computing
these auxiliary signals. As noted before, we want to do this parti-
tioning on the Esterel-level, e. g., to be able to do a co-simulation,
and to allow the usage of standard SW and HW synthesis tools
downstream. While the basic source-level partitioning approach
is relatively straightforward, there are two issues that we have to
be aware of, namely to respect signal scoping and signal depen-
dencies. The scoping issue will be addressed in the sequel, the
dependency issue will be addressed in Section 2.2.

A first approach to do the partitioning would be to generate one
HW module that continuously computes all necessary auxiliary sig-
nals, and to run this in parallel to the SW module. However, this
would not respect the scoping of local signals, which may be part
of a signal expression. While the status and value of a signal is
constant within one tick, the scope of a local signal may be en-
tered multiple times, due to loops. The signal is considered as a
new signal each time, hence it can have different values. This be-
havior is called schizophrenia [4], and our logic has to preserve
this behavior. There are means to eliminate schizophrenia, at the
Esterel level [13]. Hence one option to handle local signals and
schizophrenia in our partitioning would be to first apply one of the
known schizophrenia elimination schemes, and then to declare all
local signals at the outermost level. However, this approach would
come at the cost of a certain potential increase in code-size, also
effecting the size of the resulting KASM program.

As amore efficient alternative to source-level elimination of schiz-
ophrenia, we do not generate just one HW module, to be combined
with the SW module at the outermost level, but instead generate
a hardware module for each signal scope, which runs parallel to
the body of the signal scope. The auxiliary signal for one signal
expression is calculated in the HW module corresponding to the
outermost signal scope (if nested), where all signals are known.
All signals of the signal expression are declared as inputs to this
HW module and the auxiliary signal is an output. Just like a signal
may be incarnated several times within a tick, the HW module may
be activated several times within a tick, and may compute differ-
ent values for its output signals within a tick. However, this does
not pose a problem for the reactive co-design implementation. The
key is that the HW module is executed not just once per logical

tick, but is executed during each instruction cycle, and the different
incarnations correspond to separate instruction cycles.

Consider the signal expression in line 10 of the ESTEREL pro-
gram in Fig. 1. The expression contains both the interface signals
A and B and a local signal C. The signal expression in the SW
module is substituted by the auxiliary signal A_and_B_or_C. The
auxiliary signal is calculated in the HW module 2 corresponding
to the local signal scope of C. It is emitted by the emit statement
inside the every loop, whenever the signal expression is true. If
there is more than one auxiliary signal to be calculated within the
HW module, multiple every statements are run in parallel. In the
SW module, the HW module is run parallel to the original body
of the signal S in ... statement. Additionally the new body is em-
bedded in a trap statement, which terminates the infinitely running
HW module when the end of the original body of the signal state-
ment is reached. Note that in this example, the analyzed WCRT
is 14 instruction cycles, as opposed to 19 cycles for the SW-only
version.

Data Expressions that are, e. g., part of if tests, emissions of val-
ued signals, variable assignments or trap handlers, can also be han-
dled if they contain just boolean signals. If the expression is mixed
and also contains comparisons or arithmetics, it is decomposed into
its boolean and non-boolean or variable-containing parts. Non-
boolean or variable containing subexpressions are substituted with
additional auxiliary signals that are emitted immediately before the
statement containing the data expression. In this case we have a
trade-off between the need for more signals and the reduction of
instructions in the KASM code.

Contained pre(S) or pre(?S) operators in an expression are sub-
stituted by auxiliary signals with the state and value of S in the
previous instance. The KEP provides data structures that carry the
state and value of each signal in the previous instance, hence it is
possible to substitute the auxiliary signals with these values in fur-
ther synthesis, and there is no need to use extra signals in HW.

2.2 Step 2a: Software Synthesis

Before compiling the resulting ESTEREL program it would suf-
fice to substitute the bodies of the HW modules with nothing state-
ments, but it is useful to do a post-processing that drops all super-
fluous statements introduced during partitioning, i. e., the trap and
exit, the run and the || statements.

A complication occurs when compiling the SW module to KASM
during the calculation of the static scheduling, because dependency
information between readers and writers of a signal is lost in the
partitioning step. The compiler is not able to reconstruct the infor-
mation from which signals the newly generated auxiliary signals
depend on, thus it cannot be guaranteed that writers of a signal are
executed before the readers. To correct this, the compiler stores the
signal dependencies of the original program while performing the
partitioning, and examines these dependencies them when compil-
ing into KASM.

2.3 Step 2b: Hardware Synthesis

As a pre-processing step for the HW modules, we apply a two-
level logic minimization on all expressions used in the HW mod-
ules and try to extract good common factors from different expres-
sions. For this, all expressions are exported into the Berkeley Logic
Interchange Format (BLIF). Logic minimization is performed with
the UC Berkeley package MV-SIS [8]. The minimized BLIF file is
then transformed back into appropriate ESTEREL statements.

From the HW modules a VHDL description of the logic block
is generated. The logic block is a simple combinational logic; all
auxiliary signals get assigned with a boolean composition of signals

Interface Block

SDat

< D
N\
123
o
g §
& o
o
3 o
B E
KEP Logic Block Environment
: —,
)
=]
]
e
o
3
Q
Sinout
: InnerSinoutFlag

Figure 2: The interface of the logic block to the KEP. The same
interface as to the environment is used.

depending on the signal and data expressions in the HW modules.
In principle, one might use one of the existing Esterel compilers to
synthesize VHDL from the HW modules, but this would impose a
large overhead because the every statement would be translated into
non-trivial logic. We therefore have developed a custom VHDL
generator that directly implements the logic for the expressions.

The logic block is connected to the usual interface of the KEP
(Fig. 2). For the KEP the only difference between signals that
come from the environment and signals that come from the logic
block is that signals from the logic block may change their value
within one tick. Since the value of a signal expression is never
needed in the same instruction cycle in which one of its signals is
written, the correct value is always computed fast enough by the
logic block. In particular, there is not need to adjust the clock fre-
quency of the KEP. For the same reason, reincarnation is handled
correctly: whenever a signal scope is reentered, the signal is reset,
and the new value of a signal expression is computed.

2.4 Step 3: Interface Mapping

The KEP supports a configurable number of n signals. The inter-
face to the environment consists of a n-bit wide bidirectional data
bus to read and write signal states and a port to access the signal
values. Because of the bit width of valued signals, values can only
be accessed sequentially. For this, the port consists of an address
bus and a bidirectional data bus.

Internally, signal states for local and output signals are stored in
the SinoutReg register and signal values for all interface and local
signals are stored in a 32 bit wide RAM. A bus combines the states
of the input signals coming from the Sinout data bus with the states
of output and local signals. Both the KEP and the environment
access the RAM; while a tick is executed, the RAM is accessed
internally by the KEP, and between two ticks the environment gets
access to the RAM.

Providing signal states for the logic block as input is simply
achieved by connecting the localSinoutFlag, that provides the sig-
nal states of all signals, to the logic. The states of the auxiliary
signals calculated by the logic are directly fed back to the inputs of
the registers. While a RAM just provides sequential access, data
must be accessible in parallel for a combinational logic. There-
fore, the boolean values for each signal are redundantly stored in
the additional SDatBoolean register. The outputs of this register
are connected to the logic to provide (boolean) signal values. The
calculated auxiliary signals are fed back into the register. There are
no writing access conflicts, because the auxiliary signals are only
written by the logic; and only the logic writes these signals.

103

3. EXPERIMENTAL RESULTS

To validate and evaluate the co-synthesis approach presented here,
we have run a number of benchmarks on the KEP. The co-synthesis
is performed automatically on the benchmark programs, and they
are run with a set of input traces, which were generated for full
coverage of the original programs.

Obviously, the potential benefit of this approach varies from pro-
gram to program and depends heavily on how frequently complex
expressions are used. We cannot expect to have a benefit for pro-
grams without signal expressions, but such programs are already
executed efficiently on the KEP. Therefore, we have chosen a set
of programs that contain a noticeable number of signal expressions.

The co-design approach is a trade-off between the reduction of
the number of KEP instruction cycles per tick and an increased re-
source usage on the KEP and on the execution platform. In the
experiments we compare the following values for the normal exe-
cution of an ESTEREL program on the KEP and for the co-design
approach.

e Ticklength The “WCRT” values are conservative, analyti-
cally derived upper bounds the reaction time, used for the
determination of _TICKLEN. The “AVE” and “MAX” values
are measured average and maximum number of instruction
cycles per tick, for input traces generated automatically by
Esterel Studio.

e Signals This indicates how many auxiliary signals are used
to substitute expressions.

e FPGA Utilization The number of occupied slices and used
4 input Look Up Tables (LUTs) on the FPGA.

e Energy The average energy needed to compute one tick, de-
rived as the power consumption of the KEP, as estimated by
Xilinx XPower, multiplied with the time to compute one log-
ical tick, i. e., the number of instructions in a tick and the time
to execute one instruction.

‘We compare the standard KEP design with the co-design for five
benchmarks: The TCINT taken from the Estbench [5], an acyclic
version of the TOKEN RING ARBITER [11] with 3 and 10 sta-
tions, a simple FILTER, and a BACKHOE simulation. The plat-
form for the experiments is a KEP configuration that supports up
to 85 signals and 60 threads. In all experiments the hardware (KEP
and logic) was synthesized for and executed on a Xilinx Virtex 2
Pro (xc2vp30-6ff896) FPGA and was clocked with a frequency of
40 MHz.

Table 1 shows the experimental results. Compared to normal
execution on the KEP, the co-design reduces the tick length be-
tween roughly ten and sixty percent. For most benchmarks, the
biggest reduction affects the analytically derived WCRT, meaning
that the reaction frequency (assuming constant reaction time) can
benefit the most. There are also significant differences concerning
the trade-off between the advantage of a reduced tick length and the
demand for more signals. The FILTER benchmark requires 70%
more signals, resulting an a WCRT reduction by one third; in the
BACKHOE example, we only need two additional signals (6.7%)
to reduce the execution time by nearly one half. The extra resource
usage induced by the logic gates needed for the logic block and its
connection is low: between 1.4% and 2.1% for the number of slices
used on the FPGA and between 1.9% and 2.2% for the number of
4 input look up tables. The energy savings per tick are noticeable
in all benchmarks and ranges from 14% to almost 60%.

Benchmark Design Ticklength Signals FPGA Utilization Energy
WCRT AVE MAX | In Out Local | #slices #4inputLUTs | (uWs/Tick)

KEP only 155 59 101 |19 20 12 5144 7591 7.237

TCINT Co-Design 115 51 89 |19 20 25 5247 7751 5.591
Diff -40 -8 -12 +13 +103 +160 -1.646

% Diff 258 -13.6 -11.9 +25.5 +2.0 +2.1 227

TOKEN KEP only 74 5] 61 3 3 16 5144 7591 4.051
RING Co-Design 61 46 50 3 3 19 5254 7735 3.469
ARBITER Diff -13 -5 -11 +3 +110 +144 -0.582
(3 stations) % Diff -176 98 -18.0 +13.6 +2.1 +1.9 -14.4
TOKEN KEP only 256 172 201 | 10 10 51 5144 7591 13.743
RING Co-Design 208 148 155 |10 10 61 5214 7762 11.460
ARBITER Diff -48 24 -46 +10 +70 +171 -2.284
(10 stations) % Diff -18.75 -140 -229 +19.6 +1.4 +2.3 -16.6
KEP only 133 94 101 [16 7 14 5144 7591 7.286

Co-Design 90 77 83 16 7 40 5217 7762 5.322

FILTER Diff -43 -17 -18 +26 +73 +170 -1.964
% Diff 323 -18.1 -17.8 +70.2 +1.4 +2.2 -27.0

KEP only 209 16 32 |12 15 3 5144 7591 8.171

Co-Design 86 9 2 |12 15 5 5254 7734 3.465

BACKHOE Diff -123 -7 -10 +2 +110 +143 -4.707
% Diff 2589 -43.7 -312 +6.7 +2.1 +1.9 -57.6

Table 1: Experimental Results.

4. CONCLUSION AND FURTHER WORK

We have shown how to extract signal expressions from ESTEREL
programs, without changing the semantics. This can be generalized
to extracting arbitrary instantaneous code parts, in order to execute
them on a more efficient platform. We have chosen signal expres-
sions, because the KEP—Ilike any software processing approach—
is not very efficient in computing them. Therefore, we have ex-
tended the KEP by an external logic block to compute the expres-
sions. For ESTEREL programs with signal expressions, we get a
significant reduction of energy consumption and execution time,
both for the theoretical computed WCRT and the actually measured
execution time. The extra resource usage is small compared to the
KEP, but we have to introduce additional input and output signals.
Both the improvement and the number of additional signals depend
on the actual program.

So far, we only consider signal expressions and expressions on
boolean values. More complex expressions, involving arithmetics,
would be possible, but would be significantly more hardware inten-
sive.

A limitation of the co-synthesis approach as currently imple-
mented is that we have to generate new hardware for each program.
Since the KEP is so far implemented on a FPGA, this is not a real
problem yet. However, to also make this co-synthesis approach at-
tractive in case the software part is executed on an ASIC or a stan-
dard processor, it might be interesting to employ a “programmable”
combinational logic, using off-the shelf FPGAs or PLAs or some
custom design. This would lead to new timing problems when the
processor runs with a higher clock frequency than the FPGA. But
due to the scheduling mechanism, the minimum time to compute
a signal expression can be obtained statically. Therefore, the com-
piler should be able to order the instructions in such a way, that all
values are computed in time.

As noted before, the source-level partitioning presented here should

be applicable in any software-based Esterel processing whenever
it is desirable to delegate (instantaneous) computations to external
units. We would therefore would like to explore uses of this source-
level partitioning that go beyond reactive processing.

104

S. REFERENCES

[1] BALARIN, F., GIUSTO, P., JURECSKA, A., PASSERONE, C., SENTOVICH,
E. M., TABBARA, B., CHIODO, M., HSIEH, H., LAVAGNO, L.,
SANGIOVANNI-VINCENTELLI, A., AND SUZUKI, K. Hardware-Software
Co-Design of Embedded Systems, The POLIS Approach. Kluwer Academic
Publishers, Apr. 1997.

BENVENISTE, A., CASPI, P., EDWARDS, S. A., HALBWACHS, N., GUERNIC,

P. L., AND DE SIMONE, R. The Synchronous Languages Twelve Years Later.

In Proceedings of the IEEE, Special Issue on Embedded Systems (Jan. 2003),

vol. 91, pp. 64-83.

BERRY, G. Esterel on Hardware. Philosophical Transactions of the Royal

Society of London 339 (1992), 87-104.

[4] BERRY, G. The Constructive Semantics of Pure Esterel. Draft Book, 1999.

ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps.

Estbench Esterel Benchmark Suite.

http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz.

EDWARDS, S. A. CEC: The Columbia Esterel Compiler.

http://www1.cs.columbia.edu/~sedwards/cec/.

EDWARDS, S. A. Tutorial: Compiling concurrent languages for sequential

processors. ACM Transactions on Design Automation of Electronic Systems 8,

2 (Apr. 2003), 141-187.

[8] JIANG, Y., AND BRAYTON, R. K. Software synthesis from synchronous
specifications using logic simulation techniques. In DAC "02: Proceedings of
the 39th conference on Design automation (New York, NY, USA, 2002), ACM
Press, pp. 319-324.

[9] L1, X., BOLDT, M., AND VON HANXLEDEN, R. Mapping Esterel onto a

multi-threaded embedded processor. In Proceedings of the 12th International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS’06) (San Jose, CA, October 21-25 2006).

MICHELI, G. D., ERNST, R., AND WOLF, W., Eds. Readings in

Hardware/Software Co-Design. Morgan Kaufmann, 2001.

PANDYA, P. The saga of synchronous bus arbiter: On model checking

quantitative timing properties of synchronous programs. In Electronic Notes in

Theoretical Computer Science (2002), F. Maraninchi, A. Girault, and Fric

Rutten, Eds., vol. 65, Elsevier.

RooP, P. S., SALCIC, Z., AND DAYARATNE, M. W. S. Towards Direct

Execution of Esterel Programs on Reactive Processors. In 4th ACM

International Conference on Embedded Software (EMSOFT 04) (Pisa, Italy,

Sept. 2004). http://www.ece.auckland.ac.nz/~embsys/publications/emsoft.pdf.

TARDIEU, O. Goto and Concurrency—Introducing Safe Jumps in Esterel. In

Proceedings of Synchronous Languages, Applications, and Programming

(SLAP) (Barcelona, Spain, Mar. 2004).

VON HANXLEDEN, R., LI, X., RoOP, P., SALCIC, Z., AND YOONG, L. H.

Reactive processing for reactive systems. ERCIM News 66 (Oct. 2006), 28-29.

http://www.ercim.org/publication/Ercim_News/EN67.pdf.

[2

3

[5

[6

[7

[10]

[11]

[12]

[13]

[14]

