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ABSTRACT
Multiprocessor SoCs are increasingly deployed in embedded sys-
tems with little or no security features built in. Code Injection at-
tacks are one of the most commonly encountered security threats.
Most solutions to this problem in the single processor domain are
purely software based and have high overheads. A few hardware
solutions have been provided for the single processor case, which
significantly reduce overheads. In this paper, for the first time, we
propose a methodology addressing code injection attacks in a mul-
tiprocessor domain. A dedicated security (monitor) processor is
used to oversee the application at runtime. Each processor commu-
nicates with the monitor processor through a FIFO queue, and is
continuously checked.

Static analysis of program map and timing profile are used to ob-
tain program information at compile time, which is utilized by the
monitor processor at runtime. This information is encrypted using
a secure key and stored in the monitor processor. A copy of this
secure key is built into the processor’s hardware and is used for de-
cryption by the monitor processor. Each basic block of the program
is also instrumented with security information that uniquely iden-
tifies itself at runtime. The information from static analysis thus
allows the monitor processor to supervise the proceedings on each
processor at runtime.

Our approach uses a combination of hardware and software tech-
niques to keep overheads to a minimum. We implemented our
methodology on a commercial extensible processor (Xtensa LX).
Our approach successfully detects the execution of injected code
when tested on a JPEG multiprocessor benchmark. The results
show a small increase of 6.6% in application processors’ runtime
(clock cycle count) and 35.2% in code size for the JPEG encoder
benchmark.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing and Fault-
Tolerance

General Terms
Security, Measurement, Design

Keywords
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1. INTRODUCTION
The design of embedded systems with multiprocessor system on

chip architecture (MPSoC) has gained a lot of momentum in recent
times. The miniaturization of transistors has allowed chip manu-
facturers to increase chip density and incorporate multiple cores.
Thus recent portable devices like PDAs, cellphones, gaming con-
soles, music players etc. tend to shrink in size while increase in
functionality [32]. MPSoCs are seen as the pathway to taking the
communications, multimedia and networking products to the next
level [31].

The complexity of a multiprocessor system along with constraints
of power and area make implementation of security features a chal-
lenge for embedded system designers [25]. Some of the most com-
mon devices today like cell phones and PDAs are starting to employ
MPSoC architectures. With the ability of cellphones and PDAs to
contain private and confidential information, the security of such
systems is of utmost importance. Security is the largest concern
that is still holding back some users of mobile technology from
welcoming the use of next-generation mobile features such as m-
commerce, and secure messaging [2, 17]. Extensive research avail-
able for securing for general purpose computers does not scale well
to embedded systems. This is because embedded systems are a lot
more resource constrained in terms of their size restrictions, pro-
cessing capabilities and energy consumption [25, 17]. Hence there
is a definite need for making MPSoC architectures secure, to en-
courage the use of embedded systems for secure applications.

In the single processor domain, code injection attacks are the
most predominant. A publication by CERT highlighted that on av-
erage 47% of vulnerabilities reported from 1994-2004 were asso-
ciated with buffer overflows, a type of code injection attack [27,
28]. This highlights that along with the theoretical improvements
in cryptography and security protocols, secure implementation is
important, because security attacks take advantage of weaknesses
in system implementations [9]. One of the most often exploited
weakness in the C programming language is an out-of-bound array
access that causes a buffer overflow. Because there are no built in
checks in C, even experienced programmers can easily write code
with bugs in it. As shown in [22] the SPECINT95 compress, go
and ijpeg benchmark programs contained several bugs in the form
of out-of-bounds array accesses.

The intent of the attacker is to dynamically alter or insert instruc-
tions in the program. This modification of instructions violates the
code integrity and hence disrupts the program flow causing erro-
neous program behavior. The code injection attacks come in the
form of stack and heap based buffer overflows, dangling pointer ref-
erences, format string vulnerabilities and integer errors. A detailed
explanation of these attacks for single processors can be found in
[33, 34].

The threat of code injection attacks for MPSoC architectures is
far greater than for single processor systems. We identify two dis-
tinct ways in which code injection attacks are a threat to MPSoC
architectures. The first threat involves one of the processors cor-
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rupting sections of the instruction memory that is used by other
processor(s). The other way is by corrupting the communications
between two processors. Communication between two processors
generally allows shared memory locations or inter-processor com-
munication buffers where data can be written to or read from. If
the communicated data from the producer processor is corrupted
before the consumer processor reads it, the instructions reliant on
the read data would result in an invalid result. It is not hard to fore-
see the above mentioned threats given the fact that similar threats
exist in general purpose computing systems [35]. Bus communi-
cations can be tampered with, e.g., modchips have previously been
known to tamper a bus on Sony Playstation and Microsoft Xbox
gaming consoles such that illegal games may be played [3, 18].
Thus, ensuring the integrity of the executed instructions in an MP-
SoC environment becomes an extremely important task at runtime.

One of the best ways to ensure secure execution of programs
is to integrate security features in the hardware design of embed-
ded processors. The distinct advantage of incorporating security
features at the processor level is that there is a lot less overhead
compared to handling security at a higher level. An approach that
allows security features implemented at reduced overhead is a boon
for energy stringent embedded systems. Another challenge in keep-
ing the overheads low is the amount of access the implementation
platform allows.

Extensible processors are gaining popularity in the industry as
the existing base instruction set architecture (ISA) allows rapid de-
velopment of multiprocessor applications [1, 4]. These being com-
mercial processors, the user is unable to change the way the base
instructions function (i.e., it is not possible to change the microin-
structions of those base instructions to add security functions as was
done in [24]. Hence the users are limited in the amount of direct
information they are able to obtain (e.g., access to special registers
like PC, IR, access to micro instructions of the base instruction set
etc.). Nevertheless, it is important to come up with a scheme to
implement security on these commercial platforms in order to un-
derstand the applicability of the research to platforms with limited
modifiability.

In this paper, we propose a novel approach for adding security
to MPSoc systems. We employ a dedicated security processor to
monitor a multiprocessor application on an MPSoC architecture,
built using Tensilica’s Xtensa processing system. We show that
we are able to implement security features on an MPSoC with a
small percentage of runtime and area overheads. To the best of
our knowledge this is the first time that a comprehensive approach
addressing code injection attacks in programs is presented for an
MPSoC architecture on an extensible commercial processor.

The remainder of the paper is organized as follows. A summary
of related work is presented in Section 2. Section 3 describes the
proposed architecture of an MPSoC. Section 4 describes the sys-
tematic methodology for equipping a given application with secu-
rity features. The analysis on the tests and the results obtained from
the case study on JPEG encoder benchmark are in Section 5 and the
paper is concluded in Section 7.

2. RELATED WORK
The security threats to program from software attacks like code

injection attacks have not been examined before on an MPSoC ar-
chitecture. Arora et al. mapped the code and data of a commercial
security processing library onto a multiprocessor SoC to achieve
a speed up in cryptographic operations [8]. Zhang et al. proposes
a shared bus encryption protocol for multiprocessors [35]. To the
best of our knowledge however, there is no work on detecting soft-
ware attacks in the multiprocessor domain. In this section, we com-
pare our work with similar work in the single processor domain.
We evaluate and discuss the feasibility of these approaches for an
MPSoC where appropriate.

The techniques to counter code injection attacks can be broadly
classified into software and hardware based. Software based tech-

niques can either be static or dynamic which try to detect vulnera-
bilities in the code at compile time and runtime respectively. Hard-
ware based techniques require architectural support to detect code
injection attacks.

A number of researchers in [13, 19, 29] propose tools and tech-
niques for static analysis of code that allows detection of buffer
overflow which is a type of code injection attack. The problem with
static analysis is that they raise a number of false positives. Also
these approaches of static analysis would not scale well for MP-
SoCs because in MPSoCs, there is a possibility of memory corrup-
tion at runtime. Hence a technique that allows dynamic checking
would be more suited to detection of code injection for multipro-
cessors. The dynamic checking methods use software constructs to
monitor program behavior at runtime as used in Stack Guard[12].
Stack Guard specifically targets buffer overflow attacks only and
may not work for other code injection attacks.

CCured used a dynamic checking approach to make C programs
type safe [22]. It analyses a given C program at static time infer-
ring the pointers that are statically safe and others that need to be
checked at runtime. The problem with this approach is that the run-
time checking of these vulnerable pointers causes a performance
degradation of up to 150% in runtime. Arora et al. implemented
the CCured framework by architectural modification to do runtime
checking in hardware [7]. This allowed a speed up of up to 4.6%
compared to the situation where the checking is done purely in soft-
ware. The overall runtime for single processor benchmarks is still
quite significant making the CCured approach hard to scale for MP-
SoC architecture.

The work by Zhang et al. in [35] highlights concerns that ex-
ists in symmetric shared multiprocessor environments (high perfor-
mance multiprocessor servers). Zhang et al. indicate that memory
corruption, memory-to-cache and also cache-to-cache communica-
tion via buses are threats that exist in multiprocessor environments.

Most of the hardware assisted techniques tend to be attack spe-
cific [12, 20] or concentrate on tamper resistance [14] or cryptog-
raphy [14]. Attack specific techniques generally tend to only cover
buffer overflow attacks which are a subset of code injection attacks.
From a multiprocessor point of view, for the attack specific hard-
ware technique, depending on what features in hardware are re-
quired, they may or may not be implementable in extensible proces-
sors. If they are implementable, unless the hardware can be shared
among all the processors, each processor on an MPSoC might need
its own hardware to be able to perform its security functions at run-
time. This would significantly increase the area overhead on the
processor.

Various obfuscation techniques including instruction set random-
ization have been proposed in [10, 16] to counter code injection
attacks. These techniques rely on a randomized processor that en-
crypts (at compile time) and decrypts (at runtime) the instructions
using a randomized key. An attack would cause a runtime excep-
tion and would not allow the injected code to execute. Instruction
set randomization incurs a high amount of overhead and may also
require processor modification. The overhead is mainly due to the
decryption at runtime for each instruction. We also employ en-
cryption and decryption to specific fields of our special instructions
using a secure key stored in hardware. Hence our overhead from
decryption at runtime is much lower. The storage of the key in
hardware ensures that it secured from software attacks.

The use of non-executable stacks and heaps is another approach
that has been suggested in [5, 6] to prevent code injection attacks.
Non-executable stacks and heaps generally require operating sys-
tems modification or extra features in hardware to be added. This
can prevent a great variety of code-injection attacks. However some
programs actually require executable stacks or heaps for correct
functionality. For example in a Java Virtual Machine (JVM), code
is generated at runtime from byte-code and placed on to the heap.

Milenkovic et al. in [21] and Ragel et al. [24] propose using
signatures for validating each basic block in the program. Ragel
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et al. use a hardware based approach by modifying microinstruc-
tions. This approach generally requires significant modification
(large number of instructions have to be instrumented) to the ar-
chitecture that is only possible in some extensible processors. The
hardware-software technique described in [9] requires additional
co-processors and hardware tables for runtime monitoring. Their
method produces code like ours, which is not easily relocatable
because the hardware monitor has to be configured every time a
different application executes on the embedded system. In addition
it also needs significant modification to the architecture to be able
to extract the properties of the code at runtime which may not be
accessible in all extensible processors.

Oyama et al. in [23] and Chew et al. in [11] propose a method of
ensuring secure system call execution. Our method is not designed
to protect against corrupt system calls. However our system will be
alerted if the execution time of a particular basic block of code is
outside the range predicted by the profiler.

2.1 Contributions
The contributions of this paper are as follows:

1. For the first time we propose a hardware/software based ap-
proach to address code injection attacks in multiprocessor
applications.

2. We demonstrate how this structure can be implemented with
the proposed techniques using Xtensa LX, a commercial ex-
tensible processor design system from Tensilica Inc. using a
multiprocessor embedded application (JPEG encoder).

3. In case of code injection, we are able to detect the exact basic
block in which the attack occurred in a particular processor.

2.2 Limitations
The limitations of our approach are as follows:

1. Our approach does not monitor system calls and hence at-
tacks via malicious system calls cannot be detected and pre-
vented. However methods proposed in [15, 30] may be used
in conjunction with our method for a stronger security im-
plementation.

2. Our approach does not detect data corruption. For example
if an attacker wants to simply corrupt the immediate value in
an instruction, it would not be detected by our approach.

3. During static analysis, some of the sections of the code may
be left unprofiled as the input data values determine the path
of the program. But this is a common problem that embed-
ded systems designers face, i.e. finding a data set that covers
all the cases during the testing phase of a design. One of the
approaches to solving this problem could be to use a data set
that would cover most of the code. Then, manually estimat-
ing the min and max time values for those blocks. Also every
time there are code changes, it must be re-profiled to get the
control flow map and min and max times.

3. SYSTEM ARCHITECTURE
We use Xtensa LX, an extensible commercial microprocessor

core generated by the toolset from Tensilica Inc. It allows the de-
signers to configure each processor core by adding features on top
of the base architecture making each processor core a superset of
the baseline processor. These cores can then be synthesized. The
base architecture contains up to 64 general purpose registers, 6 spe-
cial purpose registers and 80 instructions including compact 16 and
24 bit RISC instruction encoding [26].

Xtensa LX allows extension to the processor through Tensilica
Instruction Extension (TIE) language which is similar to VHDL.
It supports new instructions and registers, execution units and I/O
ports.

Because this is a multiprocessor application, the key feature that
was employed for inter-processor communication was a FIFO queue
interface. This feature in the Xtensa processor supports external

communications at a much wider bandwidth than existing inter-
connects. The queue interfaces on the processors can be described
using TIE language and can be used to push data to an outgoing
queue and pop data from an incoming queue. The logic to stall the
processor when writing to a full queue and reading from an empty
queue is generated automatically via the Xtensa toolset.

Although we use the Xtensa LX processor to implement our se-
curity solution, the solution is scalable to other processors. As long
as we can build a multiprocessor application and have some way of
communicating between processors, for example using FIFOs, our
solution can be implemented on that processor.

4. SYSTEM DESIGN
In order to design a multiprocessor system we first needed a

benchmark program. Since the research community does not have
ready access to already partitioned benchmarks, we produced our
own benchmark application based on a single processor bench-
mark. A freeware compression algorithm JPEG, was chosen for
this purpose. The benchmark program, available as a C program
was manually partitioned into various pipelines/data flow stages,
adhering to the JPEG standard. The partitioned stages were then
mapped to individual processors in Xtensa LX. The JPEG encoder
application partitioned into six simultaneous tasks that ran on six
different processors. Thus a multiprocessor benchmark of JPEG
was obtained.

In this pipeline of processors, we allow the first processor to ex-
ecute the first part of the JPEG algorithm (say DCT), while the
second processor works on the quantization of the previous frame
and so forth. Such a pipeline increases performance without un-
duly increasing the area of the overall processor, since each of the
pipelined processor can be customized for the reduced functional-
ity.

A multiprocessor system was designed for the JPEG benchmark.
The configurable features used in addition to the base ISA features
for each application are shown in Table 1.

Features JPEG
Speed 533 MHz
Process 90nm GT
Pipeline length 5
User Defined Registers 4
Size 63,843 gates
Core Size 0.32 mm2

Core Power 74.35 mW
MUL16/MUL32

√
MIN/MAX/MINU/MAXU

√
Enable Density Instructions

√
Enable Boolean Registers

√
TIE Arbitrary Byte Enables

√
Enable TIE Wide Stores

√
Max Instruction Width 8 bytes
PIF Interface Width 128 bits

Table 1: Extending the base ISA of Xtensa LX processor for
JPEG benchmark

4.1 Overview of Proposed Approach
The overall system block diagram of the architecture designed

to implement security features for the multiprocessor applications
is shown in Figure 1. It shows a multiprocessor application with
an N -processor configuration. The communication between two
processors is performed using a FIFO queue. For simplicity in Fig-
ure 1, FIFO communication is shown between processors Pk and
Pk+1, 1 ≤ k ≤ (N − 1) but there could be FIFO communica-
tion between any two processors Pa and Pb, 1 ≤ a ≤ N and
1 ≤ b ≤ N , depending on the requirements of the application.

In a multiprocessor system of N processors, the required con-
nections between the processors are made through Xtensa’s mod-
eling protocol called XTMP. An extra security processor called the
monitor processor is used to monitor all the individual proces-
sors of the multiprocessor system. Each of the individual proces-
sors communicates through a FIFO queue structure to the monitor
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Processor 1
P1

Processor 2
P2

Processor 3
P3

Monitor 
Processor

PM

Processor N
PN

FIFO2 FIFONFIFO3FIFO1

Interrupt2 Interrupt3

InterruptNInterrupt1

Figure 1: A layout of the multiprocessor system designed using
Xtensa Modelling Protocol (XTMP).

processor. The monitor processor communicates with each of the
individual processors through an external signal that evokes an in-
terrupt in the individual processor.

The FIFOs that are used for communication between the proces-
sors P1 and PN are implemented using the FIFOs generated from
the Xtensa toolset. But the FIFOs that are used for communica-
tion by each application processor with the monitor processor use a
special FIFO shown in Figure 2. This FIFO has a Timestamp Unit
that uses the clock cycle count (CCOUNT) register of its respective
processor. Thus each entry into the FIFO is timestamped through
the Timestamp Unit for use by the monitor processor. The signals
full and empty are used for checking the queue before writing and
reading respectively.

Processor
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Processor

PMQueue
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P
o
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FIFO

Timestamp Unit

PushReq PopReq

Full Empty

Figure 2: FIFO implementation an application processor and
the monitor processor using XTMP.

Figure 3 gives a detailed overview of the hardware as well as
the software flow for the implementation of the design which are
further discussed in subsections 4.2 and 4.3.

Original C 
Program Compile 

Assembly 
Program basic block 

division

Add notify, 
validate Inst.

Assemble 
and LinkBinary

Custom 
Register File

Custom Hardware

Custom FIFO 
Instructions

Built in key

101110110111
010101111101
101110111110
111011111110
110110101011
011011101101
111101101111
111110111111
110010100010

Target processor

Memory

Base 
architecture

Extensible/
Reconfigurable 

Features

Secure 
Loader

Figure 3: The hardware and software design flow of the pro-
posed design.

4.2 Software Flow
The assembly code of each of the processors of the multiproces-

sor system is divided into basic blocks. We define a basic block
as a collection of instructions which does not cause a change in
the normal sequential flow of the program. The normal flow of
the program is one instruction after another as they are arranged in
the instruction memory. But there are a few instructions which can
change the control flow of the program. A branch, jump, loop or a

call instruction may change the control of the program such that the
next executed instruction is not from the next address in instruction
memory but from address(es) which are above or below the current
address of the program counter (PC). Our definition of the basic
block is in Figure 4(a).

...
writefifo 0,2052
addx2 a12,a10,a10
srli a12,a12,0x01
writefifo 1,2052
beqz a12, myLabel
...

...
addx2 a12,a10,a10
srli a12,a12,0x01
beqz a12, myLabel
...

(a) (b)

notify
validate

Figure 4: (a) Segment of assembly code in an Xtensa LX pro-
cessor. (b) A basic block after software instrumentation

Software instrumentation is performed at compile time on the
assembly file designed to run on each of the processors in a mul-
tiprocessor application. Each processor core is allocated a unique
processor id pId. The assembly file is then broken down into ba-
sic blocks, and each basic block is instrumented with two FIFO
instructions. The FIFO instruction called writefifo was defined
in TIE language. The instrumented basic block is shown in Fig-
ure 4(b). The writefifo instructions at the start and end of the basic
block are also referred to as notify and validate instructions respec-
tively.

Each basic block in a particular processor is allocated a unique
blockId. Thus, the writefifo instruction with which each basic
block is instrumented contains three important fields. The first field
is the interface code, the notify instruction has an interface code of
0, and the validate instruction has an interface code of 1. The num-
ber after the interface code is a combination of the pId and blockId
which we call pId bId. The pId bId number for a particular block
would be the same and hence it can be seen that both the write-
fifo instructions have the same number in the pId bId field. The
final field is for the timestamp which is placed at runtime when the
instruction is executed. The timestamp on the outgoing FIFO in-
struction is the value of the cycle count register CCOUNT of the
respective processor at runtime.

Hence at runtime, when the first FIFO instruction of a basic block
is executed, it registers its pId and blockId with the monitor proces-
sor. The purpose of the first FIFO instruction is to inform the moni-
tor processor that a particular processor identified by pId is about to
execute block bId. The purpose of the second FIFO instruction at
the end of the basic block is to again inform the monitor processor
that a particular processor pId has finished executing the block.

The second part of the instrumentation involves static analysis of
the assembly code. By analyzing the assembly code, we generate a
map of all the possible paths that the program may take at runtime.
The map is generated using the bId of the blocks that the task on
each processor is divided into. These program maps are later loaded
onto the monitor processor.

The application is then run without the monitor monitoring it for
timing requirements and a trace file of the execution is generated.
Using the trace file produced for each processor, we are able to find
the time taken by each instruction that was executed. Adding up the
execution time of each instruction in a particular block, we get the
execution time of that block. It is likely that some blocks have been
executed more than once and that their execution time has a range
of values. The cache in the architecture also introduces variability
in timing depending on whether or not the instruction was in the
cache or had to be fetched from the memory.

It may also be possible that the execution path of the program
do not include all possible sections of the code. The timing in-
formation for those blocks of code would therefore be unavailable
through the tracefile analysis. It is likely that these sections of the
code may not be used much except in corner cases. Thus another
tool that estimates the time for these blocks is used. This tool esti-
mates how much time each instruction in the block may take based
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on the instruction set simulator’s ge neral guide. A history of simi-
lar instructions can also be looked at in the tracefile to get a rough
estimate on the time for the instruction. Once each instruction’s
time is estimated in this unexecuted block, we can sum up these es-
timated values and get the estimated execution time for the block.
The minimum and the maximum execution time of all the blocks
are recorded and stored in the monitor processor.

The final part of the instrumentation process is the act of the
secure loader. We assume that we have a secure loader that allows
encryption using a unique secure key that is secretly known to the
loader. The secure loader must only encrypt the pId bId field of the
writefifo instruction before it loads the program in the instruction
memory of Xtensa LX.

Thus the monitor processor contains two pieces of vital informa-
tion about the system. One of them being the program map and the
other is the execution times of each block in each processor of the
multiprocessor system. With this information and an algorithm for
monitoring the processors in the system, run time security checks
are performed on the system.

4.3 Architectural Framework
Figure 3 shows that the base architecture of the processor is

extended using the extensible options available in Tensilica. The
extended features for the JPEG benchmark are shown in Table 1.
The processor was further extended by defining custom hardware.
For example a small register file consisting of four registers, the
secure key used by the monitor processor and also the FIFO in-
structions for communications between processors are defined in
Xtensa’s TIE language.

4.4 Runtime Security Checks
The monitor processor has two important tasks in terms of mon-

itoring the security of the processors in the multiprocessor applica-
tion. Firstly, ensuring that the execution of each of the processors
follows a valid path by comparing with the program map. Sec-
ondly, it checks that the time taken by particular blocks of code are
within the time limits obtained from the tracefile. The algorithm
used by the monitor processor for doing security checks at runtime
is shown in Algorithm 1.

Algorithm 1 The algorithm used by the monitor processor for se-
curity checks at runtime.

Initialise Last Processor Pk = Unfinished
while (Pk = Unfinished) do

Read from incoming FIFO of processor Pj
if read numbers from the FIFO then

Unencrypt read numbers to code, pId, bId, time
if (code = 0) then

Check Path Validity
else if (code = 1) then

Check Time Validity
else if (code = 3) then

Check if Pk has finished
end if

end if
end while

If the execution time of a block of code is violated then the mon-
itor processor sends an interrupt signal which causes all the proces-
sors to stop their execution and the multiprocessor application to
exit.

It should be noted that the monitor processor needs to decrypt
the map information, the minimum and maximum blocktime in-
formation and also the pId bId information using the secure key in
hardware. Thus the runtime checking involves both the hardware as
well as the software phases of the design. There is obviously going
to be extra overhead caused by decryption of the above mentioned
items. The decryption engine being in hardware helps in reducing
the runtime overhead for the application.

The encryption at compile time and decryption at runtime is an
extra security measure. An attacker implementing a code injection

attack, knowing how the basic blocks are instrumented may make
educated guesses about the pId bId number in the writefifo instruc-
tions. Encrypting the pId bId field gives us another dimension of
catching a code injection attack. Without knowing the key, it is
highly unlikely that the pId bId field in the writefifo instruction
matches at runtime. The key being stored in hardware is not ac-
cessible without physical or side-channel attacks, both of which re-
quire physical access to the device and highly sophisticated equip-
ment.

5. EXPERIMENTAL TESTS AND RESULTS
A multiprocessor system was designed for a case study on a mul-

tiprocessor benchmark JPEG with 7 processors including the mon-
itor processor.

5.1 Performance Analysis
In order to test whether the system was able to detect security

violations, the following types of tests were designed.

A. Inserting/Adding instruction(s) into an existing block of code
B. Modifying the pId bId field of the notify or validate instruc-

tion
C. Changing the notify instruction to a validate instruction or

vice-versa
D. Modifying a branch/jump instruction to go to a block of in-

serted malicious code

Type A tests were designed to test situations where there are
some malicious instructions added in an existing block of code in
order to corrupt the program. Type B instruction is a stepping stone
for achieving a successful attack of type D. Type C attacks try to
extend a block by changing a notify instruction to a validate instruc-
tion. The type D tests were designed to test a situation where a re-
turn address register could be overwritten to jump to some inserted
malicious code. Hence by overwriting a branch/jump instruction to
point to a foreign code, we are trying to test whether the security
features are able to detect execution of an entire block of malicious
code which is what the attackers are usually interested in.

Table 2 shows the results of the attacks carried out under each
of the four categories. The term BLO refers to the original block
length and BLN refers to the new block length after the security vi-
olation. Our approach is able to detect all the four kinds of attacks.
These four categories of attacks test the timing constraints, encryp-
tion of pId bId, program map as well as the runtime algorithm in
the monitor processor for security checking.

Test BLO Security BLN JPEG
Type Violation Detected Detector

A 10 Inserted 11
√

Timer
xor

B 7 change pId bId 7
√

Algorithm/
in notify Encryption

C 5 changed notify 5
√

Algorithm
to validate

D 0 Inserted 7
√

Timer/Mapper
a block

Table 2: Results from security violations on JPEG multiproces-
sor benchmark

Table 3 details the breakdown of the increase in code size on
each of the six processors used for the JPEG benchmark. There
was an overall increase of 6.6% in application processors’ runtime
and 35.2% in the code size of the JPEG encoder benchmark. The
increase in runtime is due to the communication instructions from
each processor to the monitor processor.

The graph in Figure 5 shows the overhead values for 50 different
frames (used as an input to the JPEG encoder) from five different
benchmarks. It can be seen that the overhead is fairly constant at
about 6.6% for all the benchmarks but flowg. This is expected be-
cause the flowg benchmark is computationally very expensive. It
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Original System Secure System % Increase
Bench- Code Runtime Code Runtime Code Run
mark Len. (×106cc) Len. (×106cc) Len. time
JPEG 1313 4.29 1775 4.58 35.2 6.6
P1 440 N/A 587 N/A 33.4 N/A
P2 56 N/A 81 N/A 44.6 N/A
P3 171 N/A 197 N/A 15.2 N/A
P4 144 N/A 198 N/A 37.5 N/A
P5 435 N/A 621 N/A 42.8 N/A
P6 67 N/A 91 N/A 35.8 N/A

Table 3: Code Length and Execution time overheads for a mul-
tiprocessor JPEG benchmarks

uses the computationally expensive functions that the other bench-
marks do not use. The execution path for flowg unlike other bench-
marks includes some small basic blocks. If the basic blocks are
small, the relative percentage overhead for the particular blocks is
higher. Hence it can be noticed that generally the overhead stays
constant at 6.6% when the data uses similar functions in the pro-
gram. It is worth noting that even when we have a benchmark like
flowg, which is computationally very expensive compared to the
other benchmarks, the overhead rises to only 9.3%.

The overhead in our approach comes from communication be-
tween application processors and the monitor processor. The mon-
itor processor has to clear all of the monitoring information which
is being rapidly sent to itself. Future work will look at ways to
reduce this traffic of packets.
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Figure 5: The distribution of runtime overhead for 50 different
images used as an input to the jpeg encoder program.

5.2 Area Estimation
For the JPEG case study, the base system consists of six pro-

cessors with only the FIFO connections between the processors as
the custom hardware. After the security measures for secure exe-
cution are implemented, there is an additional (monitor) processor.
Moreover, a custom FIFO using TIE instructions is added to each
processor to communicate with the monitor processor. Overall this
results in an area increase of 10.7% to 4.186mm2 architecture.
This is an acceptable overhead given that a whole new processor is
added which is entirely dedicated to monitoring the security of the
JPEG encoder application.
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7. CONCLUSIONS
In this paper, we presented a novel architecture for allowing se-

cure execution of multiprocessor programs. We combine the forces
of program map, profiling analysis and encryption to come up with
a strong design for detecting code injection attacks. We applied
our methodology on a case study of a JPEG encoder. Our hard-
ware/software approach for implementing security resulted in an

acceptable overhead of 6.6% in the applications’ runtime and an
area overhead of 10.7%. The validation of the approach on induc-
ing the system’s response by conducting security attacks showed
promising results. The system managed to detect most of the at-
tacks by correctly identifying the processor Id and the block Id of
the attacked processor.
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