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ABSTRACT
One of the security issues in embedded system is the ability of an
adversary to perform side channel attacks. Power analysis attacks are
often very successful, where the power sequence dissipated by the
system is observed and analyzed to predict secret keys.

In this paper we show a processor architecture, which automat-
ically detects the execution of the most common encryption algo-
rithms, starts to scramble the power waveform by adding randomly
placed instructions with random register accesses, and stops injecting
instructions when it is safe to do so.

Our technique prevents both Simple Power Analysis (SPA) and
Differential Power Analysis (DPA). This approach has less overheads
compared to previous solutions and avoids software instrumentation,
allowing programmers with no special knowledge to use the system.
Our processor model costs an additional area of 1.2%, and an average
of 25% i n r unt i m e a nd 28. 5% i n energy ove r heads f or i ndust r y s t a n-
dard cryptographic algorithms.

Categories and Subject Descriptors
I.5.2 [Design Methodology]: Feature evaluation and selection, Pat-
tern analysis

General Terms
Security, Design, Measurement

Keywords
Side Channel Attack, Random Instruction Injection, Signature Iden-
tification, Cross Correlation, Power Analysis

1. INTRODUCTION
Side Channel Attacks are a major concern for security experts of

Embedded Systems due to the increasing usage of such systems in
real life applications. An adversary observes properties like power
[19], electro magnetic (EM) emission [29] and processing time[6]
from the embedded processor when executing cryptographic programs.
The observed property is then correlated with the structure of the pro-
gram to predict secret keys. Simple power analysis (SPA) and differ-
ential power analysis (DPA) are the most popular attacks, and several
researchers have shown [3, 26], that it is possible to extract secret
keys from the observed power sequence using fewer power samples,
than if one were to use a brute force method. Simple power analy-
sis uses the direct relationship between the instructions executed and
the power sequence by finding the places where instructions are ex-
ecuted in the dissipated power sequence. Secret Keys are computed
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based on the magnitude of power values at the identified places, for
different data values [28]. The magnitudes can be used to measure
the hamming weight (denotes the number of bits set to 1 during an
instruction execution [5]), which is used to identify the secret key
[23]. DPA, which is more powerful than SPA, uses statistical analy-
sis, based on the principle that there is a significant power variation
between manipulating 0’s and 1’s [28].

Cryptographic algorithms (such as AES, SHA, DES, TripleDES,
Seal, RC4, RSA and ECC) encode plaintext into ciphertext using se-
cret keys. Most of these algorithms encrypt data in multiple iterations
(or rounds) using a secret key, where the ciphertext after an iteration
is used as the plaintext for the next iteration. For example, AES [19]
and DES [12] use SBOX (a fixed or a dynamic mapping table which
returns values for ciphertext based on the plain text and decides the
strength of the encryption algorithm) rounds, where the subkeys from
the secret key are used in each round to produce the ciphertext. Since
same instructions are executed in each iteration of the loop, the dissi-
pated power produces similar patterns corresponding to each iteration
[3]. Adversaries analyze these patterns (these patterns are referred as
templates from this point onwards) in the power sequence and at-
tempt to predict which pattern corresponds to what iteration. Past
DPA attacks articulate that the adversary needs specific critical seg-
ments in the power sequence to perform a successful DPA attack [12,
23, 25]. Such vulnerable power segments can easily be identified in
the power sequence by analyzing the repetitive templates.

For both SPA and DPA to be successful, it is imperative that the
adversary is able to identify the power waveform with critical seg-
ments (like encryption rounds). If one can foil the identification of
the power waveform, then the system becomes more secure against
power wave based side channel attacks.

To obfuscate the critical segments inside the encryption block of a
cryptographic program, the processor can be modified to apply mask-
ing when it detects such critical segments. This can be implemented
in two ways: (1), Software instrumentation, where programmer speci-
fies tags (special instructions) in the code, where critical segments are;
or (2), Defining signatures of these critical segments to identify such
signatures at runtime. Signatures, defined based on the instructions
executed, takes away from the programmer the responsibility associ-
ated with adding instructions in method (1). Since nowadays, the soft-
ware of an application is developed by multiple programmers work-
ing in different modules and combining them together, we strongly
believe that hardware modification does guarantee the secure feature
been properly implemented.

Several researchers have implemented methodologies to find the
frequently executed loops using signatures based on jump instructions
[14, 22] for HW/SW co-design methods. Thus far, there has been no
implementation of signatures to identify critical segments (such as
encryption block) in a cryptographic program. Several secure opera-
tions (like random instruction injection proposed in this paper) could
be automated by pre-defining such signatures inside the processor.

This paper presents a hardware Automatic Randomized Instruction
inJectIon methoD (A-RIJID), which scrambles the power wave so
that an adversary is not able to identify specific segments such as en-
cryption rounds from the entire power wave. For the first time, a sig-
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nature based system is implemented to identify the critical segments
for the instruction injection. A simple mathematical formulation, RI-
JID index, is used to evaluate the scrambling provided by the random
instruction injection. A-RIJID prevents both SPA and DPA attacks
by foiling the adversaries’ attempt to identify the power waves corre-
sponding to the encryption rounds.

It is worth noting that we are not injecting dummy instructions(like
NOPs which execute only fetch), but inject real instructions perform-
ing operations on all the pipeline stages (such as OR, AND etc.).

Since the processor has a pipeline, the power waveform at any point
in time will be contributed to by a number of instructions. If sufficient
random instructions are injected, even if the adversary somehow can
remove the points in the power waveform corresponding to inserted
instructions, it would be impossible from the resulting waveform to
find out what the original power waveform would have looked like.
Since the random bit flips within the random instructions would have
corrupted the waveform to such an extent that statistical correlation
for DPA is not possible. In fact it is even difficult to find the segments
corresponding to the sbox rounds in the waveform.

The work in this paper, in contrast to previous obfuscation meth-
ods, modifies the processor itself to insert random instructions (not
just NOPs, but a selection of instructions, with randomized operands
to change hamming weights) by identifying the signatures for the crit-
ical blocks from the instruction execution on its own. These random
instructions are fed through all pipeline stages foiling acoustic attacks
and EM attacks.

Our technique, A-RIJID, completely eliminates the onus on the
programmer to take care of obfuscation. Additionally, the area and
energy consumption itself are smaller than previous countermeasures.

The rest of the paper is organized as follows. Section 2 investi-
gates previous research on side channel attacks, and analyzes previous
countermeasures proposed. The signature definitions are explained in
Section 3. Section 4 explains the A-RIJID framework. The design
flow of A-RIJID is explained in Section 5. Section 6 explains the key
measure used in this paper. Section 7 explains the experimental setup
used for measurement and analysis. Results are shown in Section 8.
Finally, the paper is concluded in Section 9.

2. RELATED WORK
Over the years, there have been several hardware and software solu-

tions proposed to counteract side channel attacks. The key solutions
are masking, constant path execution, non-deterministic processing,
current flattening, balanced logic, and dummy instruction insertion.

Masking a computation or an intermediate result (data masking
[23]) using random arbitrary values or functions combined with the
actual data, is a well known countermeasure. A random value is used
with the actual secure computation to confuse the adversary such that
wrong data values are predicted [7]. The Duplication Method [15]
and Table masking [12] are similar techniques which divide the stan-
dard sbox table into multiple different tables, where random values
are used for computations. Masking can also be done to specific crit-
ical instructions by replacing them with secure special instructions
[31].

Constant execution path or designing a piece of code to always
yield the same result [4, 28] is another masking technique, where the
adversary will not be able to predict the computations happening in-
side the system. Several researchers proposed the insertion of dummy
operations for ECC systems to make every execution path uniform [4,
13]. For example, if there is no add performed in an execution path, a
dummy add is inserted in the code to create identical execution paths
[4]. This will prevent the adversary from differentiating add and dou-
ble operations in ECC.

Non-Deterministic Processor [20], which uses a random selection
circuitry, is used to perform random issuing of instructions within the
independent code segments during runtime. This technique is also
one of the better countermeasures, where the adversary cannot pre-
dict the instructions if they are executed out-of-order. Irwin et. al [17]
presents a software and hardware technique for non-deterministic pro-
cessors, which uses an additional pipeline stage to perform random
operations without modifying the effective data. A random register

renaming technique [21] is proposed for the non-deterministic pro-
cessor designed in [20], which uses a hardware logic to rename the
internal registers randomly, depending on the availability, to hide in-
formation leaks from secret key computation.

A current flattening technique is proposed by Muresan and Gebotys
[24] to flatten the power wave of a processor. This technique modifies
the source code by inserting NOPs to impose a certain amount of
discharging to flatten the dissipated current.

The secure coprocessor[33], which is designed for AES-based bio-
metric applications, uses a constant power dissipating logic for any
bit transitions. This coprocessor area cost is 3X and power cost is 4X.
A signal suppression technique is proposed by Ratanpal et. al.[30]
where a special circuitry is designed to suppress the current dissipated
by the processor.

A number of researchers have stated that the injection of dummy
instructions (NOPs) could be a solution to protect systems from side
channel attacks [3, 28]. Clavier et al.[8] proposed an improved DPA
attack, called the Sliding Window DPA (SW-DPA), to bypass the
dummy instruction injection technique. Daemen and Rijmen [10]
state that inserting dummy instructions is not an appropriate solution
where each instruction has its own power profile and synchronization
is possible (for pipelined systems, each instruction affects the power
wave of its neighboring instructions). A random instruction masking
technique, similar to our approach, is presented in [11] where they in-
ject random pseudo shift instructions by tagging special instructions
in the code to identify places for injection.

In general, data masking techniques have been vulnerable to sec-
ond order DPA attacks [26, 34]. The table masking methods [12, 15]
are algorithm specific approaches (works for the algorithms which
use an sbox) and they successfully prevent DPA. However, masking
techniques require a high degree of manual intervention and they fail
to scramble the power patterns since the instructions executed remain
unchanged. The dummy operation insertion techniques proposed for
ECC systems [4, 13] are application specific and needs significant
human intervention. The random instruction masking technique[11]
needs modification of the source code to indicate where to insert ran-
dom instructions and a modification of shift operations is also neces-
sary(for example; instead of shifting eight places, use a loop to shift
one place at a time and inject random instructions and then shift the
other until you shift eight times). This technique focuses only on
shift operations, preventing adversaries from detecting shifts. It also
increases the code size by a significant amount, as all of the shift op-
erations need to be masked (they block only a single sbox). However,
there is a possibility that the adversary could still detect the other parts
of the encryption block which are not masked. Non-deterministic pro-
cessors [20] are not feasible in highly dependent software code, which
cannot be executed out-of-order. The techniques proposed using non-
deterministic processors [17, 21] have complex circuitry but do not
have their overheads reported. The circuitry level solutions [30, 33]
cost significant area and energy overheads. The signal suppression
technique [30] does not completely prevent DPA, but tries to make
the attack more difficult. The current flattening technique, which is
considered the most appropriate countermeasure for power analysis
based SCAs, increases execution time by up to 75%, and flattens lo-
cally, based upon basic blocks.

As opposed to the pitfalls from previous methods, A-RIJID pro-
vides a generalized solution with no human intervention compared to
masking, constant execution path and current flattening methods [4, 7,
9, 12, 13, 15, 24], allowing the processor to take care of masking. On
a processor with PISA (Portable Instruction Set Architecture) instruc-
tion set (as implemented in SimepleScalar™ ), the additional area cost
is just 1.2% compared to the area cost of constant logic chips[33],
with an average energy cost of 28.5% and an average runtime cost of
25% compared to current flattening[24], for industry standard bench-
marks. A-RIJID confuses the adversary without flattening the cur-
rent[24], but scrambling the patterns in the power wave. It can be
applied to any vulnerable segment (and is not algorithm dependent
like masking techniques [12, 32]). Dummy instruction insertions can
be eliminated using simple time shifting[8] and the random instruc-
tion masking [11] injects random instructions at fixed places denoted
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in the source code, whereas A-RIJID injects real instructions at ran-
dom places a random number of times. Hence the adversary will
observe different obfuscated power profiles on different tries.

Contributions

1. an implementation to automatically trigger random instruction
insertion (at random places with random registers) when pre-
computed signatures are detected in encryption blocks.

• we show that this automatic triggering has little or no im-
pact upon non-encryption programs.

2. a simple mathematical formulation is used (called RIJID In-
dex) based on cross correlation that measures the scrambling
provided by our technique, which coarsely indicates the level
of scrambling achieved. This is a relative measure which can be
used to compare one power waveform against the other, which
use similar techniques to scramble. Note that this should not be
used to compare two dissimilar techniques.

Limitations

1. A-RIJID is proposed as a design time technique, since it needs
hardware changes;

2. we assume that our system is self contained with memory on
chip; and,

3. more signatures need to be added when an entirely different
encryption algorithm with different nature is introduced, com-
pared to the ones considered in this paper.

3. SIGNATURE IMPLEMENTATION
Signatures can be used to identify certain properties in a program at

runtime. Such signatures should be defined using the instructions exe-
cuted, allowing the processor to identify the pattern of instructions ex-
ecuted and respond accordingly. Cryptographic programs contain an
encryption block which does secure computations using secret keys.
The key aim of this paper is to identify such encryption blocks by
defining an appropriate signature.

A self-concomitance analysis [18] is performed on the programs in
Table 1 to identify the possible instructions for the signature of an en-
cryption block, by analyzing a single instruction, and how quickly it is
executed again within cryptographic parts of the program, then com-
paring this self-concomitance metric to the non-cryptographic parts
of the program. Similarly, another technique called the concomitance
analysis [18] is used to find the combination of instructions which
could be used as a signature. Due to space restrictions, this analysis
is not shown here, but the interested reader is referred to [18].

As per this analysis, the XOR instructions (repeated within a win-
dow of 85 instructions) are mostly used in encryption blocks of a
cryptographic program. A multiplication then the division within a
window size of five is another signature which stands out in RSA. Ta-
ble 1 shows the number of xor hits and Multiplication and Division
hits for different benchmarks. The first column of Table 1 divides the
benchmarks into General and cryptographic programs. The second
column details the name of applications, the third column gives the
number of XORs in the application, and the fourth gives the number
of MULT and DIV instructions within five instructions of each other
(m hits). The fifth column gives the total number of instructions in
the trace of the program. The final two columns show the percentage
of xor and m hits which occur in the trace. The total xor and the m
hits were obtained using the SimpleScalar instruction set simulator.

The percentage xor hits (% X) for general programs (non- crypto-
graphic programs) are much less than for the cryptographic programs
as shown in Table 1. All analyzed cryptographic programs, except
RSA, have significant xor hits due to the usage of XOR instructions
for encryption. As Table 1 depicts, SHA has the maximum xor hit
percentage of 10%, while SEAL has 4%.

The m hits within a window of five instructions is analyzed for the
benchmarks as shown in Table 1. No other program except RSA has
m hits. RSA has an m hit percentage of 0.12% on the total number
of instructions executed.

Programs xor hits m hits Inst. % X % M
G Dijsktra 686 0 975333 0.00 0.00
E JPEG 3 0 9167386 0.00 0.00
N FFT 449 0 732776 0.06 0.00
E QSORT 23 0 22684 0.10 0.00
R BasicMath 8196 0 4489680 0.18 0.00
A StringSearch 1125 0 300710 0.37 0.00
L CRC32 51 0 11296 0.48 0.00

Blowfish 26184 0 301753 8.67 0.00
C SHA 1325459 0 13209078 10.03 0.00
R Rijndael 265 0 13268 1.99 0.00
Y SEAL 44279 0 1100640 4.02 0.00
P RC4 312126 0 24882358 1.25 0.00
T TripleDES 1060 0 30019 3.50 0.00
O ECC 10288585 0 897392501 1.15 0.00

RSA 1 8 7095 0.00 0.12

Table 1: Instruction hits on BenchMarks

Based on this analysis we define two different signatures: (1), to
capture the encryption blocks which use XOR (such as Blowfish,
SHA, Rijndael, SEAL, RC4 and TripleDES); and, (2), to capture
the encryption blocks which use Multiplication followed by Division
within a window size of five (for RSA).

3.1 Signature 1 : sigXOR
The first signature (sigXOR) is defined as shown in the diagram on

the left side of Figure 1. When an XOR is executed for the first time,
it is identified as the start of the signature. The signature expires when
there is no more XORs seen before 85 instructions. The value of 85 is
decided based on our concomitance analysis and the research of Ross
and Vahid [14].

Encrypt: 
sw $2,8($30)
lw $2,4($30)

  lw $3,8($30)
xor $2,$2,$3
sw $2,4($30)
lw $3,8($30)
sll $2,$3,0x4
lw $3,0($30)
xor $2,$3,$2
sw $2,0($30)
lw $3,0($30)
srl $2,$3,0x10

 …
 …
 ...

.end Encrypt

Encode:
lw $2,0($30)
lw $3,16($30)
mult $2,$3
mflo $2
sw $2,0($30)
lw $2,0($30)
lw $3,32572($28)
div $0,$2,$3
bne $3,$0,400
break 
addiu $1,$0,-1
bne $3,$1,400938 
lui $1,32768
bne $2,$1,400938 
break 
mfhi $2

N <= 85
N=5

sigXOR sigMULTDIV

Figure 1: Signature Definitions

Therefore, an identification of an XOR instruction indicates the ex-
istence of a sigXOR signature. Multiple sigXOR detections are pos-
sible, where each new XOR occurrence after an expiry is considered
the start of another sigXOR.

3.2 Signature 2 : sigMULTDIV
RSA algorithm is an exception which does not use XOR within its

encoding block. Instead, it uses MULT and DIV instructions. There-
fore a signature is defined as shown in the right side diagram of Fig-
ure 1, where the signature is detected when a MULT and DIV instruc-
tions are seen within five instructions. This signature is considered
expired when no such signature is seen again before 85 instructions
after the previous sigMULTDIV execution. According to our analysis,
no program (in the tested set) other than RSA contains sigMULTDIV
signature as shown in Table 2

Unlike sigXOR where the signature is started when XOR is exe-
cuted, sigMULTDIV is started only when both MULT and DIV are
seen.

4. A-RIJID FRAMEWORK
The A-RIJID Framework is shown in Figure 2 which includes the

Random Generation (R/G) component to perform signature analysis
and instruction injection. When CPU executes the XOR instruc-
tion, a special flag register (XORSEL) is set. Based on the value in
XORSEL, R/G uses a counter to identify the signature and sets
the SEL flag. It also controls XORSEL for reading and writing.

Two similar flags (DIV SEL and MULTSEL) are used for MULT
(Multiplication) and DIV (Division) instructions to identify the sig-
MULTDIV signature which is explained in Section 3. The R/G
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sets and resets SEL flag based on the values inside DIV SEL and
MULTSEL which are set by CPU , when the corresponding in-
structions execute.

When SEL is set, R/G sends a hold (pc hold’) signal to the Pro-
gram Counter (PC) and starts generating random instructions at ran-
dom intervals. The pc hold’ from R/G and the pc hold signal from
controller are multiplexed together before they are connected to the
PC. The generated random instruction (R/I) is multiplexed with the
data bus (Inst.) from the Instruction Memory(IM ). The multiplex-
ers are selected by R/G based on the instruction injection.

IR

CPUR/G

PC

data out

XORSEL

SEL

(N,D)

clock

clock reset load

hold

data in

data out clock reset enable

data in

IM

Controller

Inst.

pc hold

R/I

pc hold’

MULTSELDIVSEL

counterMUX

MUX

Figure 2: A-RIJID Architecture

The random instruction generation performed by R/G is limited
by a pair of boundary values (Injection Pair:N,D), which are set in-
side R/G. N represents the maximum number of random instruc-
tions to be injected between two regular instructions. D represents
the maximum number of regular instructions to be skipped before
each injection.

The pc hold’ signal from R/G is switched between on and off for
random times based on the injection pair. When pc hold’ is high,
the random instructions (R/I) generated by R/G are sent to the data
port of the instruction register (IR). During hold, instruction which
is pointed to by the PC is refetched from the instruction memory;
however, this instruction is not written into the IR.

Since, execution of an instruction will generally affect the state of
the processor, creating any random instruction will overwrite or edit
effective data values. Therefore, only a limited set of instructions is
selected such that, a random register is used and computed with the
zero register and the result is written onto the same random register.
Since the R/G selects random instructions from a specific set, it is
called a pseudo random generator. For example, a randomly selected
ADD instruction adds the value in the random register and the zero
register and writes the result back to the same random register. The
use of random registers for consecutive random instructions was the
most appropriate for A-RIJID as it caused higher power variation
due to bit flips in registers [21].

When one signature is detected(sigXOR/sigMULTDIV), the system
does not detect the other. Hence this implementation avoids nested
combinations.

5. HARDWARE DESIGN FLOW
This section presents the hardware design flow, describing how the

A-RIJID framework is implemented in a pipelined RISC processor.
Figure 3 depicts the generation of a processor model which imple-
ments the A-RIJID framework. The ISA is fed into an automatic
processor design tool (ASIP Design Tool in Figure 3 - ASIPMeis-
ter[2]) to generate the A-RIJID processor model.

Processor
Model

Select Functional 
Units and Special 

Registers

Generate 
Hardware

ASIP Design Tool
ISA of the 

target 
architecture

Micro-instructions 
for the ISA

R/G 
Component

Randomized
Processor

Model

Figure 3: Hardware Design Flow

Necessary functional units and special registers for signature de-
tection are selected. The micro-instructions and the functional units
are combined to generate a hardware processor model. The output of
ASIPMeister is a synthesizable VHDL processor model, which was

enhanced by the R/G component (functional unit) as explained in Sec-
tion 4. R/G component is designed separately and then is combined
with the processor.

6. RIJID INDEX
To observe how close is the obfuscated sequence to a random se-

quence, we have defined an index called the RIJID index which uses
cross-correlation to give us a measure of obfuscation. This measure
allows us to quickly find the level of obfuscation needed, instead of
taking practical measurements and analyzing the electric waves. To
be absolutely certain, one must take electrical power measurements
and try to perform DPA on it, which would take a very long time
indeed.

Our framework: (1), analyzes the original power sequence and ex-
tracts a repeating template and (2), uses RIJID index as a measure
to compute the randomization provided in the scrambled power se-
quence.

When a single occurrence (the template) of a repeating sequence
is cross correlated with the original sequence, significant peaks will
appear in the output at places where the template matches with the
original sequence [27]. The cross-correlation between the template
and the random sequence does not produce a significant peak.

When the significant peaks are removed from the cross correlated
wave(called top elimination), the resulting mean is moved by a certain
amount. Such mean movement for the cross-correlated sequences be-
tween the template and both the obfuscated sequence and the random
sequence is less compared to the movement in original sequence, be-
cause there are no significant peaks. Since the random sequence does
not have any correlation with the template, the random sequence has
less movement than obfuscated sequence. The number of significant
peaks are decided based on the number of occurrences of the tem-
plate.

Similar cross-correlation curves are taken for both random sequence
and the obfuscated sequence with the same template. The same num-
ber of significant peaks(decided using the template and the original
sequence) are removed in all three sequences(Original, Random, Ob-
fuscated) and the mean movement differences will be used to find the
RIJID index. RIJID index will give us a measure of how much
the vulnerable sequence with template is obfuscated compared to a
random sequence.

Ψf,g =

∑2N−1
i=1 (f � g)i

(2N − 1)
(1)

ϕf,g,T =

∑2N−1
i=1 (f � g)i −

∑T
1 TopT

(2N − 1) − T
(2)

Δf = Ψf,g − ϕf,g,T (3)

Equation (1) gives the mean of the cross correlation sequence of
two sequences f and g. The number of points in the cross correlated
sequence are 2N − 1, where N is the maximum number of points
within the sequences which cross correlate. Equation (2) gives the
mean value of the resulting cross correlation sequence with a number
of peaks or maximum values removed. TopT represents T number
of maximum values in sequence (f � g)i. Equation (3) defines the
mean movement (difference between the mean before and after top
elimination) of a sequence f .

RIJID index = (Δo − Δz)/(Δo − Δr) (4)

RIJID index ( 0 ≤ RIJID index ≤ 1), as defined in Equation (4),
uses the mean movements of the Original (Δo), Obfuscated(Δz) and
Random(Δr) sequences. The original sequence is used to form a re-
lated measure, where mean movement differences between the orig-
inal sequence with obfuscated and random sequences are used. RI-
JID index reaches the value of one when the mean movement of
the obfuscated sequence equals the mean movement of the random
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Normal(µs) sigXOR (µs) % O.H sigMULTDIV (µs) % O.H A-RIJID (µs) % O.H % Energy O.H

G Dijsktra 549697 549706 0.00 549697 0.00 549706 0.00 5.7
E JPEG 4234937 4234997 0.00 4234937 0.00 4234997 0.00 5.7
N FFT 5725 5824 1.70 5725 0.00 5824 1.70 7.6
E QSORT 3285 3307 0.67 3285 0.00 3307 0.67 6.5
R BasicMath 179097 181879 1.50 179097 0.00 181879 1.50 7.4
A StringSearch 48412 49333 1.90 48412 0.00 49333 1.90 7.8
L CRC32 35 40 15.80 35 0.00 40 15.80 20.8

C Blowfish 36397 59692 64.00 36397 0.00 59692 64.00 72.8
R SHA 3076 3226 4.80 3076 0.00 3226 4.80 10.9
Y Rijndael 1752 1896 8.20 1752 0.00 1896 8.20 14.5
P SEAL 152392 206409 35.50 152392 0.00 206409 35.50 42.2
T RC4 4504 4572 1.50 4504 0.00 4572 1.50 7.3
O TripleDES 2902 3941 35.80 2902 0.00 3941 35.80 42.6

RSA 160 165 3.10 175 9.40 180 13.10 9.0

Table 2: Runtime Overheads for A-RIJID processors

sequence. Such case gets the best scrambling from the A-RIJID
processor, where the dissipated power sequence appears as a random
sequence (that is, no expected templates exist). The higher the RIJID
index of a power sequence, the higher the masking.

7. EXPERIMENTAL SETUP
In this section, the main components used for experimentation and

the process of randomization measurement is explained. A-RIJID
framework is implemented in a processor with PISA (Portable In-
struction Set Architecture) instruction set (as implemented in Sim-
pleScalar™ tool set with a six stage pipeline) processor without cache.

Figure 4 shows the process of measuring RIJID index, using the
original and obfuscated processors. Programs in C are compiled us-
ing GNU/GCC® cross compiler for the PISA instruction set and the
binary is produced. ASIPMeister[2], an automatic ASIP design tool
is used to generate a synthesizable VHDL description of the processor
as explained in Section 5.

ModelSim®

Simulator
PrimePower® Matlab®Binary

Imem
(Addr,Data)

Power (w)Runtime (ns)

RIJID Index

Synthesized 
Normal Processor 

Model

Synthesized 
RIJID Processor 

Model

Execution
Trace

Generated
Wave DPA

Figure 4: Measurement on Randomization

The binary and synthesized processor models (Synopsys Design
Compiler ® is used for synthesis) are simulated together in Model-
Sim ® hardware simulator, which generates the stimulus wave with
switching information. Using ModelSim® simulator, the execution
trace is verified and extracted for future use. The runtime of each ex-
ecution is also measured using ModelSim® simulator. The power val-
ues are measured using PrimePower® , which gives the measurements
in Watts(w). The address(Addr) and instruction opcode(Data) of
instruction memory (Imem) are extracted from the execution trace
as shown in Figure 4. Perl scripts are used to combine the Imem
(Addr,Data) and power values(Power) taken from PrimePower® , which
helps to map the power values for each instruction of the program ex-
ecution. Matlab® is used to analyze and plot the combined data. RI-
JID index from the power sequences is calculated by implementing
necessary functions in Matlab. DPA is performed by analyzing the
source code and the extracted power values using Matlab® .

Prior experimentation showed that an injection pair (see Section 4)
of (N,D) = (5,5) provided sufficient obfuscation with a RIJID index
which was above 0.7.

The experiments demonstrated in this paper are performed for the
applications implemented in C, which are taken from MiBench suite
[16] and Sourcebank[1] suite. Evaluation is performed on these pro-
grams using four different processors: (1), softRIJID processor, where
tags are manually inserted in the assembly file to indicate the encryp-
tion block (this requires manual intervention, but allows a base pro-
cessor to compare with); (2), sigXOR processor, identifying sigXOR
signature; (3), sigMULTDIV processor, identifying sigMULTDIV

signature; and (4), a combined processor (A-RIJID), identifying
both sigXOR and sigMULTDIV signatures.

8. RESULTS

8.1 Runtime & Energy
Table 2 depicts the runtime and energy overheads of A-RIJID pro-

cessors for different benchmarks. The first column of Table 2 divides
the benchmarks into General and Cryptographic programs. The sec-
ond column details the name of applications, the third column gives
the runtime of programs on Normal processor (a general proces-
sor without any signature recognition). The fourth, sixth and eighth
columns show the runtime of programs when sigXOR, sigMULTDIV
and A-RIJID applied, and the fifth, seventh and ninth columns depict
respective runtime overheads of specified processors. The final col-
umn shows the energy overhead of each benchmark when A-RIJID
is applied.

The runtime overheads when using sigXOR is much larger for
cryptographic programs compared to non-cryptographic programs as
shown in Table 2. Blowfish has the highest runtime overhead of 64%,
and the lowest is RC4, costing 1.5%, amongst the cryptographic pro-
grams. Even though CRC32 (costs 15.8% in runtime) is not catego-
rized as a cryptographic program, it can be considered a vulnerable
program, as it computes checksums using XOR instructions. Note
that despite just having 0.48% of XOR instruction in the trace of the
CRC application, the overhead is high, due to the fact that the XORs
are close to each other, and are frequently executed. RSA has 3.1% in
runtime overhead, which gets just one XOR hit as shown in Table 1.
This XOR is outside the encryption block, yet due to RSA’s small
size, we get a large overhead. Table 2 shows that sigXOR does not sig-
nificantly affect non-cryptographic programs (except CRC32) if we
apply A-RIJID. The maximum runtime overhead for non-cryptographic
programs is for StringSearch with just 1.9%. The A-RIJID con-
sumes 13.10% of runtime when applied to RSA as shown in Table 2.
All other programs except RSA does not have any sigMULTDIV hits,
hence have no runtime overhead.

The energy overheads for benchmarks proportionally increases with
runtime overhead as shown in Table 2, due to the small variation in
dissipated power. Blowfish gives the maximum energy overhead of
72.8%, while TripleDES and SEAL dissipating 42.6% and 42.2%.

8.2 Hardware Summary
Table 3 depicts the hardware overheads of A-RIJID processors.

The first column of Table 3 denotes the types of processors used. The
second column states the area of each processor. The clock period
for each processor is listed in the third column. The area overheads
are presented in the fourth column. The processor area is smaller
for sigXOR, sigMULTDIV and A-RIJID compared to softRIJID as
shown in Table 3 because of no special instruction usage.

The clock period does not have any significant difference when sig-
nature recognition is implemented. A-RIJID costs an additional area
of 1.2% which is higher than sigXOR (with 0.8%) and sigMULTDIV
(with 0.9%), due to the combinational circuit of both sigXOR and
sigMULTDIV. A-RIJID provides reduced hardware overheads when
compared to other hardware designs, such as the secure coprocessor
proposed by Tiri et. al. [33] which costs three times increase in area.
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Processor Area Clock Area Overhead
(cell) (ns) (%)

Normal 111,188 41.33 N/A
softRIJID 113,302 41.47 1.9
sigXOR 112,123 41.69 0.8
sigMULTDIV 112,200 41.69 0.9
A-RIJID 112,545 41.69 1.2

Table 3: Hardware Summary

8.3 Obfuscation and the RIJID Index
The higher the RIJID index (explained in Section 6), the higher

the scrambling provided and lower the vulnerability of the power se-
quence. Table 4 depicts the RIJID indices of cryptographic pro-
grams and their loop size in number of instructions when imposed
on A-RIJID. RSA, Blowfish and Rijndael provide RIJID indices
of 0.9980, 0.9622 and 0.9495, while TripleDES and SHA, provide
0.7040 and 0.7096 respectively. Due to the enormous amounts of time
taken for power simulations, we only considered these five bench-
marks.

Loop Size RIJID index
TripleDES 14 0.7040
Blowfish 37 0.9622
Rijndael 109 0.9495
SHA 18 0.7096
RSA 36 0.9980

Table 4: RIJID index using A-RIJID

8.4 DPA and A-RIJID
Figure 5 shows the DPA performed on TripleDES (based on the

technique explained in [5]), an attempt to prove that our method pre-
vents DPA. TripleDES was chosen because it provides the lowest
RIJID index, thus the most vulnerable amongst the programs shown
above. Plots are provided for each selection bit where the last SBOX
lookup of the 16th round is chosen as the attacking point. Figure 5(a)
shows DPA plots on TripleDES without the A-RIJID implementa-
tion and Figure 5(b) shows using A-RIJID applied.

bit 1 bit 2 bit 3 bit 1 bit 2 bit 3

bit 4 bit 5 bit 6 bit 4 bit 5 bit 6

Before ARIJID Applied After ARIJID Applied

Figure 5: DPA before and after A-RIJID

Carefully chosen keys (just 14 out of the possible 264, including the
correct one were chosen to demonstrate within the available space)
were guessed such that DPA can be demonstrated using fewer power
samples. Note that in a real implementation the adversary needs to
consider all possible key guesses.

As Figure 5(a) depicts, the key is successfully predicted (place of
the correct key is pointed to by arrows in each plot) when using bit5
(the second plot in the second row of Figure 5(a)) of the 6 selection
bits used for SBOX lookup. All the other bits except bit5 (Note that
the bits are counted from the least significant bit - right to left) fail to
give a peak at the correct key as shown in Figure 5.

The key cannot be predicted using any of the bits after A-RIJID is
applied as shown in Figure 5(b), where no peaks appear on the correct
key. This analysis demonstrates that DPA will not work even if the
adversary manages to eliminate the injected instructions, identifying
the proper places in the power sequence for the analysis.

9. CONCLUSION
This paper proposes a random instruction injection technique (A-

RIJID) using dynamic signature detection to prevent side channel at-
tacks. Two different signatures are defined to identify critical blocks
(such as encryption blocks) in a cryptographic program. Random
number of instructions at random places are injected during the run-
time of the processor, based on the detected signatures, to scramble

the power wave so that adversaries cannot extract any useful informa-
tion by observing the power wave leakage from the processor.

Our A-RIJID processor consumes an area overhead of 1.2%, an
average runtime overhead of 25% and an average energy overhead of
28.5%. As far as we are aware this is the most cost effective solution,
with no manual intervention needed. The downside of this approach
is the small overhead, non-cryptographic programs can occasionally
encounter.

Our technique can be used to prevent several side channel attacks
such as Power Analysis(SPA and DPA), Electro magnetic analysis
(SEMA and DEMA). Future work includes designing a methodology
to work with superscalar processors and VLIW processors.
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