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ABSTRACT 
We propose a method for dynamic security domain scaling on 
SMPs that offers both highly scalable performance and high 
security for future high-end embedded systems. Its most 
important feature is its highly efficient use of processor resources, 
accomplished by dynamically changing the number of processors 
within a security domain in response to application load 
requirements. Two new technologies make this scaling possible 
without any virtualization software: 1) self-transition management 
and 2) unified virtual address mapping. Evaluations show that this 
domain control provides highly scalable performance and incurs 
almost no performance overhead in security domains. The 
increase in binary code size is less than 40KB, and the time 
required for individual state transitions is of a single-millisecond 
order. This scaling is the first in the world to make possible 
dynamic changing of the number of processors within a security 
domain on an ARM SMP. 

Categories and Subject Descriptors 
C.1.4 [Processor Architectures]: Parallel Architectures – mobile 
processors; D.4.7 [Operating System]: Organization and Design 
– real-time systems and embedded systems. 

General Terms 
Design, Security. 

Keywords 
SMP, AMP, Dynamic security domain scaling 

1. INTRODUCTION 
Future high-end embedded systems, such as mobile phones, 
digital home appliances and car infotainment systems, will require 
heavy CPU-centric applications that employ high-load functions 
(e.g., XML processing, navigation, speech search and speech 
translation) in order to provide more user-friendly services. This 
means that embedded processors will have to offer highly scalable 

performance in response to application loads. One promising 
approach would seem to be the use of Symmetric Multi-
Processors (SMPs), such as ARM MPCores [1]. The use of SMPs 
would help exploit both the thread-level and process-level 
parallelism of applications and would achieve flexible dynamic 
load distribution over the processors as a whole. 

Future high-end embedded systems will also require a mechanism 
to execute native applications downloaded from open networks in 
order to provide high flexibility for users. This means that the 
security needed to protect pre-installed (i.e., basic-function) 
applications will become an increasingly important issue since 
such downloaded native applications might include viruses. An 
especially important security technique is the creation of OS 
instances, called security domains. A security domain is 
specifically defined as an isolated execution environment 
prepared for a group of applications. Security domain isolation 
makes it possible to prevent illegal access to the address spaces of 
other security domains and to limit the maximum amount of 
resources that applications on the security domain may use. Intel 
and NTT DoCoMo have, in fact, jointly announced new mobile 
phone specifications [8], referred to as the Open and Secure 
Terminal Initiative (OSTI), that are designed to make possible the 
installation of a wide variety of OSs and applications with the use 
of security domains. One particularly promising approach for 
supporting security domains is the use of Asymmetric Multi-
Processors (AMPs) [6] [7], which would help enhance system 
security since this approach enables individual security domains 
(OSs) used for pre-installed or downloaded applications to be 
independently executed on each processor of the AMP with 
support of hardware designed for processor-level separation. This 
means that it will be highly secure to be able to protect pre-
installed applications on processors from interference from 
applications downloaded to other processors by means of 
processor-level separation. This approach would also enhance 
application performance because no virtualization software is 
required [2] [3] [4] [13].  

Neither the SMP nor the AMP approach is, however, in itself 
satisfactory. While the SMP approach provides highly scalable 
performance for heavy pre-installed applications by means of 
dynamic load distribution over the processors as a whole, it fails 
to support the multiple processor-level security domains required 
to enhance system security. This is because the SMP OS manages 
all processors contained in an SMP in order to provide high 
scalability. By way of contrast, the AMP approach supports the 
multiple processor-level security domains required to enhance 
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system security by means of processor-level separation. 
Unfortunately, however, this separation fixes the number of 
processors within an OS. Thus, this AMP approach results in 
providing heavy pre-installed applications with only low 
performance scalability. 

This paper reports our design and implementation of dynamic 
security domain scaling on SMPs in order to provide both highly 
scalable performance and high security in future high-end 
embedded systems. Our design is a hybrid of the SMP and AMP 
approaches. Where the execution of heavy pre-installed 
applications is required, our dynamic security domain scaling 
enables all processors contained in an SMP to be allocated for 
pre-installed applications by means of the SMP approach. Where 
coordination between pre-installed and downloaded applications 
is required in order to provide system flexibility, our dynamic 
domain security scaling reduces the number of processors 
allocated for pre-installed applications and allows deallocated 
processors to be dynamically allocated for the execution of 
downloaded applications. This achieves processor-level 
separation of security domains by means of the AMP approach. 

The major contributions of this work include achievement of the 
following design objectives: 

•  Flexible Security Domain Scaling: The number of processors 
within a security domain must be flexibly changeable in order 
to provide scalable performance for pre-installed or 
downloaded applications. By integrating a conventional CPU 
Hotplug technology [12] with our innovative context handling 
technology, our dynamic security domain scaling satisfies this 
requirement without any virtualization software. 

•  Highly Scalable Performance: Future high-end embedded 
systems will be required to execute heavy pre-installed 
applications in order to achieve user-friendly services. The 
SMP element of our approach provides highly scalable 
performance in pre-installed applications since the use of a 
SMP achieves flexible dynamic load distribution over the 
processors as a whole. 

•  Hardened Security: Pre-installed applications executed in 
high-end embedded systems must be protected from 
downloaded native applications. With the AMP element of our 
approach, the creation of a separate, processor-level domain for 
pre-installed applications helps ensure their greater protection. 

•  High Performance in Security Domains: Since our non-
virtualization approach provides physical processors for pre-
installed and downloaded applications, it enhances application 
performance. 

•  Small Binary Code Size: Future embedded systems will need 
to be able to operate with limited resources, and the integrated 
design of our dynamic security domain scaling is designed to 
help them operate with a smaller binary code size. 

Our dynamic security domain scaling features two new 
technologies: 1) self-transition management, by which processors 
for pre-installed applications are dynamically allocated for the 
execution of downloaded applications; and 2) unified virtual 
address mapping, by which there are seamless transitions back 
and forth between the executions in separate security domains, 
those for downloaded applications and those for pre-installed 

applications. These technologies help make SMPs with our 
dynamic security domain scaling ideally suited to high-end 
embedded systems.  

The remainder of this paper is structured as follows: Section 2 
describes related work, Section 3 explains our dynamic security 
domain scaling, Section 4 shows the results of our evaluation of it, 
and Section 5 summarizes our work.  

2. RELATED WORK 
Our research differs in a number of respects from the current body 
of research on domains. Our dynamic security domain scaling is 
designed to exploit the benefits of both AMPs and SMPs. 
Major user-level domain approaches include eSOL eT-Kernel [5] 
and QNX BMP [11]. Since these approaches use processor 
affinity settings to allow applications executed on an SMP OS to 
be run only on specified processors, they make it possible to 
change the number of processors assigned to an application. The 
execution of pre-installed and downloaded applications on the 
same SMP OS, however, will result in critical security 
vulnerability.  
Major kernel-level domain approaches, such as SELinux [9], 
allow both pre-installed and downloaded applications to be run on 
the same SMP OS since a security module within the SMP OS 
monitors system calls issued from all applications and imposes 
mandatory access control on all applications. Such monitoring 
results in severe performance degradation, however, even in pre-
installed applications. Further, with such approaches, it is difficult 
to avoid security vulnerability in OSs and security modules. 
Major virtualized domain approaches include type-I VMMs, such 
as LPAR [2] and Xen [3], and type-II VMMs, such as UML [4] 
and VMware [13]. VMMs enhance system security since they 
allow pre-installed applications to be separated from downloaded 
applications at the OS level. In addition, VMMs make it possible 
to provide any number of processors to pre-installed applications 
through processor virtualization features. Virtualization, however, 
results in unignorable performance degradation, and there is a 
degree of security vulnerability in complex virtualization software.  
By way of contrast, SMP platforms with our dynamic security 
domain scaling not only allow the number of processors within a 
security domain to be dynamically changed, they also make it 
possible to support high security by means of processor-level 
separation, and application performance in security domains is 
high because no virtualization software is required.  

3. SMP PLATFORM WITH DYNAMIC 
SECURITY DOMAIN SCALING 

3.1 Overview and Principles 
Figure 1 shows the application of our dynamic security domain 
scaling to an SMP platform containing four processors. This 
platform has three security domains, a base domain for the 
execution of pre-installed applications and two security domains 
(A/B) for the execution of downloaded applications. It contains a 
function for changing the number of processors assigned to 
individual security domains. The base domain maintains at least 
one processor for its executions. Note that our scaling is not 
limited to use with the structure shown in this figure; any number 
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of processors can be dynamically allocated to any number of 
security domains with any kind of OSs.  

For heavy pre-installed applications, all four processors are 
allocated to the base domain on the SMP OS. Further, where 
coordination is required between pre-installed and downloaded 
applications, a processor allocated to the base domain (e.g., 
CPU#3) will be yielded to a security domain used for downloaded 
applications. As shown on the right-hand side of the figure, pre-
installed applications can, for example, be executed separately on 
an SMP OS with three processors, while downloaded applications 
are executed with the remaining processor. Note that an domain 
manager application, which supports the similar functions of an 
Java application manager, is executed on the base domain in order 
to control the timing of domain switching and the allocation of 
processors to individual domains. 

The platform contains both a software component, which includes 
a context manager and context handlers, and a hardware 
component, which includes bus filter logic. Here, context refers to 
the register values required to restore a processor state (e.g., mode 
registers and CP15 control registers of an ARM processor). 
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Figure 1: SMP Platform Applied to                                              
Dynamic Security Domain Scaling 

The context manager is run only on the base domain, and it 
manages base domain contexts, which are required to restore to 
the base domain any processors previously allocated to security 
domains. It also manages all security domain contexts for 
downloaded applications. Further, it controls dynamic security 
domain scaling (see Section 3.2.1). It also sends to a context 
handler the context of a security domain in which an execution is 
to be performed and orders that the execution be made. 

A context handler [7] is run on each security domain for 
downloaded applications, and it conducts domain switching, from 
a current security domain to a security domain specified by the 
context manager. To do this, it functions as an interrupt handler. 

In transitions from, for example, a state with only a base domain 
to one with both a base domain and a security domain (e.g., 
domain (A) in state transition (1) in Figure 1), the context 
manager saves the context of the processor (here, CPU#3) 
allocated for the execution of the security domain (A), and 
restores the context of that security domain to the processor. As a 

result, the number of processors allocated to the base domain is 
dynamically reduced from four to three.  

In state transition (2) in Figure 1, e.g., in switching from security 
domain A to security domain B, the context manager sends the 
context of security domain B to the context handler of security 
domain A, using shared memory and inter-processor interrupts in 
inter-processor communication, and it receives from the context 
handler the context of security domain A, which had previously 
been saved. As a result, switching from security domain A to 
security domain B is seamless. 

Finally, in state transition (3) in Figure 1, e.g., in switching from a 
state with both a base domain and a security domain to one with 
only a base domain, the context manager sends the base domain 
context of the processor performing executions in security domain 
B (i.e., CPU#3) to the context handler of security domain B, and 
it receives from the context handler the context of security 
domain B, which had previously been saved. As a result, the 
processor allocated for executions in a downloaded domain (i.e., 
CPU#3) is restored to the base domain, and the number of 
processors allocated to the base domain is dynamically increased 
from three to four. 

Bus filter logic [6] determines whether an access from a processor 
to a bus slave should be granted. This decision is made on the 
basis of an access matrix. While the processors executing in the 
base domain, for example, are allowed access to any resources, 
such as I/Os or memories, processors executing in security 
domains for downloaded applications are allowed access only to 
resources allocated to a specific security domain, and are 
prohibited to access to resources used in an other domain. In this 
way, this platform achieves hardened protection among security 
domains at the processor level. In addition, in contrast to the slow 
access checking offered by such virtualization software as type-I 
or type-II VMMs, this logic offers the fast access checking 
required to maintain separate security domains. 

3.2 Two New Technologies 
In order to apply our dynamic security domain scaling to an SMP 
platform, we had to address two important technical issues, 
particularly with respect to the important state transitions of (1) 
and (3) in Figure 1: 1) how processors to be used for downloaded 
applications are to be dynamically separated from the base 
domain and then merged again with it; and 2) how the execution 
of a software component to be shared among domains, including 
the base domain, is to be stabilized during state transitions 
between different OSs. In the following sections, we assume that 
an ARM MPCore [1], which provides both AMP and SMP modes 
to each processor, is used as an SMP, and that Linux is used for 
the OSs of security domains. 

3.2.1 Self-Transition Management 
For separating a processor from a base domain (state transition (1) 
in  Figure 1) and merging a processor back to the base domain 
(state transition (3) in  Figure 1), simple operational control of 
processors, such that including only suspend and resume, would 
be insufficient. In addition to operational control, the base domain 
is also required to support context handling for the processors. 
Self-transition management achieves such context handling for 
processors by means of integrating CPU Hotplug technology [12] 
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with it. CPU Hotplug technology, originally developed by Russell 
et al., is used to remove faulty processors from a system and add 
new processor substitutes to that system without stopping on-line 
operations. In ARM MPCore Linux, this technology allows 
unused processors to be put into a low power mode in order to 
reduce power consumption. In other words, it simply suspends 
use of the processors. 
Figure 2 shows the relationship between our self-transition 
management and CPU Hotplug technology. In the figure, gray 
boxes indicate newly-added operations for the self-transition 
management. With respect to CPU Hotplug technology (i.e., the 
white boxes) implemented on ARM MPCore Linux, when a 
processor in an idle state is put into a low power mode, the CPU 
Hotplug technology requests the execution of a “CPU Hot 
Remove,” which might involve, for example, 1) the migration of 
processes previously executed on that processor to other live 
processors, 2) a change in interrupt distribution to the processor, 
3) deactivation of cache coherence, or 4) a processor’s waiting for 
an interrupt while clock gating is being conducted. After the 
processor receives a wake-up interrupt, the technology requests 
the execution of a “CPU Hot Add,” such as the re-activation of 
cache coherence  or the return of a processor to an idle state. 
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Figure 2:  Self-Transition Management – Integration between 

CPU Hotplug and Fast Context Handling 
Our self-transition management modifies the operational flow of 
CPU Hotplug technology. In the case of separating a processor 
from the base domain and allocating it to a security domain for 
downloaded applications (i.e., state transition (1) in Figure 1), it 
requests the processor to execute a “CPU Hotplug Remove.” 
After that, rather than make the processor wait for an interrupt, it 
saves the base domain context required to restore the processor 
and restores to the processor the context of the security domain 
for downloaded applications. In this way, our self-transition 
management enables processors which previously executed 
functions in the base domain to start to execute in security 
domains. The key feature in our self-transition management is 
changing the value of the program counter saved in a base 
domain context to the program address which corresponds to the 
point at which waiting for an interrupt has been completed, i.e., 
the address that corresponds to the point just before “CPU Hot 
Add” processing commences.  
In the case of merging a processor from a security domain back 
into the base domain (i.e., state transition (3) in Figure 1), the 

self-transition management requests the context manager to 
perform a domain context switch. Using the base domain context 
required to restore the processor to the base domain, the context 
manager orders the processor’s context handler to perform a 
domain context switch. The context handler then conducts a 
domain switch from the current security domain to the base 
domain. Here, as mentioned earlier, since the value of the 
program counter is changed to the address directly preceding 
“CPU Hot Add,” the processor executes “CPU Hot Add” and 
returns to an idle state in the base domain as if it had received a 
wake-up interrupt. In this way, the self-transition management 
enables processors which previously executed functions in 
security domains to resume making executions in the base domain. 
Note that, while our self-transition manager is not based on 
virtualization software technologies, the security level of domain 
separation is kept high by means of bus filter logic. Thus, SMP 
platforms with dynamic security domain scaling are able to 
provide highly secure, high-performance domains. 

3.2.2 Unified Virtual Address Mapping 
For a state transition between security domains, all registers in a 
processor have to be set with the register values of a new domain 
context. Traditional embedded processors, including ARM 
MPCores, generally do not allow mode registers or control 
registers, such as a pointer register for use with a page table, to be 
simultaneously restored. This restriction would make the register 
setting code executed for state transitions unstable during the 
register setting between a pointer register setting and the program 
counter setting, since the register setting code executed in an OS 
before a state transition would use virtual addresses different from 
those in an OS after the state transition.  
To avoid this situation, we employ unified virtual address 
mapping, a technology for matching virtual addresses in the 
register setting code shared between an OS used before a state 
transition and an OS used after that state transition. It is employed 
to help achieve stable state transitions. Figure 3 shows the 
mapping between physical addresses and virtual addresses in 
terms of both the SMP OS of the base domain and AMP OSs of 
security domains used for downloaded applications (i.e., security 
domains A and B). Unified virtual address mapping arranges 
common instructions and data used for the register setting code in 
an area of the physical memory (e.g., 0x0e001000 for the 
common instructions in Figure 3  and 0x0f000000 for the 
common data) that is separate from areas of the physical memory 
used by the SMP OS and AMP OSs. Further, it assigns the 
common instructions and data to virtual addresses that are the 
same in both the SMP OS and the AMP OSs (e.g., 0x0ffb0000 in 
Figure 3). In this way, unified virtual address mapping achieves 
stable operations, enabling, for example, a processor executing 
the register setting code to fetch correct instructions or read 
correct data even after the setting of a pointer register to a page 
table, since the instructions and data used for the register setting 
code are assigned to the same virtual addresses as those in both 
the OS used before a state transition and the OS used after that 
state transition. 
In addition, unified virtual address mapping is designed to prevent 
extra virtual addresses from being newly allocated to OSs, since it 
utilizes unused virtual addresses within the virtual address ranges 
allocated to I/O devices. This means that no extra virtual 
addresses are required for mapping our register setting code.  
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Note that bus filter logic makes unified virtual addresses read-
only, since the register setting code only fetches instructions and 
reads data. This results in protecting the code from modifications 
that might be caused by viruses, and SMP platforms with our 
dynamic security domain scaling help maintain system security. 
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Figure 3:  Unified Virtual Address Mapping for               
Stabilizing Dynamic Security Domain Scaling 

4. EVALUATION 
Evaluation conditions are summarized in Table 1.  

Table 1: Evaluation Conditions 
Item Feature 
SoC MPCore (MP11 CPU x 4) @ 130nm 

Cache I$: 32KB, D$: 32KB per MP11 CPU 
Clock Frequency ARM: 240MHz, Bus: 35MHz 

OS  Linux 2.6.7 / SMP OS x 1, AMP OS x 2
 

 
Figure 4:  Evaluation Board with an ARM MPCore 

4.1 Highly Scalable Performance 
Figure 5 shows allocation of MultiProcessor Dhrystone MIPS 
(MP DMIPS) to the base domain and a security domain in 
response to dynamic security domain scaling. We have confirmed 
that state transition (1) in Figure 1 reduces total performance in 
the base domain by an amount corresponding to that of a single 
processor, and that the amount of reduced performance is gained 

in the security domain. Further, with state transition (3) in Figure 
1, performance in the base domain is increased back to the 
previous level.  

0

100

200

300

400

500

600

700

800

900

1000

M
P 

D
hr

ys
to

ne
 M

IP
S

4CPU SMP 3CPU SMP +
1CPU AMP

4CPU SMP

State
Transition

(1)

State
Transition

(3)

Reduce
1CPU 

MPDMIPS

Increase
1CPU 

MPDMIPS

SMP
OS

AMP
OS

 
Figure 5:  Highly Scalable Performance in the Base Domain 

4.2 High Performance in Security Domains 
Figure 6 and Figure 7 show the results (i.e., average of 10 
measurements) for LMbench [10] processes and context 
switching micro-benchmarks executed in the base domain. 
LMbench is a typical OS benchmark. Average results for 
conventional virtualization software, Xen (a type-I VMM) and 
UML (a type-II VMM) are also shown in the figure [3]. For the 
sake of comparison, also shown are performance results 
normalized to 1 with respect to the reference base of micro-
benchmarks executed with unmodified Linux. 
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Figure 6:  Low Performance Overhead in the Base Domain     

– Process Micro-Benchmarks - 
The base domain with dynamic security domain scaling achieves 
nearly the same performance as does the base-reference SMP 
Linux. This cannot be said for conventional virtualization 
software. Here, our bus filter logic helps provide fast checking of 
access requests issued from security domains. Two small 
anomalies seen here, signal handling in Xen and two processes of 
16KB array size each with our approach, presumably occurred 
due to a fortuitous cache alignment (see [3]). Note that we have 
also confirmed that the performance overhead in security domains 
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for downloaded applications is almost the same as that with un-
modified AMP Linux. 
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Figure 7:  Low Performance Overhead in the Base Domain     

– Context Switching Micro-Benchmarks - 

4.3 Small Binary Code Size 
As may be seen in Table 2, dynamic security domain scaling is 
implemented with a small binary code size (i.e., less than 40KB) 
by means of the CPU Hotplug integrated design. The binary code 
size for common text (instructions) and data is also small, being 
implemented in only 9.2KB. The increases in binary code size of 
SMP Linux and AMP Linux with our dynamic security domain 
scaling are only 1.5% and 1.3%, respectively, over that for un-
modified OSs. In terms of Lines of Code (LOC), the modified 
LOC values of SMP Linux and AMP Linux with dynamic 
security domain scaling are 1549 LOC and 1145 LOC, 
respectively.  

Table 2: Increases in Binary Code Size (KB) 

Linux Text Data BSS Common 
Text 

Common
Data Total

SMP +11.2 +1.6 +16.2 +38.2
AMP +6.6 +1.1 +16.1 +0.3 +8.9 +32.9

 

4.4 Low State Transition Time Overhead  
We measured the elapsed time from initiating a state transition 
request in the base domain to finishing processing the request in 
an other domain. Table 3 shows times required for the state 
transitions shown in Figure 1. Values in parenthesis indicate 
differences in time with respect to corresponding processing using 
CPU Hotplug technology. The time required for state transitions 
with dynamic security control is of a single-millisecond order. 
Further, the greatest time difference with CPU Hotplug 
technology is only 2.0ms. 

Table 3: Low Overhead of State Transition Time 
State Transition in Figure 1 Time 

(1) Separation from the base domain 2.5ms (+1.5ms)
(2) Switching to a security domain for 
downloaded applications 0.5ms (---------)

(3) Merge to the base domain 4.5ms (+2.0ms)
 

5. CONCLUSION 
The requirements for more highly scalable performance and 
higher security in future high-end embedded systems will 
necessitate the use of SMPs. We have here proposed dynamic 
security domain scaling on SMPs that allows the number of 
processors within a security domain to be dynamically changed, 
and we have applied our approach to ARM MPCores. Key to the 
success of this dynamic security domain scaling are two new 
technologies: self-transition management and unified virtual 
address mapping. We have shown the effectiveness of the scaling 
in our evaluations with respect to performance scalability, 
performance overhead, binary code size, and state transition times. 
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