Simultaneous Synthesis of Buses, Data Mapping and
Memory Allocation for MPSoC

Brett H. Meyer and Donald E. Thomas
Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213 USA

bhm@ece.cmu.edu, thomas@ece.cmu.edu

ABSTRACT

Heterogeneous multiprocessors are emerging as the domi-
nant implementation approach to embedded multiprocessor
systems. In addition to having processing elements suited to
the target applications, these systems will also have custom
memory and bus architectures. Because of performance and
cost constraints, these systems must be carefully designed
to balance system partitioning and resource sharing. The
sheer size of the design space requires that tools be able to
do this balancing. We have developed an augmented simu-
lated annealing synthesis tool that uses system performance
and layout evaluation to drive simultaneous data mapping,
memory allocation and bus synthesis. Performing these op-
timizations at the same time, our tool is able to explore a
larger design space and take advantage of cost-saving re-
source sharing unavailable to previous approaches that al-
locate memories before synthesizing buses. This results in
20% cost reduction for high-performance designs as well as
27% for low-cost designs in comparison with an approach
that performs memory allocation and data mapping sepa-
rately from bus synthesis.

Categories and Subject Descriptors

J.6.1 [Computer Applications|: Computer-aided Engi-
neering— Computer-aided design (CAD)

General Terms

Design, Performance

Keywords

Embedded multiprocessor systems-on-chip, bus architecture
synthesis, memory allocation, data mapping, partitioning,
sharing

1. INTRODUCTION

The future of most embedded applications lies in single-
chip heterogeneous multiprocessors. These systems-on-chips

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+1SSS’07, September 30-October 3, 2007, Salzburg, Austria
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

will consist of tens of individually programmable process-
ing elements (PEs) and will be customized to obtain the
best trade-off of the designers’ requirements. Given that
design complexity is increasing because of both the underly-
ing technology and the size of systems being designed, new
synthesis techniques are needed to address design produc-
tivity. We present and demonstrate a synthesis tool aimed
at the architectural design of single-chip multiprocessor sys-
tems optimized for low latency and manufacturing cost.

Prior work has suggested a variety of approaches for ex-
ploring this design space. A representative tool takes as in-
put a particular hardware/software task decomposition, de-
termines an appropriate memory allocation and data map-
ping, and then performs bus synthesis. In these approaches,
synthesis is often divided into multiple exploration phases,
such that memory allocation is determined independently of
and prior to bus synthesis, and bus topology is determined
assuming a fixed memory allocation. In the case of memory
allocation and bus synthesis, however, dividing the process
into phases limits the explorable design space and can lead
to dramatically increased system cost.

Multiphase approaches increase costs by over-partitioning
the system, limiting opportunities to share resources. Sys-
tem partitioning physically divides system resources like bus-
es and memories, dedicating resource access to specific pro-
cessing elements to improve performance. Resource sharing,
on the other hand, time-multiplexes the accesses of multi-
ple processing elements to resources, reducing cost. There
is an inverse relationship between sharing and partitioning,
as illustrated in Figure 1. Partitioning carried to its logi-
cal conclusion completely divides a system into subsystems,
with each processor (P) accessing only its own memories
(M). Sharing carried to its logical conclusion, on the other
hand, makes all resources available to all processors. System
optimization is the process of finding the best application-
specific balance of sharing and partitioning. When multi-
phase approaches partition systems in early design phases
because the performance impact of sharing can’t be quanti-
fied, resources are locked up that could otherwise be shared
or eliminated. This restricts the design space and solution
quality.

Our contention is that the best way to balance partition-

— (M) m)

E E ore
Ty o tioning Sharing n ﬂ

Figure 1: Partitioning reduces opportunity to share
resources by restricting access to them.

Table 1: Memory Allocation and Bus Synthesis Approaches in the Literature

| Ref | Phases | Private | Co-Synthesis | Notes

1 2 Yes No Local memories on dedicated buses. Memory allocation is never evaluated.

2 2 Yes No Same as in [1].

3 3 Yes No Local memories on dedicated buses. After bus synthesis, shared memories are
sometimes merged if performance evaluation allows.

[4] 1 No Yes Only co-synthesis approach. Local memories restricted to nearby buses. Memory
allocation evaluated from performance perspective only.

ing and sharing to truly optimize performance and cost is
to do it in the context of system cost and performance eval-
uation. In the case of memory allocation and bus synthesis,
however, system cost and performance can’t be evaluated
until the bus topology has been determined because of the
role area and wire length play in system cost and perfor-
mance. Memory allocation and bus topology must therefore
be explored simultaneously so that the implications of de-
sign changes can be accurately measured.

We present a novel synthesis tool that simultaneously ex-
plores memory allocation, data mapping and bus synthe-
sis for embedded multiprocessor systems-on-chip. Our ap-
proach combines this exploration in a single phase, evalu-
ating both performance and system cost with each design
change. By treating memory allocation and data mapping
as first class design space axes along with bus synthesis, our
approach is able to capture how the design axes interact,
exposing a larger design space and allowing us to better bal-
ance system partitioning and resource sharing. This results
in 20% cost reduction for high-performance designs as well
as 27% for low-cost designs when our single-phase approach
is compared with a multiphase approach that separately al-
locates memories and synthesizes buses.

2. RELATED WORK

Computer-aided design approaches, especially in response
to increasing design size and complexity, frequently divide
system design into phases. The high-level design space of
embedded multiprocessor design is large, consisting of count-
less combinations and organizations of processing elements
and other components, and task and data mappings to those
components. Design is greatly simplified if only one aspect
of the system is considered at a time. For multiprocessor em-
bedded systems, this is often manifested as the division of
design into (1) task decomposition and mapping, (2) mem-
ory allocation and data mapping, and (3) bus synthesis. The
underlying assumption is that a system can be globally op-
timized through separate local optimization steps.

A large body of other work has been done to address (3) in
isolation [5][6][7][8][9]. Unlike our approach, these all assume
a fixed memory allocation as input, severely limiting the
opportunities to trade off system partitioning and resource
sharing.

The literature also contains a number of proposals for how
best to approach problems (2) and (3) together. For a selec-
tion of these techniques, Table 1 lists the number of phases
the approach breaks memory allocation and bus synthesis
into, whether local memories are private, and whether local
or shared memories are co-synthesized with buses.

In approaches [1] and [2], phase one identifies data local
to each processor, and assigns it to a memory allocated on
a bus dedicated to that processor, heavily partitioning the
system. Shared memories are also allocated in phase one,
divided so two processors only access the same memory if
they access the same address space.

[3] allocates dedicated local memories in phase one, then
performs bus synthesis in phase two. In phase three, shared
memories are merged provided they are accessed by the same
processors and the merging won’t introduce delay due to
contention. Though this approach adjusts memory alloca-
tion after bus synthesis, since it doesn’t perform floorplan-
ning to measure system cost, it assumes that combining is
always beneficial. This approach also only considers merging
memories once, making it heavily dependent on the initial
memory allocation.

[4] co-synthesizes memories and buses, exploring memory
allocation and bus synthesis at the same time. This ap-
proach evaluates system performance to determine if mem-
ories should be merged or split. Shared data and local data
may be mapped to the same memory provided that the
local memory is allocated to a bus the processor can ac-
cess directly (rather than through a bridge). This approach
performs co-synthesis only for performance, however, and
doesn’t consider system cost at all.

All of the above approaches place restrictions on where
or how memories are allocated in an effort to expose per-
formance to later design stages, but inevitably lead to in-
creased costs. Even [4], the only bus-memory co-synthesis
approach, enforces keeping local data close, restricting re-
source sharing. Though the system partitioning employed
improves performance by ensuring that local data is avail-
able quickly, doing so typically requires the costly integra-
tion of additional resources. Private buses may be underuti-
lized, and statically allocated memories may result in sub-
optimal floorplanning compared with approaches that can
combine or divide memories during bus synthesis. Parti-
tioning systems without concern for the cost implications
has the unintended consequence of limiting resource sharing
opportunities, which in turn restricts designers from finding
cost-optimal, and therefore generally optimal designs.

3. SIMULTANEOUS SYNTHESIS AND
EVALUATION

We have developed a novel synthesis tool that avoids the
resource sharing limitations of the prior work by allowing
data mapping, memory allocation, and bus synthesis to be
explored simultaneously in a process driven by performance
and cost evaluation. Our approach, illustrated in Figure
2, employs simulated annealing techniques [10] augmented
with closed-form decision-making in the form of determinis-
tic design refinement. After selecting an initial temperature
using the approach in [11], the system is iteratively per-
muted and cooled according to a constant cooling schedule
until it remains frozen (unchanged) for three iterations (pa-
rameters detailed in Section 4.4).

In each iteration, the annealer selects and performs a move
that modifies the system’s data mapping, memory alloca-
tion, or the bus-based interconnect. Then, the system is
pruned of unused resources and the data mapping is legal-

while (! frozen) {
/* modify system */
randomly select and apply move
if (new topology) {
dofloorplan = TRUE
prune system

if (node was moved)
legalize data mapping

}

/* evaluate system */
if (dofloorplan)

floorplan // to evaluate cost
DES // to evaluate latency
accept/reject move

Figure 2: System modification and evaluation se-
quence. Repeats once per move until the system is
frozen.

ized. Next, floorplanning is done as needed, and physical
cost and execution latency, the two components of the ob-
jective function, are evaluated.

Pruning and data mapping legalization reduce the explo-
ration burden of the annealer without limiting access to op-
timal designs. In our experiments, we found that even when
we consider all of these design axes simultaneously, our ap-
proach is able to complete design space exploration in 6-8
hours, comparable to other approaches.

3.1 Move Set

The construction of the move set is motivated by our ob-
servation that redistributing resources is a more effective
way to trade off system partitioning and resource sharing
than creating and removing resources. For example, moves
do not create or destroy memories or buses, but rather split,
merge, or move resources about in the system, in effect par-
titioning or sharing resources among the different process-
ing elements in the system. At present, systems are re-
stricted to processing elements, SRAM memories and flat
(non-hierarchical) bus-based interconnect.

There are three basic move types, two of which are fur-
ther broken into sub-types. Data mapping randomly moves
a data array from one memory to another, enlarging the des-
tination memory as necessary. Bus moves randomly change
the bus topology by connecting (disconnecting) a proces-
sor or memory to (from) a bus in the system or splitting
a highly utilized bus into two buses. Memory moves ran-
domly change memory allocation by absorbing a small mem-
ory (and its data) into another larger memory or splitting a
large memory (and its data) into two smaller memories.

3.2 Pruning and Data Mapping Legalization
Any move that modifies the system topology triggers prun-
ing. Pruning searches the system for memories that could
be replaced with smaller memories without displacing data,
and removes unused memories and buses, eliminating un-
necessary cost in the system. Pruning memories does not
restrict the design space, as data moves occur independently
of the storage available in the destination memory (the move

is performed, then legalized by growing the memory if nec-
essary). Pruning buses also has negligible impact on the
design space. As moves that disconnect nodes from buses
must reduce cost on average to be accepted, that a bus is
unused indicates that the system may not need it. There is
no move to remove buses; pruning allows the system to au-
tomatically gravitate toward the number and arrangement
of buses that best fits the design constraints.

Any move that changes which bus(es) a memory (or pro-
cessor) is connected to triggers data mapping legalization.
When a node is moved in the system, there’s a chance that
some processors may not be able to access all of their data.
Rather than require that all moves be legal initially (a very
strict requirement which makes design space exploration
very difficult), data mapping legalization finds a new le-
gal assignment for the inaccessible data given the requested
topology change.

Together, pruning and data mapping legalization reduce
the size of the design space that must be explored by reduc-
ing multiple designs to a single design point or alleviating
the annealer of the need to traverse large numbers of inferior
designs to reach a better system organization.

3.3 Modeling System Cost

System cost, the objective function minimized by our an-
nealing approach, is evaluated after each move is completed
(possibly including pruning and data mapping legalization)
and is used to determine if the design change in question
should be accepted or rejected. Moves that decrease system
cost are automatically accepted. Moves that degrade system
cost are accepted with probability exp(—AE/T), where T
is the temperature of the current iteration and AFE is the
change in system cost that results when the move is applied.

System cost is the weighted combination of total execution
cost, or latency, and the system’s physical cost:

system cost = « - latency + (1 — «) - physical cost (1)

where « is selected by the designer based on the relative
importance of performance and cost to the given design.
The goal of our approach is to minimize system cost for a
given a.

Physical cost is a function of system area, wire length,
and aspect ratio. Since square designs are more easily man-
ufactured, the baseline physical cost is scaled to penalize
floorplans with high aspect ratios.

baseline = (3 - area + (1 — () - wire length 5
physical cost = baseline - (0.75 4 0.25 - aspect ratio) 2)
(B is chosen so that system area and total bus wire length
contribute equally to the baseline physical cost.

System area, wire length and the aspect ratio are all de-
termined with floorplanning. Area is the bounding box of
the design. Wire length is the sum of half-perimeter wire
lengths of all buses, evaluated using the smallest rectangle
enclosing the center of each module connected to a bus. As-
pect ratio is the longer dimension of the design divided by
the shorter (so it is always > 1). Floorplanning is performed
by annealing a slicing tree representation of the system [12].

Once floorplanning has completed, we use bus topology
information and the system floorplan to determine the bus
speed for the system. The delay for each bus is first deter-
mined using the approach proposed in [13]. Then, system
bus cycle length is determined by the speed of the slowest
bus in the system. This bus cycle time is subsequently used
in latency evaluation.

Latency is evaluated by determining the total system exe-

P5

PO

Gl
e
=
&

P6

Figure 3: Software pipeline and task-processor map-
ping.

cution time. This is accomplished by first gathering memory
access traces to express the partially ordered sequence of all
memory accesses that occur in the system, including any de-
pendencies (e.g., one trace may not be able to start reading
memory until another has finished writing). The total sys-
tem execution time is then calculated by performing discrete
event simulation (DES) on the dependency graph generated
by combining all memory access traces in the system. Mem-
ory accesses are modeled as events which propagate through
the system from processors to memories (request) and back
again (data), according to the protocol of the given intercon-
nect modules. We acknowledge that DES does not scale and
will limit the scalability of our approach. We employ DES
for proof-of-concept purposes; replacing it with a method
that scales better is the subject of future work.

4. EXPERIMENTS AND RESULTS

We conducted experiments to compare our simultaneous
synthesis and exploration (SSE) technique with a technique
that performs system synthesis in two phases. Using an ex-
ample workload and fixed task-processor mappings, we used
our technique to find latency-cost pareto-optimal memory
architectures and interconnect configurations for a particu-
lar workload and a small component library. We compare
our results with an approach that performs static memory
allocation and data mapping prior to bus synthesis.

4.1 Workload

Our experimental workload is the DSP software pipeline
illustrated in Figure 3. Data is introduced to the system
by a hardware DMA engine (P), and fed to a least-mean-
squared (LMS) adaptive filter (on processor Pi) for noise
cancellation. Two different FIR filters are then separately
applied to the noise-free data (P> and P3), after which the
filtered data is transformed into the frequency domain for
the further application of four filters (Ps). Each filtered
stream is then transformed back into the time domain (Ps
and Ps) before being collected and sent off-chip by another
hardware DMA engine (Pr). Processors that execute more
than one task execute each task to completion before start-
ing the next. Memory access traces were generated by hand
for each task from optimized assembly kernels.

4.2 Library Components

The library of components used in our experiment consists
of a small collection of processors, memories, and intercon-
nect modules in a 130 nm process.

All processors operate at 133 MHz, and with the excep-
tion of Py and Py, the DMA engines, are ARM7s. The DMA
engines are modeled as small buffers for area consumption
purposes. Processing elements are allowed multiple bus con-

nections, but a fixed area penalty of 10% with respect to an
ARMT is applied for each connection after the first. All
memories are SRAMs with a single read /write port, and are
allowed only a single bus connection. The library contains
SRAMSs varying in size from 256B to 32kB by powers of two.

There is only one bus in the component library, a single-
transaction bus with no data buffering. The delay of the
slowest bus in the system, a function of bus length and the
number of attached nodes, is used to determine the system
bus speed. System bus speed is selected from 33, 66, 100,
and 133 MHz.

ARMYT area was derived from publicly available area data
[14]; the ARMT with single bus port is assumed to be square.
We derived DMA and memory area using CACTI 4.2 [15].
When the processing elements are connected to more than
one bus, the area penalty is assessed in such a way that
the devices grow wider (they do not maintain their original
aspect ratio).

4.3 Two-Phase Comparison Approach

We compared our SSE technique to a two-phase explo-
ration approach. The two-phase approach statically allo-
cates memories in phase one according to the method de-
scribed in [1] and then performs bus topology optimization
using our formulation in phase two. All data accessed by a
single processor is mapped to a single local memory attached
to a bus dedicated to that processor. All shared data is di-
vided into shared memories based on which processors access
it. Shared arrays are only mapped to the same memory if
they are accessed by the same set of processors.

After local and shared memories have been allocated, the
comparison approach uses the same annealing process de-
scribed in Section 3 to find the best bus topology, but with
a few modifications. No data mapping or memory alloca-
tion moves are attempted under the two-phase approach;
only the bus topology moves are available during annealing.
Further, only shared memories and processors may be con-
nected or disconnected from the buses in the system. No
nodes beyond the dedicated local memory and its accessing
processor are connected to or disconnected from the dedi-
cated buses.

4.4 Parameters

The majority of parameters for the system annealer and
floorplanning annealer are fixed for all of the experiments we
conducted. The two exceptions to this are «, used to adjust
the relative importance of latency and system cost in the
objective function (detailed in Section 4.5), and the system
annealer move distribution, which was different depending
on which approach, either simultaneous or two-phase explo-
ration, was being used.

For SSE, data, memory, and bus moves, are selected 75%,
20%, and 5% of the time respectively. Because of the varying
number of possible system configurations that result from
the different system move types, each move type is selected
with a different probability. Once the move type has been
randomly selected, all move subtypes are equally likely to
be selected.

For the two-phase comparison approach, the move distri-
bution is restricted to bus moves. Each bus move subtype
is equally likely to occur.

For the system annealer (both approaches), we performed
5000 moves per iteration, used a constant cooling rate of 0.8,
and a freezing threshold of 0.01. We performed sensitivity
analysis to validate this selection of annealing parameters
with respect to the move distributions, and empirically de-
termined that this set represented the best trade-off between

M sse, pareto
64.00 Osse
o A 2-phase, pareto
> 62.00 1 mA A 2-phase
2 La A N
2 60.00 =
L B
c
s 58.00
= [u]
2 56.00 o
g M
w 54.00 cm ™ o sy N_Qp
: n [=] H A Ammn A A
D E
52.00 T T T
3.25 4.25 5.25 6.25

Physical Cost

Figure 4: SSE shares resources to deliver similar
performance for more than 20% less cost than the
two-phase approach.

design quality and annealer execution time for both our ap-
proach and the comparison approach. For our approach,
because it explores data mapping and memory allocation at
the same time as bus synthesis, there are many equivalent
designs. The comparison approach by contrast has to ap-
ply relatively more bus moves to reach the same number of
designs because only the bus topology is malleable.

For the floorplanning annealer, we performed 200 moves
per iteration, used a constant cooling rate of 0.8, and a
freezing threshold of 0.05. As for the system annealer, we
performed sensitivity analysis to validate this selection of
parameters. We also empirically determined that for the
sorts of designs we considered, 8 = 0.75 equally balanced
the importance of design wire length and area.

4.5 Results

We executed both our SSE technique and the two-phase
comparison approach with a variety of different o values,
varying the ratio of importance of performance and cost
from 9:1 to 1:9. Since the two-phase approach results in,
on average, more costly designs, we used a separate set of
« values, for those experiments. For SSE, « varied from 0.1
to 0.9. For the two-phase approach, « varied from 0.2 to
0.95. We also conducted a second set of experiments with
a different random seed, consisting of five more data points
for SSE and the two-phase approach, selected from the same
a ranges as before. A third set of experiments explores the
boundaries of the partitioning-sharing continuum for both
SSE and the two-phase approach.

The cost-performance points for the first two sets of ex-
periments are plotted in Figure 4. The designs vary 18%
with respect to latency and 93% with respect to cost, and
implement from two to six buses. The squares represent de-
sign points for our approach, triangles design points for the
comparison approach. The filled squares and triangles are

Table 2: SSE Pareto Design Points

pareto points for the respective approaches, and are sum-
marized in Table 2 and Table 3. These tables report the
execution latency in s, area in mm?, half-perimeter wire
length in mm (WL), aspect ratio (AR), physical cost (Cost),
number of shared buses (SB), bus speed in MHz (BS), and
average shared bus utilization (ABU). « values marked with
an asterix (*) indicate designs generated with the alterna-
tive random seed. On a Pentium 4 workstation with 2 GB
of RAM, annealing a single design point took 6-8 hours.

As can be seen in Figure 4, our approach results in lower
cost solutions, both for low latency designs and low cost
designs. Comparing low cost design L with A and B, our
approach achieves the same latency (2% worse, 3% better
respectively) and is 27% less costly. Comparing low latency
designs M with C and N with D, our approach achieves the
same latencies (within 0.2%) and is 20-25% less costly.

To validate our results, we conducted additional experi-
ments with a different random seed, and explored the bound-
aries of the partitioning and sharing continuum for each ap-
proach. This resulted in design points similar to those in
the first set of experiments, indicating our technique is in-
dependent of the precise sequence of attempted moves.

Next, we conducted additional experiments using a =
{0.01,0.99} to determine the extent to which each approach
can reduce cost through resource sharing and improve per-
formance through system partitioning. The results of this
experimentation are reported in Table 4, where SSE pro-
duced designs U and V the two-phase approach produced
designs Y and Z.

When a = 0.99, our approach (V) exhibits execution la-
tency within 0.1% of the corresponding design under the
comparison approach (Z). The reason for this difference,
however marginal, is that strict system partitioning is an
excellent way to approach reducing latency and establishes
a degree of structure that is difficult to replicate with a
simulated annealing approach. The performance advantage,
however, comes at a significant cost for designs other than
those at the extreme partitioning end of the continuum, with
our approach reducing cost by 20% or more for both low la-
tency and low cost designs.

When a = 0.01, our approach (U) achieves 36% lower
cost compared to the corresponding two-phase design point
(Y). Though a performance penalty is paid (89% increased
latency) for such a low-cost design, such a design is impos-
sible for a two-phase approach that partitions the system;
with only one shared bus for each design, no further sharing
is possible.

4.6 Discussion

The reason for the cost differential observed above can be
exposed by comparing the area and wire length for designs
from the two approaches. For the designs compared above,
our approach generates designs with 17% less area on aver-
age. This is a direct result of being able to make memory
allocation adjustments, merging or splitting memories, to
address the floorplans of individual design points. While

Table 3: Two-phase Pareto Design Points

Alpha| Latency| Area| WL | AR [Cost||SB| BS | ABU Alpha| Latency| Area| WL | AR |Cost|SB| BS | ABU
A 0.20 62.05| 3.14| 3.82| 1.15| 3.43| 2 | 133] 0.78 L 0.20 61.15| 3.71| 7.74| 1.00| 4.72| 2 | 100{ 0.52
B | *0.50 59.19| 3.10| 4.04| 1.16] 3.47|| 2 | 133| 0.76 M| *0.35 54.31] 4.00f 8.36| 1.10| 5.21| 2 | 133]| 0.44
C 0.70 54.23| 3.19| 5.59| 1.10{ 3.89|| 3 | 133| 0.56 N 0.55 53.54| 3.98| 10.21| 1.14| 5.73|_ 4 | 133] 0.22
D 0.90 53.59| 3.36| 7.19| 1.00| 4.32|| 3 | 133]| 0.56 O [*0.65 53.53| 4.07| 11.40| 1.05| 5.97| 4 | 133] 0.22
E [*0.90 53.49| 3.65| 10.87| 1.01| 5.47|| 5 | 133| 0.34 P 0.90 53.47| 3.96| 11.50| 1.17| 6.10|[5 | 133] 0.18

Table 4: Performance and Cost Corner Cases
Alpha| Latency| Area| WL | AR |Cost||SB| BS | ABU
0.01 191.43[3.01 2.64| 1.15] 3.02| 1 66| 0.95
0.99 53.47| 4.26| 14.37| 1.04] 6.85|| 5 | 133]| 0.34
0.01|| 100.86| 4.13| 6.19] 1.09]| 4.75| 1 66| 0.95
0.99 53.43| 4.55| 14.01) 1.03] 6.96|| 5 | 133]| 0.18

N|<|<|C

the two-phase approach assumes that a single memory allo-
cation will serve for all designs, our approach allows memory
allocation to change based on the designer’s desired balance
of performance and cost.

Designs generated by our approach also have, on average,
40% less bus wire length. This is a direct result of need-
ing fewer buses to deliver the same performance. Though
the two approaches use approximately the same number of
shared buses, the two-phase approach also implements six
largely unutilized dedicated buses, one for each ARM7. Pro-
viding dedicated buses independent of performance and cost
impact results in over-designed systems.

These results corroborate our findings in [16]. We ob-
served that if buses and memories are co-synthesized, the
bus topology is the first aspect of the design to freeze, with
memory allocation and data mapping optimization reducing
system cost an additional 24% after that point. Approaches
that restrict memory allocation or perform it in isolation are
unable to expose its apparent synergy with bus synthesis.

In effect, because our approach considers the performance
and cost impact of memory allocation, data mapping, and
bus synthesis all at the same time, we are able to better
balance resource sharing and partitioning. The absence of
barriers to resource sharing and system partitioning allows
our approach not only to improve performance by isolating
subsystems from one another, but also to reduce system cost
by sharing resources when the performance impact is tolera-
ble. This results in systems that offer dramatic cost savings
and minimal performance losses compared with multi-phase
design approaches.

5. CONCLUSIONS

We have demonstrated that in order to optimize mul-
tiprocessor memory allocation and bus synthesis, the two
must be conducted simultaneously, and in the presence of
accurate performance and cost evaluation. Computer-aided
design approaches to memory allocation and bus synthe-
sis frequently perform the two in isolation or impose other
restrictions that, though intended to improve system perfor-
mance, increase cost by limiting the opportunity to share re-
sources. Bus-memory co-synthesis, coupled with evaluation
techniques that can identify when partitioning and sharing
are the most profitable, is the best way to expose the en-
tirety of the partitioning-sharing continuum, and therefore
find the optimal balance.

We presented a synthesis tool that uses an augmented
simulated annealing approach to simultaneously explore the
design space of data mapping, memory allocation, and bus-
based interconnect, given a target application and a task-
processor mapping. Annealer moves permute the system by
adjusting how resources are shared and partitioned among
processing elements. Results from the synthesis of a DSP
software pipeline demonstrate the annealer’s ability to ju-
diciously balance global resource sharing and system par-
titioning, exposing a larger design space and wider oppor-
tunity to improve performance through system partitioning
and reduce cost through resource sharing. Our experimen-

tation revealed that our approach can deliver low-latency
and low-cost designs with cost reductions of 20% and 27%
respectively when compared with an approach that sepa-
rately allocates memories and synthesizes buses.

6. ACKNOWLEDGMENTS

This work was supported by the National Science Founda-
tion through Grant CNS-0509193 and by the Semiconductor
Research Consortium through contract 2005-HJ-1312. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the NSF. We would like to
thank Alex Bobrek, Ryan Johnson, and our reviewers for
their thoughtful reading and helpful comments.

7. REFERENCES

[1] S. Pasricha, N. Dutt, E. Bozorgzadeh, and
M. Ben-Romdhane, “Floorplan-aware automated
synthesis of bus-based communication architectures,”
in DAC 05, 2005.

[2] S. Pasricha, N. Dutt, and M. Ben-Romdhane,
“Constraint-driven bus matrix synthesis for MPSoC,”
in ASP-DAC 06, 2006.

[3] S. Pasricha and N. Dutt, “Cosmeca: application
specific co-synthesis of memory and communication
architectures for MPSoC,” in DATE ’06, 2006.

[4] S. Kim, C. Im, and S. Ha, “Efficient exploration of
on-chip bus architectures and memory allocation,” in
CODES+ISSS 04, 2004.

[5] J. Guo, A. Papanikolaou, P. Marchal, and
F. Catthoor, “Energy/area/delay trade-offs in the
physical design of on-chip segmented bus
architecture,” in SLIP ’06, 2006.

[6] K. Lahiri, A. Raghunathan, and S. Dey, “Efficient
exploration of the soc communication architecture
design space,” in ICCAD 00, 2000.

[7] J. Hu, Y. Deng, and R. Marculescu, “System-level
point-to-point communication synthesis using
floorplanning information,” in ASP-DAC ’02, 2002.

[8] S. Maguerdichian, M. Drinic, and D. Kirovski,
“Latency-driven design of multi-purpose
systems-on-chip,” in DAC 01, 2001.

[9] N. Thepayasuwan and A. Doboli, “Layout conscious
approach and bus architecture synthesis for
hardware/software codesign of systems on chip
optimized for speed,” IEEE Trans. on VLSI, vol. 13,
no. 5, 2005.

[10] V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, and
G. D. Smith, Modern Heuristic Search Methods. New
York, NY, USA: Wiley, 2001.

[11] M. Huang, F. Romeo, and A. Sangiovanni-Vincentelli,
“An efficient general cooling schedule for simulated
annealing,” in ICCAD ’86, 1986.

[12] D. F. Wong and C. L. Liu, “A new algorithm for
floorplan design,” in DAC ’86, 1986.

[13] J. Cong and Z. Pan, “Interconnect performance
estimation models for design planning,” IEFEE Trans.
on CAD of ICs and Syst., vol. 20, June 2001.

[14] “ARM7TDMI.”

http://www.arm.com/products/CPUs/ARM7TDMI.html.

[15] “CACTI 4.2.” http://quid.hpl.hp.com:9081/cacti/.

[16] B. H. Meyer and D. E. Thomas, “Rethinking
automated synthesis of MPSoC architectures,” in NSF
Nezt Generation Software Program, March 2007.

