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ABSTRACT
Snoop-based cache coherence protocols are typically used when
multiple processor cores share memory through a common bus. It
is well known, however, that these coherence protocols introduce
an excessive power overhead. To help alleviate this problem, we
propose an application-driven customization technique where ap-
plication knowledge regarding data sharing in producer-consumer
relationships is used in order to aggressively eliminate unnecessary
and predictable snoop-induced cache tag lookups even for refer-
ences to shared data, thus, achieving significant power reduction
with minimal hardware cost. Snoop-induced cache tag lookups for
accesses to both shared and private data are eliminated when it
is ensured that such lookups will not result in extra knowledge re-
garding the cache state in respect to the other caches and mem-
ories. The proposed methodology relies on the combined support
from the compiler, the operating system, and the hardware archi-
tecture. Our experiments show average power reductions of more
than 80% compared to a general-purpose snoop protocol.

Categories and Subject Descriptors: B.3 [Hardware]: Memory
structures; C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems

General Terms: Algorithms, Design, Experimentation

1. INTRODUCTION
The abundance of wireless connectivity coupled with the ever

growing increase in integration densities have resulted in a mul-
titude of hand-held and wearable embedded applications such as
MP3 players, mobile phones with aggregate data functions, per-
sonal organizers, etc. Battery life and power consumption has be-
come one of the primary implementation constraints for these ap-
plications. Low-power consumption is of great importance to sta-
tionary devices as well, such as game consoles and set-top boxes,
which are directly connected to the power grid. Excessive power
consumption for these devices requires costly and bulky heat dissi-
pation technologies.

Due to the integration of multiple functionalities and ever in-
creasing demand for performance, it has become a natural design
practice to utilize Multi-Processor Systems-On-a-Chip (MPSoC) in
embedded systems. Typically these systems feature several proces-
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sor cores, possibly of heterogeneous nature, that access a shared
memory. The accesses to the shared memory can be implemented
with various interconnect topologies. However, for reasons of low
complexity and high speed, the most common approach is to use a
common system bus. In order to provide the required bandwidth to
the shared memory, local caching at each processor is usually em-
ployed. Local caching, however, introduces the possibility of cache
incoherence when a processor updates a data after that same data
is cached somewhere else. To resolve this issue, cache coherence
protocols must be implemented in such systems. The snoop-based
cache coherence protocols are the most widely deployed as they
rely on the inherent broadcast nature of the common bus. Each
cache controller “snoops” the bus for memory transfers, for each of
which a cache lookup is performed in order to determine whether
a cache line state should be changed in the local cache. However,
this protocol tends to be overly conservative in many real world
programs, especially embedded applications.

Previous research [1] has shown that only around 10% of the
application memory references actually require cache coherence
tracking. Quite often data are cached in just a few nodes and snoop-
ing in the others leads to waste of energy. It has been reported that
snoop-related cache activities can contribute for up to 40% of the
total cache power [2, 3].

To address this problem, we introduce a methodology which ag-
gressively eliminates the majority of snoop-induced cache lookups
and thus, achieves significant power reduction. The proposed tech-
nique explicitly exploits application-specific information regarding
the exact producer-consumer relationships between various tasks
as well as information regarding the precise timing of synchronized
accesses to shared memory buffers by their corresponding produc-
ers and/or consumers. This program knowledge is used to eliminate
a large number of snoop-induced cache lookups even for references
to the shared memory buffers. In contrast to general-purpose pro-
grams, such application knowledge is easily available in embedded
design environment, where system designers have full knowledge
and control in coordinating and fine-tuning the interaction for each
specific programs between hardware and operating system.

The proposed methodology actively eliminates the majority of
unnecessary snoop-induced cache tag look-ups. The conventional
snoop controllers are augmented with small additional hardware
which is controlled by the operating system. This hardware dynam-
ically identifies accesses to relevant memory regions and precludes
snooping to those regions whenever it is safe to do so, thus saving
a significant amount of power.

2. RELATED WORK
The emergence of multi-core processors in embedded applica-

tions has exacerbated the power concerns with these applications
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Figure 1: P/C communication with shared memory

but also has exposed more opportunities to reduce power consump-
tion. Many research projects have tried to address power-aware
coherence protocol problems. However, most of them are targeting
general purpose systems. Few of them have been in the embedded
system domain, which often times exhibit specific hardware archi-
tectures and program behaviors and usually expose more stringent
power constraints. This is where our major contributions would go.

Jetty [4] is the name of a family of snoop filters designed to re-
duce energy consumption in snoopy bus-based multiprocessor sys-
tems. By observing and recording recent cache behaviors in addi-
tional hardware structures, Jetty can provide information as ”what
is present in the local cache and what is not”. By feeding this in-
formation to snooping controllers, certain snooping can be avoided
at relatively low cost. The authors report an average of 29% en-
ergy reduction for L2 caches. RegionScout [5] is another family
of snoop filters that exploit coarse-grain data sharing information
to reduce energy and bus traffic. RegionScout is also designed
for server applications. In RegionScout, memory is divided into
a number of regions. The hardware keeps records as which region
contains shared content in the local cache so as to preclude lots of
unnecessary snooping. In [6] the authors have introduced a tech-
nique for run-time identification of data streams. A large number
of coherence misses are eliminated by dynamically identifying se-
quences of memory accesses which correspond to a data stream.
Coherence misses are eliminated by moving the data stream to the
requesting processor in advance.

While techniques for general purpose applications report sig-
nificant power benefits, their hardware overhead would be non-
trivial in most embedded systems. Moreover, in embedded appli-
cations, system designers usually have much more detailed con-
trol over programs and hardware so that data sharing information
is precise and deterministic. By exploiting this advantage, we can
avoid the speculative mechanisms present in general-purpose ap-
proaches and minimize area and power overhead. Furthermore,
since we are exploiting producer-consumer relationships in typi-
cal applications, much stronger run-time sharing patterns can thus
be exploited, yielding even greater energy reductions.

3. FUNCTIONAL OVERVIEW
The proposed technique benefits from the availability of precise

application information regarding producer/consumer relationships
in many embedded applications. The producer-consumer relation-
ship between different processing nodes occurs naturally in the
presence of data sharing. Quite often, sharing exists only within a
small number of nodes rather than across the entire system. In this
case, data would not be cached in other nodes’ caches and probing
those caches for shared data is unnecessary. Furthermore, shared
data buffers are essentially temporally ”private” when access right
to them is acquired by a certain node. Consequently, for a certain
period of time even snooping for those shared data may be elimi-
nated. Thus, by precisely differentiating different memory regions

that store shared data and the exact relationships between them,
we can enforce a more energy efficient coherence protocol imple-
mentation, which is active only during the ownership transition of
shared data blocks.

3.1 Synchronized P/C Communication
In many multi-tasking embedded applications, especially stream

applications, communication between different processing nodes
constitutes Producer-Consumer (P/C) relationships, as illustrated
in Figure 1. In this example, processor A performs a computation
on batches of input data and for each batch it stores its output to the
shared data buffer S. Data stored in this buffer are read by the task
running on processor B performing subsequent computations. With
respect to data buffer S, processor A is producer, while processor
B servers as consumer. Processor B, in turn can serve as producer
to other shared memory buffers, which are “consumed” by other
processors (possibly processor A). Since processors often read and
write from different buffers during a program run, they may well be
producers and consumers at the same time, with respect to differ-
ent shared buffers. In order to prevent non-deterministic behavior
and race conditions, accesses to the shared buffers must be fully
synchronized. To obtain exclusive access to the shared buffer S,
both producer and consumer use synchronization primitives such
as locks, semaphores, or barriers. The portions of the code where
the shared buffer is worked on are typically referred to as Critical
Sections (CS) and are surrounded with synchronization operations
in the forms of ENTER CS and LEAVE CS.

In the example in Figure 1, processor A is writing to buffer S,
which results in invalidations in all others’ caches, including the
cache of processor B, and triggers snoop-induced cache lookups.
Similarly, when processor B acquires access to buffer S and starts
consuming, it generates a large number of read-misses, which in
turn triggers snoop activities at all remote caches including the one
of processor A. Most of these snooping and cache tag lookups are
unnecessary and as such are eliminated by our approach.

3.2 Snoop-Phases in P/C Communication
The snoop activities at both producer and consumer follow a cer-

tain well-defined pattern that constitutes of two phases.
Phase one occurs in the beginning of a critical section. As is

shown, processor B’s cache contains blocks belonging to the shared
buffer S. These cache blocks have been brought into B’s cache
while it was “consuming” S in the previous critical section. Since
processor A is writing to S, these blocks will be invalidated before
the end of the critical section. Time moment t1, shown in Figure 2a,
corresponds to such a state. Before these cache blocks are entirely
invalidated, snoop protocol should work to ensure coherence.

As processor A’s computation goes on, the number of cache lines
containing S at B monotonically decreases. The rate of this de-
crease varies with applications behaviors and hardware configura-
tions. At some point, the number of cache lines at B holding S
drops to zero. Apparently, from this point on, no snooping for S is
needed at processor B, because B’s cache contains no data of S that
may cause coherence problems. In the proposed methodology, we
refer to this moment as Snoop-Phase Transitioning (SPoT) Point.

The second snoop phase starts from SPoT point and lasts until
the end of the critical section; with respect to the snoop operations
for the shared buffer, phase two effectively lasts until the begin-
ning of the next data consumption iteration (critical section). Time
instance t2, as shown in Figure 2b, has occurred during the sec-
ond phase when B’s cache is free of any content of S. It is evident
that during the second phase B does not have to check its cache
for such misses, since it is holding no valid lines belonging to that
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Figure 2: P/C cache snooping activities

region and no new lines from S will be brought in until the next
consumption iteration.

As can be seen from these observations, the potential savings
from disabling snooping at B for references to S depend on how
soon the SPoT point occurs in the production cycle of A. If SPoT
comes near the end of the critical section, the benefits would be lim-
ited. However, our experiments on a set of benchmarks show that
SPoT occurs quite fast. First, while A is producing to S, B is most
likely doing other useful computations other than idling and thus
will touch other shared data buffers as well as private data. These
activities would thrash B’s cache and evict S quickly. Second, A
could be touching data from buffer S in some irregular fashion that
would expedite invalidation in B’s cache. For example, matrix mul-
tiplication usually touches different cache lines much faster than
striding access. Moreover, if buffer S is relatively big compared
to cache size, many blocks that contain S may have already been
evicted at the very beginning at the critical section.

The situation when B is consuming from S and A is performing
other computations is similar. The difference is that, the number
of modified, or “dirty”, cache lines from S at A would determine
the SPoT point. Following the same arguments as above, one can
notice that the number of “dirty” cache lines from S at A mono-
tonically decreases and that it often reaches zero quickly. Con-
sequently, snoop-induced cache lookups at A for references to S
(generated at B) would be redundant after this SPoT, and can be
safely eliminated.

3.3 Snoop-Phase Detection
By exploiting P/C relationship and identifying SPoT for each

shared memory buffer, the snoop controllers can aggressively filter
subsequent snooping to these regions in their respective caches, and
thus, achieve significant energy reduction. Snoop-induced cache
lookups at each processor will be allowed only for small subsets of
memory references to shared buffers of that processor, which occur
only before SPoT points of associated regions. All other snoops to
the shared region after SPoT are safely removed without violating
coherence between different caches.

In order to exploit the two snoop-phase pattern and, thus, filter
snooping for accesses to particular shared buffers, a mechanism is
needed to distinguish between references to various shared buffers
in multiprocessor systems. The approach we propose here relies on
the help of the operating system memory manager to assign such
unique identifiers. The workings of this identification scheme are
outlined in the next subsection.

..

..

..
ENTER_CS(S);
...
...
LEAVE_CS(S);

RegisterRegion(S, 100, consumer);

Thread 2

..
RegisterRegion(S, 100, producer);
..
..
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Thread 1

..

..
int S[100];

Figure 3: Transferring to OS shared buffers information

We propose two methodologies for snoop elimination based on
the snoop-phases for P/C communication:

Passive SPoT Detection. This approach is based on direct ob-
servation of SPoT during run-time. The implementation involves
several hardware counters which monitor the data sharing status
with respect to buffer IDs associated to cache lines. These coun-
ters keep track of the number of valid cache lines (for consumer
tasks) or dirty cache lines (for producer tasks) belonging to differ-
ent shared buffers.

Active SPoT Migration. In the second approach, which is an
optimization over the passive SPoT detection, a special action is
taken at each processor when exiting a critical section to make sure
that the relevant cache lines are either invalidated (consumer) or
changed to shared state (producer). This is achieved through the
use of a simple hardware mechanism activated when a task exits its
critical section. In effect, this ensures that the SPoT points occur
earlier as compared to their natural timing.

3.4 Shared Buffer Identification
The proposed approach distinguishes the shared buffers by let-

ting each task inform the operating system (through a simple API)
as of which shared buffers are used in that task, where is the criti-
cal section for each of the buffers, and whether the buffer is being
accessed in a producer or a consumer matter. The OS memory
manager subsequently assigns an unique identifier for each such
shared buffer and tags all the memory pages belonging to that buffer
with this identifier. The buffer identifier associated to each page is
captured in the MMU and the page table within the OS. For each
memory reference that is placed on the bus, the buffer identifier is
obtained from the MMU (together with the physical address of the
location) and placed on the bus as part of the memory transaction.
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Figure 3 illustrates how the information regarding shared mem-
ory buffers and the relationship of task to buffers (producer or con-
sumer) is transfered to the OS. Often times multitasked applications
are developed by using multithreading libraries. Threads are cre-
ated, terminated, and synchronized at the application level with-
out intervention from the kernel, thus achieving high efficiency.
Because the multiple threads, comprising the application, execute
within the same address space (they share a single OS-level pro-
cess), it is impossible for the OS to determine which memory buffers
from that shared address space are actually shared between the
threads. This information, however, can be easily provided by the
software developer by using a special function, which interfaces
with the OS. Following this approach during the thread initializa-
tion phase, this function will be called to register all the shared
buffers associated with each thread as shown in Figure 3.

The OS subsequently assigns a unique buffer identifier for each
shared buffer. As the identification occurs at page granularity level,
shared buffers need to be aligned at page boundaries, which is eas-
ily done by the compiler. Our experiments show that supporting
up to 16 different shared buffers in the system would be enough
for many multitasked applications. Thus, a 4-bit Buffer Identifiers
(BID) would be assigned to each memory page and captured in the
TLB. In the subsequent section we outline how BIDs are used and
explain (and later demonstrate by experimental results) that their
overhead is very small.

4. PASSIVE SPOT DETECTION
The passive SPoT detection approach relies on hardware to de-

tect SPoT occurrences and block snoop lookups for references to
shared buffers. The hardware architecture is shown in Figure4.

As can be seen, an additional set of BIDs are attached to the
TLB. These shared buffer IDs are also associated with the page ta-
ble entries and maintained by the operating system. When page ta-
ble entries are loaded into the TLB, their associated BIDs are also
fetched. The small table of BIDs associated to the TLB is imple-
mented as a separate SRAM array and is not read and compared as
a part of the normal TLB lookup which is needed for cache access.
A similar small SRAM array is implemented in order to associate
BIDs with each cache line. When a new cache line is brought into
the cache, its BID is stored in that array. Buffer IDs are never com-
pared like cache tags or even read when the cache line is accessed.
They are only used as indexes to a small set of counters. In our ex-
periments we have modeled 4-bit BIDs which require 16 counters.
This is enough to handle a total of 14 shared buffers in the sys-
tem - the remaining two values are used to mark private data pages
which do not need snooping at all and memory pages whose shar-
ing pattern is ”unknown”, e.g. OS data, and always need snooping
to ensure coherence. Because of the very small bit-width of the
BIDs, the area overhead of these small BID SRAM arrays is mini-
mal compared to other components in the cache system.

The BIDs associated with cache lines are used in the process of
SPoT detection. The hardware counters that BIDs index to are used
to keep track of the number of cache lines that hold data belonging
to shared buffers. An additional Producer/Consumer (P/C) bit in-
dicates what type of cache lines must the counters track according
to the role of the tasks as a producer or a consumer. This bit is also
assigned by the operating system at task initialization.

The counters act differently according to the producer/consumer
bit. For producer tasks they keep track of the number of dirty cache
lines of the buffers. The producer (or “dirty”) counter associated
to a buffer increments on a write miss and a new line is brought
into the cache, or when there is a write hit on a ”read-only” line
that would turn to “dirty” or “modified” as both actions introduce

a new dirty cache line into that buffer. The counter decrements
when a dirty line is evicted or when there is a read miss from other
processor and a dirty line is changed from “modified” to “read-
only/shared”. Similarly, the consumer task counters keep track of
the number of valid cache lines that belong to the particular shared
buffers. They increment when a new cache line is brought in on a
read miss and decrement whenever a valid line is evicted or invali-
dated. All the counters are set to 0 at the beginning of execution.

When the value of a counter is zero, there are no cache lines
corresponding to the associated shared buffers in the local cache
and snooping can be blocked for them. Such blocking is achieved
through a Snoop Blocking Register (SBR). This is a simple bit-mask
register with a bit per shared buffer, where the bits are directly in-
dexed by the buffer ID; a zero at bit position indicates that snoop-
induced cache lookups for this buffer are blocked. When the coun-
ters reach zero, the corresponding bit in the SBR is set to 0.

When a memory request in the form of a read-miss or a write-
miss is place on the bus, the BID of the address is obtained from the
BID table and is placed on the bus as a part of the transaction. Note
that no additional bus lines are needed as the data lines for such
transactions are used to carry BIDs. The cache controllers snoop
on the bus as usual, only that the SBR register is checked prior
to performing the a cache-lookup. References to private regions
(BID=0000) are always blocked, while references to “unknown”
regions (BID=1111) are always snoop-enabled.

Overhead Analysis. The area overhead is dominated by the two
small SRAM arrays that associate BIDs to TLB entries and indi-
vidual cache lines. Compared to the cache and TLB sizes, this area
overhead is typically below 5%. The power overhead is comprised
of reading the BIDs and incrementing/ decrementing the buffer
counters. Additionally, on a cache miss the BID is read and placed
on the bus. All these events only occur on cache misses or certain
cache line state changes and as such are not significant as com-
pared to the savings achieved. In our experiment results we have
accounted for all these overheads, including the power needed to
transfer on the bus the 4-bit BIDs.

5. ACTIVE SPOT MIGRATION
Clearly, the earlier in the critical section SPoT occurs, the bet-

ter the savings achieved by the proposed methodology. The SPoT
can be actively moved earlier in time by making sure that the lo-
cal cache is released from cache lines that hold content of shared
buffers. A small additional hardware can be employed for this pur-
pose to forcefully expedite the occurrence of SPoT by either writing
back dirty lines (and thus changing them to “shared/read-only”) for
producer tasks, or by invalidating valid lines for consumers. For
this purpose, we have experimented with a simple hardware mech-
anism which simply traverses the BID array associated with the
cache lines and either write-backs (for a producer buffer) or inval-
idates (for a consumer) the cache lines if the BIDs match. This
procedure need to be initiated at the exit from the critical section.
BIDs can be checked in parallel as their width is rather small.

On the producer side, each buffer ID is checked if it matches the
BID of the current critical section and, if positive, the state of the
cache line is changed and the data is written to memory. This ne-
cessitates checking the Valid and the Dirty bits of the cache line
only, thus minimizing the overhead. The procedure continues until
the associated counter reaches zero. At that moment snooping for
that buffer can be safely blocked until the next cycle of production.
The duration of this process depends on how fast the memory sub-
system supports for cache write backs. However, no extra power is
being added as these cache lines would have to be written to mem-
ory anyways, though maybe later in the execution cycle when the
consumer requests them.
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Similar steps are needed at the consumer’s side - in this case,
however, lines from the buffer need only to be invalidated if present,
which only means clearing the valid bit of the matching cache lines.

In our experiments we have noticed, however, that often times
only a few dirty/valid lines are left in the cache after exiting the
critical section, due to other memory activities. Consequently, the
expected number of write-backs is relatively small. In our experi-
ments, we have used a fixed number of cycles which assumes the
worst case when all the cache lines are dirty (or valid) for the shared
buffers. Even for this very conservative assumption, the achieved
results are still quite positive.

6. EXPERIMENTAL RESULTS
We have conducted detailed simulations on a set of multitasked

applications. The systems have four processors, each performing
one computational task on a number of shared data buffers. The
four processors are producers and consumer to one another. Except
for the very first one all are both producers and consumers and work
on different data buffers in different synchronization sections. The
individual tasks constitute of: FFT, ADPCM, matrix multiplica-
tion, data encryption tasks, lzo-compression, g721, image process-
ing - the blur and the edge-detection, and video processing. The
tasks cover benchmarks from the Mediabench [7] and MiBench [8]
suits, as well as from other open-source image and video processing
tools. The multitasking applications we have used are: A1={LU,
MMUL, rijndael, lzo}; A2={FFT, g721, blowfish, sha}; A3={blur,
edge-detection, rijndael,lzo}; A4={FFT, fdct, IFFT, AES}, which
represent embedded applications in digital filtering, audio, image,
video processing and security areas.

We have used the M5 [9] simulator to perform our experiments.
The simulator is used in system-call emulator mode and is extended
with a collection of thread synchronization primitives. The simu-
lated hardware configuration is of four processors (executing the
Alphs ISA) connected to a shared memory through a common bus.
We have experimented with four cache organizations: caches of
size 16kB and 32kB, either direct-mapped or 4-way set-associative.
The data buffers used for communication between the processor
nodes are of sizes 16kB and 64kB; experiments for both data sizes
have been conducted.

The cache power expenditure of the four cache configurations
have been obtained through Cacti v4.2 tool [10] for 0.18µm tech-
nology. The energy associated with the additional hardware struc-
tures for the proposed methodology are evaluated as follows: The
buffer IDs are modeled as small SRAM tables, whose energy is
similarly obtained by Cacti. The SBR is accessed on every bus
transaction and is implemented as a 16-bit register. The coun-
ters’ actions are accounted for on a cache line replacement or state

16k4W 16kDM 32k4W 32kDM

A1 37/1,241 88/2,349 58/1,001 85/1,172
A2 11/427 12/2,594 24/180 25/2,348
A3 47/1,060 58/1,127 46/846 66/972
A4 23/5967 18/604 24/247 31/423

Table 1: Number of snoops (x1000) for 16kB data buffers

16k4W 16kDM 32k4W 32kDM

A1 14/18,590 64/22,308 28/8,935 138/8,371
A2 45/3,953 54/23,960 69/3,819 61/23,304
A3 105/2,435 133/2,643 153/2,231 185/2,398
A4 88/7,124 177/30,989 92/6,864 177/30,683

Table 2: Number of snoops (x1000) for 64kB data buffers

change; we have modeled them as 12-bit up-down counters. We
have also taken into account the overhead of placing the 4-bit BIDs
along with addresses on the bus. The energy data reported in [11]
has been scaled to 4 bus lines with 50% bit-transition activities.

We have chosen the most widely used snoop protocol with four
symmetrical processors connected to a common bus as baseline.
The snooping activities for the baseline and the proposed Passive-
SPoT detection approach are shown in Table 1 and Table 2. The
numbers in the tables come in pairs, the first showing the total num-
ber of snooping (x1000) achieved by the Passive-SPoT technique,
while the second number being the baseline snoop activities.

It is clear from the results that the Passive-SPoT-Detection method-
ology significantly reduces the amount of snoop-induced cache lookups.
The achieved reductions vary with different shared buffer sizes and
cache sizes and organizations and the nature of different kernels.
In general, the larger the cache size is, the smaller the snoop reduc-
tions of the Passive-SPoT-Detection. This is because caches with
bigger capacity can hold more cache lines and hold them longer
and this defers the occurrence of SPoT. However, larger caches
also mean bigger area and higher power consumption. Increased
associativity has a small impact on the reductions. However, since
more cache tags are to be checked in parallel on every access to the
cache, the energy saving is even more significant with our technol-
ogy. Consequently, the actual energy reductions for larger size and
higher associativity caches would be more significant than for those
with smaller sizes and associativities. The actual energy numbers,
after taking into account the introduced hardware and power over-
heads, are shown in Table 3 and Table 4. Similarly, the numbers
come in pairs Passive-SPoT vs. baseline.

Figure 5 and Figure 6 show the achieved energy reductions in
percentage and compare them across the four cache organizations.
These figures also show the energy reductions achieved by the Active-
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16k4W 16kDM 32k4W 32kDM

A1 8/74 13/50 8/67 9/48
A2 3/25 13/81 2/12 12/96
A3 8/63 7/35 7/57 7/40
A4 4/36 3/19 3/17 3/17

Table 3: Energy consumption (µJ) for 16kB data buffers

16k4W 16kDM 32k4W 32kDM

A1 89/1,109 108/473 44/601 45/341
A2 21/236 115/745 22/257 113/949
A3 17/145 167/82 20/150 18/98
A4 39/425 152/964 38/462 152/1,249

Table 4: Energy consumption (µJ) for 64kB data buffers

SPoT Migration methodology. Each hardware configuration is rep-
resented by a pair of bars. The first bar represents the Passive-SPoT,
while the second one corresponds to the Active-SPoT methodol-
ogy. It is evident that the proposed techniques significantly reduce
snoop power for the cache system. The average is above 80%, after
taking into account the introduced overhead. As can be seen from
the figures, the active approach produces slightly better results than
the passive one. This is largely due to our evaluation methodol-
ogy which assumes the worst case number of cycles needed for
traversing all the BIDs after leaving the critical sections. It is clear
that in reality much smaller number of cache lines would need to
be checked in the cache which should result in faster SPoT oc-
currence. Moreover, since the reductions achieved by the Passive-
SPoT approach are already significant, there is limited space for the
Active-SPoT to eliminate more lookups.

7. CONCLUSIONS
In this paper, we have presented a methodology for snoop power

reduction in embedded multiprocessors. Through the cooperation
of software developer, compiler, operating system, and hardware
architecture, a fine-grained application knowledge regarding producer-
consumer relationships between tasks and precise timings of the
synchronized accesses to shared buffers is exploited to aggressively
eliminate a large number of snoop-induced cache lookups even for
references to shared buffers. The introduced hardware is not only
cost-efficient but is also software-programmable and can capture
and utilize the detailed and deterministic application sharing infor-
mation. The proposed methodology is ISA-independent and, thus,

Figure 5: Energy reduction for 16kB shared data buffers

Figure 6: Energy reduction for 64kB shared data buffers

can be applied to any modern or future energy-efficient homoge-
neous or heterogeneous embedded multiprocessor platform.
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