
A Low Power VLIW Processor Generation Method by
Means of Extracting Non-redundant Activation Conditions

Hirofumi Iwato, Keishi Sakanushi, Yoshinori Takeuchi, and Masaharu Imai
Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita,

Osaka 565-0871, Japan

{h-iwato, sakanusi, takeuchi, imai}@ist.osaka-u.ac.jp

ABSTRACT
This paper proposes a low power VLIW processor generation
method by automatically extracting non-redundant activa-
tion conditions of pipeline registers for clock gating. It is
important for the best power reduction by clock gating to
create control signals that can completely shut off redundant
clock supplies for registers. In order to generate the control
signals automatically, the proposed method utilizes high-
level architecture information called Micro-Operation De-
scriptions, which describes a VLIW processor architecture.
Exploiting the Micro-Operation Descriptions in a VLIW
processor generation process, the proposed method auto-
matically extracts the non-redundant activation conditions
that can control clock gating to supply the minimum clocks
to the pipeline registers. Using the non-redundant acti-
vation condition extraction, the proposed method achieves
short calculation time and low area overhead; the proposed
method can be applied to VLIW processor generation. Ex-
perimental results show that the VLIW processor gener-
ated with proposed method achieves power reduction about
60% compared to the non-clock-gated VLIW processor, and
about 35% compared to the VLIW processor that is applied
clock gating by PowerCompiler with negligible area over-
head.

Categories and Subject Descriptors
B.6 [Register-Transfer-Level Implementation]: Design
Aids—Automatic synthesis

General Terms
Algorithms, Design

Keywords
ASIP, Clock Gating, Low Power, VLIW Processor

1. INTRODUCTION
Modern embedded systems for portable applications need

more computing power and less energy consumption. A

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

VLIW processor is an answer to the demand since it can pro-
vide high computing power by exploiting instruction-level
parallelism. When utilizing the VLIW processor as an em-
bedded processor, it is necessary to simultaneously satisfy
the tight constraints of area and energy consumption. For
that purpose, Design Space Exploration (DSE) should be
performed to determine the optimal architecture parame-
ters of the VLIW processor [8] [11]. However, DSE is a
time consuming task; an automatic VLIW processor gen-
eration method is proposed for the rapid DSE [9], because
it can provide significant short design time and high design
flexibility. Nevertheless, the traditional VLIW generation
method places priority on minimizing area. To meet the
recent demands for low power, a low-power specific VLIW
processor generation method is desired.

There are many low power techniques through the whole
design level. In gate-level design, two major techniques are
familiar. Operand isolation [13] [4], which is one of the low
power techniques, stabilizes input signals to a combinational
resource when its result is not used by following circuits.
Clock gating [10] is the another low power technique by
means of inserting gates to clock lines of registers for cutting
off redundant clock supply that causes unnecessary switch-
ings inside the registers. Since an enormous amount of en-
ergy is consumed by registers in synchronous circuits [15],
the clock gating appears to be a promising technique for
energy reduction. As discussed previously, clock gating can
selectively shut off excess clocks, i.e., clock gating can selec-
tively supply only necessary clocks. Accordingly, it is impor-
tant for the best energy reduction by clock gating to extract
non-redundant activation conditions of registers in a circuit.
The non-redundant activation conditions indicate that reg-
isters need clocks only when the conditions are satisfied.

With respect to the VLIW processor, there is a large num-
ber of pipeline registers (over several hundred) in its large-
scale data path. Furthermore, the number of the pipeline
registers rapidly increases as the number of parallel issue
increases, hence a large amount of energy is dissipated by
the pipeline registers [5]. For this reason, this paper fo-
cuses on energy reduction of pipeline registers in VLIW pro-
cessors. It is an unrealistic way to manually extract the
non-redundant activation conditions of the pipeline regis-
ters, because it takes long-term design period and also it
is error-prone. For extracting the non-redundant activation
conditions automatically, some approaches have been intro-
duced [1] [2] [3] [14]. However, they cannot be applied to
large-scale designs as the VLIW processors because of their
limitations due to analyzing complex RTL designs.

227

In order to automatically derive the non-redundant acti-
vation conditions of the VLIW processors, this paper pro-
poses a new approach based on high level architecture in-
formation namely a Micro-operation description (MOD) [7].
MODs specify a VLIW architecture including architecture
parameters such as a number of parallel issues, instruction
formats, and behavior of each instruction. By employing the
MOD for generating VLIW processor, the proposed method
can derive the non-redundant activation conditions of the
pipeline registers in the processor generation process, ana-
lyzing neither RTL descriptions nor netlists.

The rest of this paper is organized as follows. Section 2
introduces some state-of-the-art related researches. Section
3 explains MOD and Section 4 explains VLIW processor
model. Section 5 proposes the low power VLIW processor
generation method. Section 6 shows experimental results,
and finally, Section 7 summarizes this paper.

2. RELATED WORK
Several automatic clock gating insertion methods/tools

are currently available. PowerCompiler is the most widely
known commercial tool, which automatically inserts gates
to clock lines of registers. However, PowerCompiler does
not extract the non-redundant activation conditions of the
registers, that is to say, efficiency of clock gating by Pow-
erCompiler rests on the shoulders of designers. PowerCom-
piler forces designers to manually derive the non-redundant
activation conditions from complex RTL designs for further
power reduction. Nevertheless, manual condition extraction
is a heavy time consuming task, because VLIW processors
contains several hundred pipeline registers; it is not suit-
able for DSE. Automated extraction of the non-redundant
activation conditions is strongly required for clock gating.

A finite state machine based clock gating method [2] ex-
tracts non-redundant activation conditions of registers by
analyzing finite state machines in a circuit. Obviously, to
use this method, the circuit must contain the finite state
machines and be controlled by them. Since the finite state
machine is not suitable for pipeline processors, it cannot be
applied to VLIW processor generation.

Observability Don’t Care (ODC) based clock gating method
discussed in [1] can derive the non-redundant activation con-
ditions of registers by ODC calculation. At present, this ap-
proach appears to be the most powerful clock gating method
because of its high scalability and applicability. Unfortu-
nately, ODC calculation takes too long time to entirely ap-
ply the large-scale circuitry such as the VLIW processors.
To complete the calculation in realistic time, limit of calcu-
lation time is introduced in [1]. In addition, the ODC-based
clock gating extraction causes an enormous area overhead
due to duplicating circuits for creating gating signals. To
calculate the non-redundant activation conditions for VLIW
processor, a more suitable condition extraction method is
still required.

The operand isolation approach exploiting high-level ar-
chitecture information is addressed in [4]. In this approach,
high-level architecture information called Architecture De-
scription Language (ADL) is employed to find idle condi-
tions of resources in a circuit. Although the use of the
operand isolation techniques is discussed in this work, the
use of clock gating with high-level architecture information
has not been discussed yet.

Figure 1: The MOD of an operation ADD

3. MICRO-OPERATION DESCRIPTION
An MOD [7] denotes an architecture of an operation. The

operation is an executable unit such as arithmetic opera-
tions. Figure 1 is an example of an operation ADD, which
performs arithmetic addition. The left side description is
the MOD of ADD and the right side diagram is the corre-
sponding architecture. The MOD describes signal connec-
tions between resource ports. In Figure 1, the two data reg1
and reg2 from the register file GPR at stage 2 are input to
the adder ADD0 at stage 3, then the outcome is stored in
the GPR at stage 5. The data rs, rt, rd stand for regis-
ter indexes from the instruction register IR. The MEM is
a memory access unit and the PC is a program counter.
In this way, designers can briefly specify the architecture of
each operation.

The proposed method automatically generates a VLIW
processor from MODs and detects non-redundant activation
conditions for the pipeline registers automatically.

4. VLIW PROCESSOR MODEL
The VLIW processor dispatching is modeled as following

three important concepts: slot, operation group, and re-
source group. A VLIW instruction consists of multiple op-
erations that can be issued in parallel from each slot. The
slot is the number of parallel issue of the VLIW processor.
The operation group is a set of operations that have the
same characteristic on dispatching. The resource group is a
set of hardware resources that can execute several operation
groups. The issued operations are executed in the corre-
sponding resource groups. The relations (illustrated as di-
rected arrows in Figure 2) between the resource groups and
the slots indicate that the operations issued from each slots
can be performed on the related resource groups. The rela-
tions between resource groups and operation groups indicate
that the operations categorized in the operation group can
be performed on the related resource groups. The MOD of

228

Figure 2: A VLIW processor model

each operation is described as a pair of an operation and an
operation group.

Figure 2 illustrates a dispatching model of a VLIW proces-
sor [9]. In Figure 2, the operations categorized in the oper-
ation group OG1 can be performed on the resource groups
RGALU0 and RGALU1, and can be issued from slot1 and
slot2 simultaneously.

5. VLIW PROCESSOR GENERATION
The VLIW processor generation consists of two parts.

The first part is data path construction consisting of four
procedures: Resource Connection Graph (RCG) extraction,
RCG merging, signal conflict resolution, and pipelining. First,
an RCG is extracted from an MOD of each operation. The
RCG represents a data path of the corresponding operation.
Then all RCGs are merged by the second procedure, RCG
merging, to construct a prototype of the VLIW processor
data path. Finally, multiplexers and pipeline registers are
inserted in appropriate locations by the following two proce-
dures. At each procedure, the generation method retrieves
some conditions which is used to generate steering signals
and resource control signals in the next part. The second
part is the controller construction. Every control signals of
resources in the VLIW processor are generated using the
conditions obtained in the data path construction part.

For maximizing power reduction by clock gating, non-
redundant activation conditions of pipeline registers are nec-
essary. To this end, the proposed method calculates the
non-redundant activation conditions in the data path con-
struction part. Then, in the next controller construction
part, the proposed method generates gating signals, which
are control signals for clock gating, using the non-redundant
activation conditions.

As mentioned in [10] and [12], selecting clock gating cir-
cuit scheme is important for reduction of design difficulty
and implementation overhead. Despite its area overhead,
the proposed method uses a flip-flop-based gating scheme
because of its capability of blocking glitch noises causing
incorrect register activation. The flip-flop-based gating cir-
cuits are inserted in all registers (not only pipeline registers)
in the generated VLIW processor.

Figure 3: Extracted RCGs

5.1 CONDITION EXTRACTION
In this section, the non-redundant activation conditions

of the pipeline registers are calculated in the following data
path constructing procedures.

5.1.1 RCG extraction
RCGs are extracted by means of analyzing MODs of op-

erations. An RCG is represented by a directed graph
Gope(Rope, Eope) where ope ∈ O, O represents a set of all
operations, Rope ∈ RG is a set of resources used by an op-
erations ope, RG = {Ri|i = 1, 2, ..., NRG} is a set of all
resource groups, NRG = |RG|, Ri ⊆ R is a set of resource
groups, R is a set of all resources, Eope = {(o, i)|o, i ∈ P} is
a set of directed edge, representing data transfers between
output ports o to input port i, and P is a set of all resource
ports described as the union of all resource ports.

A set of conditions Conde for each data transfer e ∈ Eope

is retrieved in RCG extraction. Conde is described as

Conde∈Eope = {(ope, Rope) | ope ∈ I, Rope ∈ RG}. (1)

The Conde indicates that a data transfer e is executed
when an operation ope on a resource group Rope is decoded.

Figure 3 shows a simple example of extracted RCGs. For
the sake of clarity, ports of the RCGs are omitted. In the
example, there are three RCGs corresponding to ADD on
RG1, SUB on RG2, and ANDI on RG3 respectively. GPR,
IR, EXT , ALU1, and ALU2 are resources and edges la-
beled as e1 to e9 are data transfers. Here, sets of conditions
for the data transfers in Figure 3 are retrieved in the form
of eq.(1) as follows:

Conde1 = {(ADD, RG1)}
Conde2 = {(ADD, RG1)}
Conde3 = {(ADD, RG1)}
Conde4 = {(SUB, RG2)}
Conde5 = {(SUB, RG2)}
Conde6 = {(SUB, RG2)}
Conde7 = {(ANDI, RG3)}
Conde8 = {(ANDI, RG3)}
Conde9 = {(ANDI, RG3)}

Conde10 = {(ANDI, RG3)}.

229

Figure 4: A Unified RCG

5.1.2 RCG merging
After all RCGs are extracted, the RCGs are merged into

a unified RCG G′ = (R′, E′). R′ and E′ are calculated as
follows:

R′ =
[

ope∈O

Rope

E′ =
[

ope∈O

Eope.

Since the data transfers E are merged into E′, the con-
ditions Conde of all extracted RCGs are also merged. The
new conditions of the data transfers Cond′

e are calculated
as

Cond′
e′∈E′ =

[
ope∈O,e∈Eope,e′=e

Conde∈Eope . (2)

The three operations in the previous example in Figure
3 are merged into the unified RCG illustrated as Figure 4.
Conditions of the data transfers e′1 to e′8 are newly calcu-
lated as follows:

Conde′1 = {(SUB, RG2)}
Conde′2 = {(SUB, RG2)}
Conde′3 = {(ADD, RG1), (ANDI, RG3)}
Conde′4 = {(ADD, RG1)}
Conde′5 = {(ANDI, RG3)}
Conde′6 = {(ANDI, RG3)}
Conde′7 = {(SUB, RG2)}
Conde′8 = {(ADD, RG1), (ANDI, RG3)}.

The unified RCG is a prototype of the data path of the
VLIW processor. Then multiplexers and pipeline registers
are inserted in the following procedures.

5.1.3 Signal conflict resolution
Multiplexers are inserted to resolve signal conflicts occur-

ring in the unified RCG G′ such as e′7 and e′8 in Figure 4.
We describe the RCG after the multiplexers are inserted as
G′′ = (R′′, E′′).

A multiplexer is inserted in front of an input port that has
multiple destination of data transfers. Here, a set of data
transfers conflicting at an input port i is described as

ECI(i) = {(o′, i′) | o′ ∈ Pout, i′ ∈ Pin, (o′, i′) ∈ E′, i′ = i}.

Figure 5: A Constructed Data Path

Since the multiplexers are inserted, signal connections change.
Therefore, recalculating the conditions of the data transfers
E′′ is needed. A set of conditions of data transfer e′′ ∈ E′′,
is described as follows:

Cond′′
e′′ =

8>>>><
>>>>:

S
e′=ECI(dest(e′′)) Cond′

e′∈E′ if e′′ ∈ EMR

Cond′
e′∈E′ such that

dest(e′) = dest(e′′) if e′′ ∈ ERM

Cond′
e′∈E′ such that e′ = e′′ otherwise

(3)
where dest(e) is a destination port of a data transfer e, EMR

is a set of data transfers that connect a multiplexer to a
resource, and ERM is a set of data transfers that are selected
by a multiplexer.

5.1.4 Pipelining
For pipelining G′′, pipeline registers are required for data

transfers crossing pipeline stage boundaries. A location of
a pipeline register p = (o, n) can be described as a pair of
output port o and stage number n where the pipeline register
is placed, since one pipeline register is shared by some data
transfers from o. A set of data transfers connected to the
same output port o is

ECO(o) = {(o′′, i′′) | o′′, i′′ ∈ P, (o′′, i′′) ∈ E′′, o′′ = o}.

In the ECO(o), a set of data transfers crossing stage
boundaries is

ECOCROSS(o) = {(o′, i′) | stage(o′) < stage(i′),

for all (o′, i′) ∈ ECO(o)}

where stage(x) represents a pipeline stage number to which
a port x belongs.

In the G′′, a set of data transfers that cross stage bound-
aries is

E′′
CROSS =

[
o∈Pout

ECOCROSS(o).

230

Finally, a set of pipeline registers PREG is obtained as

PREG =
[

(o,i)∈E′′
CROSS

{p | p = (o, n),

stage(o) ≤ n < stage(i), n ∈ N}. (4)

Figure 5 depicts the data path after inserting multiplex-
ers and pipeline registers in the unified RCG in Figure 4.
The pipeline registers PREG1 to PREG7 are inserted in
appropriate points.

Here, the non-redundant activation conditions of the in-
serted pipeline registers are calculated. The non-redundant
activation conditions for the pipeline registers are derived
from the conditions of the data transfers calculated by eq.(3).
Since the pipeline registers are shared by some data trans-
fers, a set of non-redundant activation conditions Activep of
a pipeline register p = (o, n) is calculated as

Activep =
[

(o,n)=p, (o,i)∈ECOCROSS(o),stage(i)>n

Cond′′
(o,i).

(5)
For the pipeline registers in Figure 5, the activation con-

ditions Activep are calculated as follows:

ActivePREG1 = {(SUB, RG2)}
ActivePREG2 = {(SUB, RG2)}
ActivePREG3 = {(ADD, RG1), ANDI, RG3)}
ActivePREG4 = {(ADD, RG1)}
ActivePREG5 = {(ANDI, RG3)}
ActivePREG6 = {(ADD, RG1), (SUB, RG2), (ANDI, RG3)}
ActivePREG7 = {(ADD, RG1), (SUB, RG2), (ANDI, RG3)}.

Thus the activation conditions for pipeline registers are
calculated. In the next section, the gating signals for pipeline
registers are discussed.

5.2 GATING SIGNAL GENERATION
By employing the non-redundant activation conditions given

by eq.(5), a gating signal enp for each pipeline register p is
described as

enp = stallstage(p)

∧
0
@ _

(ope,Rope)∈Activep

decoded(ope,Rope) ∧ active(Rope)

1
A

(6)

where stage(p) represents stage number to which the pipeline
register p belongs. stalln stands for a request for pipeline
stall caused by several situations, e.g., structural hazard,
multi-cycle operation. decoded(ope,Rope) is a function that
returns true when an operation in a instruction register
is successfully decoded as operation ope on resource group
Rope. active(Rope) is also a function that returns true when
a VLIW instruction pattern is valid.

Using eq.(6), gating signals of the pipeline registers in the
VLIW data path illustrated in Figure 5 can be calculated as

Figure 6: Energy comparison when executing vari-
ous programs, fixing parallel issue number to 2

follows:

enPREG1 = stall2 ∧ (decoded(SUB, 2) ∧ active(RG2))

enPREG2 = stall2 ∧ (decoded(SUB, 2) ∧ active(RG2))

enPREG3 = stall2 ∧ (decoded(ADD, 1) ∧ active(RG1)

∨decoded(ANDI, 3) ∧ active(RG3))

enPREG4 = stall2 ∧ (decoded(ADD, 1) ∧ active(RG1))

enPREG5 = stall2 ∧ (decoded(ANDI, 3) ∧ active(RG3))

enPREG6 = stall3 ∧ (decoded(ADD, 1) ∧ active(RG1)

∨decoded(SUB, 2) ∧ active(RG2)

∨decoded(ANDI, 3) ∧ active(RG3))

enPREG7 = stall4 ∧ (decoded(ADD, 1) ∧ active(RG1)

∨decoded(SUB, 2) ∧ active(RG2)

∨decoded(ANDI, 3) ∧ active(RG3)).

6. EXPERIMENTAL RESULT
In order to confirm the effectiveness of the proposed method,

we carried out two experiments using DLX [6] instruction-
set architecture. We designed following three version of
VLIW architectures and measured power consumption, area,
and delay of them.

Processor 1 A VLIW processor generated by traditional
generation method (non-clock-gated VLIW processor)

Processor 2 A VLIW processor obtained by applying Pow-
erCompier to the Processor 1 (traditional clock gating)

Processor 3 A VLIW processor generated by proposed gen-
eration method (proposed method)

We used DSPstone benchmark programs and compiled them
with GCC based compilers that are adapted to each archi-
tecture by hand. The generated VLIW processors were syn-
thesized with DesignCompiler employing a 0.14µm CMOS
technology library.

The first experimental results are shown in Tables 1 and
2. Table 1 shows power comparison of the three version
of VLIW processors, increasing parallel issue number (slot)
from 2 to 4 for each. Note that the 2-slot processor contains

231

Table 1: Detailed energy comparison when changing parallel issue number (slot)
Processor 1 Processor 2 Processor 3

(non-clock-gated) (traditional clock gating) (proposed method)
Pipe. regs. Etc. Total Pipe. regs. Etc. Total Pipe. regs. Etc. Total

[mW/MHz] [mW/MHz] [mW/MHz] [mW/MHz] [mW/MHz] [mW/MHz] [mW/MHz] [mW/MHz] [mW/MHz]

slot 2 0.20536 0.26846 0.47381 0.14209 0.12912 0.27121 0.05507 0.12747 0.18254
slot 3 0.37894 0.33264 0.71158 0.26193 0.17402 0.43596 0.10608 0.17590 0.28198
slot 4 0.58947 0.39544 0.98491 0.40850 0.21930 0.62780 0.17021 0.22775 0.39796

Table 2: Area and critical path delay comparison
Processor 1 Processor 2 Processor 3

Area Delay Area Delay Area Delay
[cells] [ns] [cells] [ns] [cells] [ns]

2 slots 70279 9.77 63588 8.18 63857 8.08
3 slots 113083 10.59 101889 9.08 102345 8.4
4 slots 168928 10.26 152517 10.82 153365 9.98

74 pipeline registers, 3-slot processor does 145, and 4-slot
processor does 238; they are very large-scale designs. As ob-
served in Table 1, the total energy consumption of Processor
3 is reduced approximately 60% compared to Processor 1 on
every slot number. Compared to Processor 2, the Proces-
sor 3 reduces up to 36% of total power consumption. With
respect to the power reductions of pipeline register, the Pro-
cessor 3 achieves roughly 70% of power reduction compared
to Processor 1. Furthermore, Processor 3 achieves roughly
60% of power reduction compared to Processor 2. Besides,
power consumptions of other resources (Etc. in Table 1)
in the data path are also reduced by applying the proposed
method. This is because less data transitions of pipeline reg-
isters cause less signal switchings in the following resources
such as ALU. Table 2 shows area and critical-path delay.
As seen in Table 2, the area overhead of Processor 3 against
Processor 2 is negligible. This is because the gating signals
are derived from already decoded signals of non-clock-gated
Processor 1. Furthermore, critical-path delay overheads are
also negligible. As shown in Table 2, applying clock gating
results in area reduction (from Processor 1 to the others). It
is not extraordinary reduction. This is because multiplexers
inside registers are removed when clock gating is applied.
Area reduction due to applying clock gating is often ob-
served.

The second experimental result is shown in Figure 6. We
executed three programs, IIR, FIR, and MATRIX from DSP-
stone benchmark, fixing slot number to 2. In either case,
energy consumption of Processor 3 (P3) is lower than the
other processors (Processor 1 as P1, Processor 2 as P2). The
differences of energy reduction ratio is due to the differences
of data path utilization ratio of the individual programs.

7. CONCLUSION
The low power VLIW processor generation method was

proposed in this paper. The proposed method automati-
cally extracts the non-redundant activation conditions of the
pipeline registers in generated VLIW processors and com-
pletely shut off excess clock supplies to the pipeline registers
with clock gating. The experimental results showed signifi-
cant power reduction of the pipeline registers in the gener-

ated VLIW processors, comparing with a traditional clock
gating method. Area and delay overheads are confirmed to
be negligible. Our future work is aimed at the simultaneous
use of clock gating and operand isolation. In addition, the
proposed method is not limited to VLIW architecture; ex-
tension of the proposed method to other architecture such
as super scalar processors is also our future work.

8. REFERENCES
[1] P. Babighian, L. Benini, and E. Macii. A scalable algorithm for

RTL insertion of gated clocks based on ODCs computation.
IEEE Trans. Computer-Aided Design, 24(1):29–42, Jan. 2005.

[2] L. Benini and G. D. Micheli. Transformation and synthesis of
FSMs for low-power gated-clock implementation. In
Proceedings of the ISLPED ’95, pages 21–26, 1995.

[3] L. Benini, G. D. Micheli, E. Macii, M. Poncino, and R. Scarsi.
Symbolic synthesis of clock-gating logic for power optimization
of synchronous controllers. ACM Trans. Des. Autom.
Electron. Syst., 4(4):351–375, 1999.

[4] A. Chattopadhyay, B. Geukes, D. Kammler, E. M. Witte,
O. Schliebusch, H. Ishebabi, R. Leupers, G. Ascheid, and
H. Meyr. Automatic ADL-based operand isolation for
embedded processors. In Proceedings of the DATE ’06, pages
600–605, 2006.

[5] D. Duarte, N. Vijaykrishnan, and M. Irwin. A clock power
model to evaluate impact of architectural and technology
optimizations. IEEE Tran. VLSI, 10(6):844–855, Dec. 2002.

[6] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers, Inc.,
California, 1990.

[7] M. Itoh, Y. Takeuchi, M. Imai, and A. Shiomi. Synthesizable
HDL Generation for Pipelined Processors from a
Micro-Operation Description. IEICE Transactions on
Fundamentals of Electronics Communications and Computer
Sciences, E83-A(3):394–400, Mar. 2000.

[8] M. F. Jacome, G. de Veciana, and V. Lapinskii. Exploring
performance tradeoffs for clustered VLIW ASIPs. In
Proceedings of the ICCAD ’00, pages 504–510, 2000.

[9] Y. Kobayashi, S. Kobayashi, K. Okuda, K. Sakanushi,
Y. Takeuchi, and M. Imai. Synthesizable HDL generation
method for configurable VLIW processors. In Proceedings of
the ASPDAC ’04, pages 842–845, June 2004.

[10] T. Lang, E. Musoll, and J. Cortadella. Individual flip-flops with
gated clocks for low power datapaths. IEEE Trans. Circuits
Syst. II, 44(6):507–516, June 1997.

[11] B. Middha, A. Gangwar, A. Kumar, M. Balakrishnan, and
P. Ienne. A Trimaran based framework for exploring the design
space of VLIW ASIPs with coarse grain functional units. In
Proceedings of the ISSS ’02, pages 2–7, 2002.

[12] M. Mueller, A. Wortmann, S. Simon, M. Kugel, and
T. Schoenauer. The impact of clock gating schemes on the
power dissipation of synthesizable register files. In Proceedings
of the ISCAS ’04, 2004.

[13] M. Munch, B. Wurth, R. Mehra, J. Sproch, and N. Wehn.
Automating RT-level operand isolation to minimize power
consumption in datapaths. In Proceedings of the DATE ’00,
pages 624–633, 2000.

[14] M. Ohnishi, A. Yamada, H. Noda, and T. Kambe. A method of
redundant clocking detection and power reduction at RT level
design. In Proceedings of the ISLPED ’97, pages 131–136,
1997.

[15] M. Pedram. Power Aware Design Methodologies. Kluwer
Academic Publishers, Norwell, MA, USA, 2002.

232

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

