
ESL Design and HW/SW Co-verification of High-end
Software Defined Radio Platforms

Ng, A. C.H., Weijers, J.W., Glassee, M., Schuster, T., Bougard, B., Van der Perre, L.
IMEC, Belgium

{nganthon, weijers, glasseem, schuster, bougardb, vdperre}@imec.be

ABSTRACT
Multiple wireless technologies are converging to run on personal
handhelds. The plethora of communication standards next to the
cost issues of deeper submicron processing require handheld
platforms to shift from sets of multiple application specific ICs
(ASICs) to multi-purpose Multi-Processor System-on-Chip
(MPSoC) on which Software Defined Radios (SDR) are run. SDR
design faces hard real-time processing and data transfer latency
constraints. Designing SDR under stringent time-to-market (cost),
energy and real-time processing constraints requires the help of
advanced Electronic System-Level (ESL) design methodologies.
This paper demonstrates an integrated ESL design flow built on
advanced ESL tools to design SDR platforms for handhelds. We
share the experience from creation of a high-level virtual platform
model down to hardware/software (HW/SW) co-verification of a
large scale SoC (5 million gates+). Incremental RTL verification
based on co-simulation and co-emulation is also presented.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis
and Design Aids

General Terms
Design, Verification

Keywords
ESL, Hardware/Software co-design, verification, SDR, emulation

1. INTRODUCTION
The recent trends to integrate multiple radio access technologies
into a portable terminal result in a dramatically increased
complexity in HW and SW platforms. Several researches have
been conducted on implementing SDR platforms, and the
heterogeneous MPSoC approach appears to be the most
appropriate design [1]. Figure 1 depicts a top-level partitioning of
a typical SDR platform [2]. Functions related to packet detection
have high duty cycles, and are mapped on processing units with
high-energy efficiency and low flexibility, i.e. Digital Front-end
(DFE). However, functions such as (De)modulation, forward error
correction (FEC) have lower duty cycles and have a significant
potential for energy-scalable implementation [3]. They are best to
be partitioned on different programmable units.

When combined with aggressive energy-management techniques,
such partitioning enables flexibility with reasonable impact on
average power consumption and standby time. However, this
requires SW to be developed on heterogeneous units and makes
HW/SW verification difficult.
Platform-based ESL design enables fast architecture exploration
and minimize final RTL verification efforts. A crucial part of an
ESL flow is the support of HW/SW co-verification. ESL flows
inherently enable gradual refinement and support progressive
verification. The design is first specified at high level languages
(e.g. SystemC), then it is gradually refined down to RTL.
Individual components on the platform can be refined to RTL
incrementally while keeping the high level platform model as an
executable specification. The platform model is used as testbench
stimuli for functional RTL verification and this requires the
support of SystemC/HDL co-simulation in the ESL environment.
To the best of our knowledge, the usage of ESL tool is mostly
confined to Transaction level Modeling (TLM) [4][5] for high
level platform simulation. There are still few studies demonstrate
large scale design (over 5 million gates) with this new ESL design
methodology to develop a complete system. In this paper, we
describe an ESL design flow of an SDR platform, we also show
how integrated refinement and incremental HW/SW co-
verification can be achieved in the ESL environment. This
methodology includes early concurrent HW and SW development
based on a virtual platform reference model and the concept of
co-emulation is introduced for simulation speed up. In this work,
we carry out a complete design flow by integrating the ESL flow
from the two independent tool vendors, CoWare and Mentor. We
successfully co-emulate the two simulation environments,
CoWare’s TLM virtual platform environment is communicating
with Mentor’s emulator HDL simulation environment via the
custom transactors which we developed.
The motivation of our study is to share the design experience in
creating an SDR SoC with this advanced tool and to discuss the
additional values which the tool brings to our design. We also
evaluate the simulation speed advantage of creating a TLM
platform model. Finally, we compare the two verification
techniques, co-simulation and co-emulation via an experimental
study of a wireless application. We identify that the simulation
speed bottleneck is the SystemC/HDL interface, the complexity of
the HDL implementation alone has relatively less impact on the
overall simulation speed.
The remainder of this paper is organized as follows: In Section 2,
we detail the ESL design methodology. Section 3 focuses on the
system performance optimization. Section 4 describes RTL
refinement and HW/SW validation. Section 5 demonstrates a case
study in speedup evaluation. Conclusions are drawn in Section 6.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009...$5.00.

191

Figure 1: Opportunistically partitioned SDR platform

2. ESL DESIGN METHODOLOGY
The traditional approach in designing a chip is usually too close
to implementation level, which inhibits design reuses and makes
full system verification difficult. ESL is a new design approach
raising the level of abstraction to system level. The aim is to
introduce HW/SW verification early in the design flow.
TLM is a key technique used in ESL design, it provides a number
of abstraction levels to trade off between simulation speed and
accuracy [6]. In this work, CoWare Platform Creator 2005.2.1 [7]
is used as our ESL design environment.
After a few months of steep learning curve, we were able to create
an initial architecture of the platform with the tool. The time spent
was mainly to get familiar with using the tool for platform
assembling. Once we are experienced, a new platform model can
be easily created within days. Although the initial investment to
learn the tool is considerably large, the possibility for
architectural exploration and system performance assessment
brings significant values to achieve a more efficient design (See
Section 3.1).
The proposed design flow starts with creating a high level
SystemC TLM model (Phase 1). Figure 2 outlines the design
methodology of the HW/SW co-verification flow. Once the
platform is assembled, HW/SW partitioning of the reference
application code can be performed and mapped on the virtual
platform. Processor specific information such as memory maps is
now available for HW dependent SW (Phase 2a) development.
SW development and RTL refinement (Phase 2b) can then be
decoupled. Joint HW/SW validation is performed based on co-
simulation (Phase 3). When more platform components are
available at RTL level, co-emulation (Phase 4) is used for RTL
simulation speed up on an emulator. The availability of a virtual
platform enables individual block RTL refinement by using the
virtual platform as testbench during verification.

2.1 Phase 1 Virtual Platform and HW
Dependent SW Development
The goal is to rapidly assemble a system for SW development and
performance assessment. Using TLM, we create a virtual
platform, modeling some of the HW blocks at bus cycle accurate
level, processing units at instruction cycle accurate level and the
rest of the platform at untimed level. Some of the blocks are
chosen to be at cycle accurate level because some of our IP
models are only available in HDL, which is usually the case for
legacy designs. The decision to start at which level of abstraction
depends on IP availability, the ease of creating a new model, and
the simulation speed requirements. Taking the memory model in
our design as an example, we first model its implementation at the

Figure 2: Design Methodology from TLM platform model to

HW/SW Co-verification
highest level of abstraction (Programmer’s View [6]). For SW
development, we are only interested in the corresponding memory
address for read/write access, accurate timing information is
relatively less important, so it can be modeled with untimed
implementation. The virtual platform model allows mixed
platform components at different abstraction level to co-simulate
via the use of transactors. Therefore, the whole design is not
confined to start at a specific abstraction level but rather depends
on what design decisions have been made to implement the
corresponding details. Development of the HW-dependent SW
e.g., the HW Abstraction Layer is started based on an early
release of the virtual platform. This enables basic simulation-
based HW/SW validation and provides early feedback on the
HW/SW interaction performance. This feedback is used to
optimize the interconnect and the handling of interrupt events
(e.g., latency) deserve attention at this step. The virtual platform
acts as a reference simulator for functional SW development and
also as a reference model to verify with the RTL design.

2.2 Phase 2a Functional Software
Development
The programmable cores on the platform are either custom
processing units modeled with Application Specific Integrated
Processors (ASIP) development kits e.g. LISATek [8] or third
party IPs, e.g. ARM Instruction Set Simulator (ISS). Each ISS is
deployed in a SystemC container provided with a bus interface
(e.g. AHB). Encapsulation of the ISS generated with other
retargetable compiler environment (e.g. Tensilica) is also possible
with custom SystemC wrappers. The simulation of the ISS is
tightly coupled with the underlying SystemC simulation
environment and this means synchronization of multiple cores can
be debugged concurrently. This greatly enhances the visibility of
the HW/SW interface.

2.3 Phase 2b RTL Refinement and Validation
According to the gradual refinement concept, RTL refinement is
performed for each platform component, while keeping the rest of
the platform at TLM level. The latter acts as a testbench for the
progressive verification of the refined RTL component.
Simulation speed is a major concern during RTL refinement. Co-
simulation of SystemC/RTL models becomes a simulation speed
bottleneck which reduces achievable validation coverage. Co-

HW RTL Refine-
ment and ValidationSW

HW/SW
Co-verification

Partitioning

Phase 1

Phase 3

Phase 2a Phase 2b

HAL SW
Development

TLM
Front-end

192

emulation is used to address the simulation speed problem and will
be described in Section 4.

2.4 Phase 3 HW/SW Co-verification
In this phase, cycle accurate models, including power down modes
are available for most components. System startup sequences can
now be verified. Co-emulation allows application SW to be tested
before all RTL models are available. Once all models are at RTL
level, co-emulation could be replaced by emulation if the testbench
is also written at RTL level. If the testbench is already written as a
SystemC TLM model, which is usually the case when ESL flow is
adopted, then co-emulation avoids the needs to rewrite testbenches
again at RTL level.

3. VIRTUAL PLATFORM
Throughout the design of the virtual platform, the bus model is kept
at the cycle accurate level as it provides well-defined interfaces to
attach models (e.g. peripherals) at different abstraction levels to the
cycle accurate bus via the use of transactors. The abstraction models
can be started at behavioral level then refined with more precise
timing information to match the behavior of the real design. After
that, platform exploration for optimizing the system performance
can be done independently from the rest of the platform
development.

3.1 Platform Exploration
Platform exploration is an important step to identify system
bottlenecks. The use of ESL tools to rapidly create a virtual platform
brings advantages in this step. When designing a system directly at
HDL level, one cannot easily evaluate system performance upon
any changes in the interconnect and platform architecture. For
example, it is difficult to assess whether a further segmentation of
the interconnect would improve the performance or which
interconnect segment is best to locate a particular component for the
optimal access time.
The ability of profiling system parameters on the virtual platform
using bus transaction traces and analysis tools provides early
feedback of the design, especially on the understanding of complex
interactions between different system components (i.e. specific bus
access pattern). Stand alone HDL testbenches typically verify
functional correctness of individual blocks only. It is often difficult
to evaluate the complex interactions between different components
before a fully functional system is available.
We present a simplified example of IP selection and interconnect
optimization to demonstrate how platform exploration steps can be
done on a virtual platform. The same methodology can be applied
for more complex performance analysis, including non-sequential
data transfer when a bus internal buffer is introduced. We present
the SDR platform architecture refinement as follow:
Stringent timing constraints in baseband processing require efficient
data transfers between different processing elements (PEs). Hence,
interconnect has to be optimized for high performance and low
power consumption (e.g., bus frequency). In our design, we consider
multi-layered AMBA2 as the interconnect standard. We adopt the
AMBA TLM library [9], which is a set of API which model low-
level bus signals as high-level read/write transactions. Direct
memory access controllers (DMACs) are used for data transfers.
There are six types of data flow including, Digital Front End (DFE)
to Baseband Engine (BBE) to Forward Error Correction Engine

Figure 3: a) Single bus architecture (left), b) A snapshot of the
corresponding transaction trace (right)

(FECE), FECE to main memory (MM) and three types are in an
opposite direction at the transmission. Burst data transfer is used
because it matches the wireless modem execution flow which
corresponds to a regular chain of DSP kernels applied to block of
samples. In the most stringent case of IEEE 802.11n MIMO, the
flow between DFE and BBE has the most demanding rate of 512
Mbit/s per antenna. The total required throughput is at least the sum
of these six types of transfers (1550 Mbit/s) and scaling up linearly
with the number of antennas. In 2x2 MIMO case, the required data
rate is 3.1 Gbit/s, so a 32-bit bus at 200 MHz offers effective rate of
3.2 Gbit/s is sufficient. However, this only holds for a fully
pipelined bus without taking into account the control overhead of
the bus. To guaranty real time execution, one need to implement
deterministic interconnect and verify the effective bandwidth at
design time.
In our platform exploration, we examine the system performance
based on simulating the real behavior of the selected IPs and the bus
connectivity on the platform. Interconnect optimization is performed
by exploring different bus architectures and progressively searching
for the optimal configurations. At each step, bus throughput and bus
utilization are evaluated. A simple SW testbench is developed on
the ARM ISS to perform the profiling (interconnect stress test). It
emulates the interconnect request at maximum load.
We start with a simple bus architecture (see Figure 3-a) where all
the processing elements (PEs) and a single-port DMAC (ARM
PL081) are connected to a bus. The disadvantage of this architecture
is the exclusive usage of the bus. This means only one data transfer
is allowed at a time while other transfers are blocked. We configure
a transfer from BBE to DFE. The simulated throughput is 1.8 Gbit/s
(see Table 1-a), which is below the optimal bus throughput of 3.2
Gbit/s. The limited FIFO depth of the DMAC IP (4-word) and the
control overhead of the bus protocol hamper continuous data
transfers (see Figure 3-b).
In the initial bus architecture, bus bandwidth is the bottleneck.
Hence, we double the bus capacity by splitting the bus into two
segments. The transfer bottleneck is now shifted from the
interconnect to the DMAC. In this architecture, we select a dual-port
DMAC (ARM PL080) that bridges the two bus segments as shown
in Figure 4-a. By overlapping the read/write transactions over time,
one bus segment is performing a read transaction while the other
bus segment is writing the data that was obtained from the previous
read operation. Theoretically the bus throughput doubles using this
interconnect configuration.
We configure a transfer from BBE to DFE. The simulation result
shows a surprisingly low bus utilization of 20% (see Table 1-1b).
Using the profiling tool, the transaction trace shows that the 4-word
read/write bursts are split into a multiple of inefficient single-word
transfers (see Figure 4-b).

DMAC

DFE
MM
BBE

FECE

AHB Bus

BBE(read)
DFE(write)

Transactions Count

(3a) (3b)

193

Figure 4: a) Segmented bus architecture with a dual-port DMAC
(left), b) A snapshot of the corresponding transaction trace (right)

Figure 5: a) Segmented bus architecture with two single-port

DMACs

Figure 5: b) A snapshot of the corresponding transaction trace
Based on the unexpected performance of the selected DMAC in our
setting, we select another DMAC with more appropriate
implementation. The performance statistics show that to optimize
the transfer rate, we have to reduce the bus overhead involved in
switching the read/write operations and also to increase the
parallelism of the transfers among the bus segments.
Next, we replace the dual-port DMAC by 2 single-port DMACs
(Barco Silex BA612) with an adjustable FIFO depth. We identify
that burst length of 16-word gives a reasonable tradeoff between
throughput and latency as the increased burst length introduces extra
delay for the access of the lower priority of the two transfers.
The adaptation of two DMACs requires modification of the
interconnect as both DMACs need to have access to the bus
segments to perform back to back parallel data transfers. We
configure a multi-layer AHB bus as shown in Figure 5-a. The
concurrency of multiple 16-word burst transfers between the two
segments is shown in Figure 5-b). The bus throughput increases
(see Table 1-1c) to 4.3 Gbit/s which is sufficient for 802.11n.

By further applying the platform exploration technique described,
we obtain an SDR interconnect architecture with optimal data
transfer performances (see Figure 6). An interrupt mechanism is
used to communicate between the ARM and the rest of the platform
components.

4. RTL REFINEMENT AND
VERIFICATION

In this section we describe the uses of co-simulation and co-
emulation. We also show some experimental results of the
simulation speed based on the two verification techniques.

Table 1: Data transfer performance under different bus
configurations.

Optimization
Steps

Bus Configurations Throughput

(Gbit/s)

Bus Utilization

(%)

1a Single bus with single-
port DMAC

1.8 57

1b Segmented bus with dual-
port DMAC

1.3 20

1c Segmented bus with two
single-port DMACs (16-
word internal buffer size)

4.3 68

ARM DMAC
1

DMAC
2

IRQC

APB
Other

Peripherals

DFE Memory FECEBBE

Bus Matrix

AHB Lite AHB Lite AHB Lite

S

SSSS

MM

S

M

S

S
Interrupt Lines M: Master Port

S: Slave Port
Figure 6: A platform interconnect architecture

4.1 Co-simulation
In co-simulation, RTL models are simulated together with TLM
models. It is used to enable individual RTL refinement of the
components while using the rest of the TLM models as testbench.
For legacy IP, co-simulation is often the only option as SystemC
models are not always available. However, the major drawback of
co-simulation is the low simulation speed.
Co-simulation ranges from instantiating a single HDL model in a
SystemC design to instantiating a single SystemC module in an
HDL design. At the early stage of RTL refinement, we use co-
simulation as most blocks are defined at TLM. When more blocks
are simulated at RTL level, we can switch to co-emulation.
In our framework, the SystemC simulator is master and calls the
RTL simulator to simulate the imported RTL components. This
requires the generation of an “RTL proxy module”. The RTL proxy
module is a SystemC wrapper that interfaces through the Verilog
PLI interface with the actual RTL model. The RTL proxy code is
generated automatically by Platform Creator.

4.2 Co-emulation
Pure HW emulation is typically used to speed up RTL verification.
However, the disadvantage is the need to develop specific
synthesizable RTL testbenches. Therefore we use co-emulation, a
new verification technique to speed up the simulation while keeping
SystemC platform testbenches in the same simulation environment.
We use Mentor VStationTBX 1.3.0.3 and Mentor VStationPRO
6.1.0.13 as our emulation environment.

DMAC

DFE
MM

BBE
FECE

AHB 1

AHB 2

BBE(read)
DFE(write)

Transactions Count

(4a) (4b)

DMAC
1

DFE
MM

BBE
FECE

AHBLite 1

AHBLite 2

DMAC
2

Bus Matrix

Parallel
Transfers

Transactions Count

194

During co-emulation, RTL blocks are executed on the emulator
while SystemC blocks are simulated on a PC. Next, we show how
the inter language function calls of SystemVerilog enable co-
emulation.

4.2.1 Transactors
The “Direct Programming Interface” (DPI) of SystemVerilog allows
a SystemVerilog component to call a SystemC function and vica
versa. These communication pipes between SystemVerilog and
SystemC can be seen as transactors. Recent RTL simulator versions
allow SystemVerilog models to be simulated together with Verilog
and VHDL models. Such transactors can be thought of as the
cable(s) connecting the emulator which contains the RTL part of the
simulation with the host PC running the SystemC part of the
simulation.
During a transaction, the simulation control is temporarily
transferred from the emulator to SystemC (see Figure 7). Clock
gating is used to temporarily stop the HW. The SystemC simulator
executes the function which is called through the transactor. This
function in turn may trigger events which starts other processes or
threads. Results of these processes or threads have to be sent back to
the called function and this function has to wait for these results.
When the function called by the transactor finishes, the HW
continues. The actual time during which the HW is stopped depends
on the workstation load. The HW clock was stopped during the
transaction, so from the view of HW, the SystemC function returns
immediately (zero execution time).

5. CASE STUDY - SPEEDUP EVALUATION
We would like to set up experiments to evaluate how much speedup
can be obtained using co-emulation compared to co-simulation. The
system under test consists of the Digital Front End (DFE Rx),
DMAC and the AMBA Interconnect.
The DFE Rx core is used for wireless packet detection by searching
for packet preamble in a flow of incoming sample data. It consists of
an Automatic Gain Control (AGC) unit, a synchronization
processor, decimations filters and a buffer for storing incoming I
and Q samples. The detailed description of the DFE Rx design can
be found in [2].
To compare the simulation speed, two comparable system setups are
described in Table 3. For co-simulation, the AGC and DMAC are
described in RTL, since this is the only available implementation.
The synchronization processor model is an ISS and the rest of the
platform are modeled in SystemC. For co-emulation, all
components except the testbench are described at RTL level. A
diagram shown in Figure 8 describes the setup of the different data
transfers between SystemC/VHDL interface under co-simulation.
As a reference application for the comparison, the reception of a
packet is simulated. Input stimuli (I/Q values) are read from a file at
the SystemC I/O interface.

Figure 7: The transfer of control during co-emulation.

Bus

DFE

AGC

Filter

F
I
F
O

Syn
Proc

DMAC
Memory

File I/O
Wake up
signals

Starting
Index

1a

1b

2a 2b

3

4

VHDL SystemC

Figure 8: Data flows between SystemC/ VHDL interface
First, power calculations are done on the AGC. Based on the
calculation results, AGC subsequently wakes up the
synchronization processor, filters and FIFO. When a
synchronization point is found after autocorrelation, a valid
preamble is received. Then the packet samples are transferred
over the AHB bus (TLM model) read by the DMAC (RTL side)
and finally written back to the memory (SystemC side) for
baseband processing. This experiment extensively tests the
simulation of the AGC, synchronization processor, DMAC, the
AMBA interconnect (bus transactions) and the data transfers
between SystemC/VHDL interface. Therefore it is a good
showcase for speed measurement when most RTL simulations are
shifted to the emulator under co-emulation.
The simulation speed is measured in number of simulated clock
cycles per second under the duration of a packet reception. For
co-simulation, simulation speed of 1k cycles/sec is obtained,
while co-emulation goes up to 104k cycles/sec. In our
experiments, we also observed that the speed bottleneck mainly
depends on the amount of traffic flowing between the
SystemC/VHDL interface. The complexity of the RTL block has
less impact on the simulation speed. When we place an additional
DMAC RTL model onto the platform, there is only marginal
reduction in speed. An alternative way to speed up co-simulation
would be to temporality disable the clock input to the RTL blocks
during it idle time, though it may not always be possible in certain
cases.

5.1 Synergy of Co-simulation and Co-
emulation
Co-simulation and co-emulation are essential for HW/SW co-
verification but they should be used for different purposes within
the design cycle. Their properties are compared under a number
of different aspects. The comparisons are summarized into a Cost-
Benefit matrix as shown in Table 2.

Speed: With the help of the HW emulator, simulation can be
speeded up by a factor of 100. There are factors which determine
the speed limit of the two verification techniques:

Time
Clk

Emulation
SystemC

Simulation
Active

Transactor

195

Co-emulation: Mainly depends on the number of
transactions passing between the emulator and the SystemC
via the transactors. The critical path in synthesized design
defines the emulator clock speed.

Co-simulation: The speed bottleneck is the interface between
the SystemC and RTL simulators. The number of events
inside the RTL design has a relatively small influence on the
simulation speed.

Hardware Resources: For co-simulation, a PC is required to
simulate the virtual platform. For co-emulation, a HW emulator is
needed.

Ease of Use: To enable co-simulation, only a simple SystemC
proxy is required. These proxy blocks are readily available in the
Platform Creator tool. For co-emulation, the learning curve is
steeper as considerable effort is required to create custom
transactors.

Debugging Ability: Full system visibility is available on the
virtual platform during co-simulation, whereas in co-emulation,
SW debugging is more difficult. Co-simulation provides more
controllability and debugging facilities of the complete system.
For example, it is feasible to set a break point to stop the entire
system at once, whereas it is difficult to stop the clock of the HW
on the emulator at the instruction boundaries of the ARM. The
Platform Creator tool has profiling functionalities to trace and

analyze the status of the system such as the bus contention and
cache statistics.
Usability for SW Development: Co-simulation allows multiple
instances of the platform to be simulated and hence concurrent
usage of the virtual platform on individual PC for SW
development is possible. In case of co-emulation, concurrent SW
development within the team is limited as there is only one
instance of the platform running on the emulator.

6. CONCLUSIONS
We presented a practical use of a complete ESL design flow from
high level virtual platform modeling to HW/SW co-verification of
a large scale SDR SoC design. We discussed the advantages of
using the ESL tool to achieve a more efficient design via the
demonstration of platform exploration steps during the SDR
platform architecture refinement. We successfully co-emulated
our design in the CoWare’s SystemC and the Mentor’s emulator
simulation environment via the custom transactors which we
developed. We presented a cost-benefit matrix between two
verification techniques, co-simulation and co-emulation. We also
performed platform experiments based on a wireless application
to evaluate the simulation speed of the aforementioned
verification techniques in our ESL environment.

7. REFERENCES
[1] H-M. Bluethgen et al., “Finding the Optimum Partitioning

for Multi-Standard Radio Systems,” Proc. Software Defined
Radio Technical Conference, Nov 2005

[2] B. Bougard et al., “A Low Power Signal Detection and Pre-
Synchronization Engine For Energy-aware Software Defined
Radio”, SDR Forum, USA, Nov 2007

[3] A. Sinha et al., “Energy-Scalable System Design,” Trans.
VLSI, Apr 2002, pp 135-145

[4] T. Kogel et al., ”Virtual Prototyping of Embedded Platforms
for Wireless and Multimedia,” IEEE/ACM Conference on
Design Automation and Test in Europe (DATE), Mar 2006

[5] G. Gailliard et al., “Towards a SystemC TLM based
Methodology for Platform Design and IP reuse: Application
to Software Defined Radio”, RECOSOC, Jul 2006

[6] T. Kogel et al., “TLM Methodology Guideline”, CoWare Inc
[7] http://www.coware.com
[8] A.. Hoffmann et al., “Architecture Exploration for

Embedded Processor with LISA”, Kluwer Academic
Publishers

[9] CoWare AMBA bus TLM library manual

Table 3: Platform configurations with major components
shown under the two verification environments.

Platform Components Co-simulation
(Virtual
Platform)

Co-emulation
(Emulator +
SystemC)

AGC (DFE Rx) RTL RTL

Sync Pro (DFE Rx) ISS RTL

FIFO and filter (DFE Rx) SystemC RTL

DMAC RTL RTL

AMBA System SystemC RTL

Other system level
components

SystemC RTL

Stimuli generation and
evaluation

SystemC SystemC

Table 2: Cost-Benefit Matrix of co-simulation and co-emulation.

 Speed HW Resources Ease of Use Debugging
Ability

Usability for SW
Development

Co-simulation Slow (1k cycles per
second)*

Linux PC Automatically generated
SystemC proxy

Full system
visibility

Concurrent usages

Co-emulation Fast (104k cycles
per second)*

Hardware emulator
+ Linux PC

Knowledge to create
custom transactors

Difficult to set
breakpoints

Single user usage

*Result obtained from our DFE Rx experiment.

196

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

