
ESL Design and HW/SW Co-verification of High-end 
Software Defined Radio Platforms 

 

Ng, A. C.H., Weijers, J.W., Glassee, M., Schuster, T., Bougard, B., Van der Perre,  L. 
IMEC, Belgium 

{nganthon, weijers, glasseem, schuster, bougardb, vdperre}@imec.be 
  

ABSTRACT 
Multiple wireless technologies are converging to run on personal 
handhelds. The plethora of communication standards next to the 
cost issues of deeper submicron processing require handheld 
platforms to shift from sets of multiple application specific ICs 
(ASICs) to multi-purpose Multi-Processor System-on-Chip 
(MPSoC) on which Software Defined Radios (SDR) are run. SDR 
design faces hard real-time processing and data transfer latency 
constraints. Designing SDR under stringent time-to-market (cost), 
energy and real-time processing constraints requires the help of 
advanced Electronic System-Level (ESL) design methodologies. 
This paper demonstrates an integrated ESL design flow built on 
advanced ESL tools to design SDR platforms for handhelds. We 
share the experience from creation of a high-level virtual platform 
model down to hardware/software (HW/SW) co-verification of a 
large scale SoC (5 million gates+). Incremental RTL verification 
based on co-simulation and co-emulation is also presented. 

Categories and Subject Descriptors 
B.8.2 [Performance and Reliability]: Performance Analysis 
and Design Aids 

General Terms 
Design, Verification 

Keywords 
ESL, Hardware/Software co-design, verification, SDR, emulation 

1. INTRODUCTION 
The recent trends to integrate multiple radio access technologies 
into a portable terminal result in a dramatically increased 
complexity in HW and SW platforms. Several researches have 
been conducted on implementing SDR platforms, and the 
heterogeneous MPSoC approach appears to be the most 
appropriate design [1]. Figure 1 depicts a top-level partitioning of 
a typical SDR platform [2]. Functions related to packet detection 
have high duty cycles, and are mapped on processing units with 
high-energy efficiency and low flexibility, i.e. Digital Front-end 
(DFE). However, functions such as (De)modulation, forward error 
correction (FEC) have lower duty cycles and have a significant 
potential for energy-scalable implementation [3]. They are best to 
be partitioned on different programmable units. 

When combined with aggressive energy-management techniques, 
such partitioning enables flexibility with reasonable impact on 
average power consumption and standby time. However, this 
requires SW to be developed on heterogeneous units and makes 
HW/SW verification difficult.  
Platform-based ESL design enables fast architecture exploration 
and minimize final RTL verification efforts. A crucial part of an 
ESL flow is the support of HW/SW co-verification. ESL flows 
inherently enable gradual refinement and support progressive 
verification. The design is first specified at high level languages 
(e.g. SystemC), then it is gradually refined down to RTL. 
Individual components on the platform can be refined to RTL 
incrementally while keeping the high level platform model as an 
executable specification. The platform model is used as testbench 
stimuli for functional RTL verification and this requires the 
support of SystemC/HDL co-simulation in the ESL environment. 
To the best of our knowledge, the usage of ESL tool is mostly 
confined to Transaction level Modeling (TLM) [4][5] for high 
level platform simulation. There are still few studies demonstrate 
large scale design (over 5 million gates) with this new ESL design 
methodology to develop a complete system. In this paper, we 
describe an ESL design flow of an SDR platform, we also show 
how integrated refinement and incremental HW/SW co-
verification can be achieved in the ESL environment. This 
methodology includes early concurrent HW and SW development 
based on a virtual platform reference model and the concept of 
co-emulation is introduced for simulation speed up. In this work, 
we carry out a complete design flow by integrating the ESL flow 
from the two independent tool vendors, CoWare and Mentor. We 
successfully co-emulate the two simulation environments, 
CoWare’s TLM virtual platform environment is communicating 
with Mentor’s emulator HDL simulation environment via the 
custom transactors which we developed.  
The motivation of our study is to share the design experience in 
creating an SDR SoC with this advanced tool and to discuss the 
additional values which the tool brings to our design. We also 
evaluate the simulation speed advantage of creating a TLM 
platform model. Finally, we compare the two verification 
techniques, co-simulation and co-emulation via an experimental 
study of a wireless application. We identify that the simulation 
speed bottleneck is the SystemC/HDL interface, the complexity of 
the HDL implementation alone has relatively less impact on the 
overall simulation speed. 
The remainder of this paper is organized as follows:  In Section 2, 
we detail the ESL design methodology. Section 3 focuses on the 
system performance optimization. Section 4 describes RTL 
refinement and HW/SW validation. Section 5 demonstrates a case 
study in speedup evaluation. Conclusions are drawn in Section 6. 
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Figure 1: Opportunistically partitioned SDR platform 

2. ESL DESIGN METHODOLOGY 
The traditional approach in designing a chip is usually too close 
to implementation level, which inhibits design reuses and makes 
full system verification difficult. ESL is a new design approach 
raising the level of abstraction to system level. The aim is to 
introduce HW/SW verification early in the design flow. 
TLM is a key technique used in ESL design, it provides a number 
of abstraction levels to trade off between simulation speed and 
accuracy [6]. In this work, CoWare Platform Creator 2005.2.1 [7] 
is used as our ESL design environment. 
After a few months of steep learning curve, we were able to create 
an initial architecture of the platform with the tool. The time spent 
was mainly to get familiar with using the tool for platform 
assembling. Once we are experienced, a new platform model can 
be easily created within days. Although the initial investment to 
learn the tool is considerably large, the possibility for 
architectural exploration and system performance assessment 
brings significant values to achieve a more efficient design (See 
Section 3.1). 
The proposed design flow starts with creating a high level 
SystemC TLM model (Phase 1). Figure 2 outlines the design 
methodology of the HW/SW co-verification flow. Once the 
platform is assembled, HW/SW partitioning of the reference 
application code can be performed and mapped on the virtual 
platform. Processor specific information such as memory maps is 
now available for HW dependent SW (Phase 2a) development. 
SW development and RTL refinement (Phase 2b) can then be 
decoupled. Joint HW/SW validation is performed based on co-
simulation (Phase 3). When more platform components are 
available at RTL level, co-emulation (Phase 4) is used for RTL 
simulation speed up on an emulator. The availability of a virtual 
platform enables individual block RTL refinement by using the 
virtual platform as testbench during verification.  

2.1 Phase 1 Virtual Platform and HW 
Dependent SW Development 
The goal is to rapidly assemble a system for SW development and 
performance assessment. Using TLM, we create a virtual 
platform, modeling some of the HW blocks at bus cycle accurate 
level, processing units at instruction cycle accurate level and the 
rest of the platform at untimed level. Some of the blocks are 
chosen to be at cycle accurate level because some of our IP 
models are only available in HDL, which is usually the case for 
legacy designs. The decision to start at which level of abstraction 
depends on IP availability, the ease of creating a new model, and 
the simulation speed requirements. Taking the memory model in 
our design as an example, we first model its implementation at the 

 
Figure 2: Design Methodology from TLM platform model to 

HW/SW Co-verification 
highest level of abstraction (Programmer’s View [6]). For SW 
development, we are only interested in the corresponding memory 
address for read/write access, accurate timing information is 
relatively less important, so it can be modeled with untimed 
implementation. The virtual platform model allows mixed 
platform components at different abstraction level to co-simulate 
via the use of transactors. Therefore, the whole design is not 
confined to start at a specific abstraction level but rather depends 
on what design decisions have been made to implement the 
corresponding details. Development of the HW-dependent SW 
e.g., the HW Abstraction Layer is started based on an early 
release of the virtual platform. This enables basic simulation-
based HW/SW validation and provides early feedback on the 
HW/SW interaction performance. This feedback is used to 
optimize the interconnect and the handling of interrupt events 
(e.g., latency) deserve attention at this step. The virtual platform 
acts as a reference simulator for functional SW development and 
also as a reference model to verify with the RTL design. 

2.2 Phase 2a Functional Software 
Development 
The programmable cores on the platform are either custom 
processing units modeled with Application Specific Integrated 
Processors (ASIP) development kits e.g. LISATek [8] or third 
party IPs, e.g. ARM Instruction Set Simulator (ISS). Each ISS is 
deployed in a SystemC container provided with a bus interface 
(e.g. AHB). Encapsulation of the ISS generated with other 
retargetable compiler environment (e.g. Tensilica) is also possible 
with custom SystemC wrappers. The simulation of the ISS is 
tightly coupled with the underlying SystemC simulation 
environment and this means synchronization of multiple cores can 
be debugged concurrently. This greatly enhances the visibility of 
the HW/SW interface. 

2.3 Phase 2b RTL Refinement and Validation 
According to the gradual refinement concept, RTL refinement is 
performed for each platform component, while keeping the rest of 
the platform at TLM level. The latter acts as a testbench for the 
progressive verification of the refined RTL component. 
Simulation speed is a major concern during RTL refinement. Co-
simulation of SystemC/RTL models becomes a simulation speed 
bottleneck which reduces achievable validation coverage. Co-
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emulation is used to address the simulation speed problem and will 
be described in Section 4. 

2.4 Phase 3 HW/SW Co-verification 
In this phase, cycle accurate models, including power down modes 
are available for most components. System startup sequences can 
now be verified. Co-emulation allows application SW to be tested 
before all RTL models are available. Once all models are at RTL 
level, co-emulation could be replaced by emulation if the testbench 
is also written at RTL level. If the testbench is already written as a 
SystemC TLM model, which is usually the case when ESL flow is 
adopted, then co-emulation avoids the needs to rewrite testbenches 
again at RTL level. 

3. VIRTUAL PLATFORM 
Throughout the design of the virtual platform, the bus model is kept 
at the cycle accurate level as it provides well-defined interfaces to 
attach models (e.g. peripherals) at different abstraction levels to the 
cycle accurate bus via the use of transactors. The abstraction models 
can be started at behavioral level then refined with more precise 
timing information to match the behavior of the real design. After 
that, platform exploration for optimizing the system performance 
can be done independently from the rest of the platform 
development.  

3.1 Platform Exploration 
Platform exploration is an important step to identify system 
bottlenecks. The use of ESL tools to rapidly create a virtual platform 
brings advantages in this step. When designing a system directly at 
HDL level, one cannot easily evaluate system performance upon 
any changes in the interconnect and platform architecture. For 
example, it is difficult to assess whether a further segmentation of 
the interconnect would improve the performance or which 
interconnect segment is best to locate a particular component for the 
optimal access time. 
The ability of profiling system parameters on the virtual platform 
using bus transaction traces and analysis tools provides early 
feedback of the design, especially on the understanding of complex 
interactions between different system components (i.e. specific bus 
access pattern). Stand alone HDL testbenches typically verify 
functional correctness of individual blocks only. It is often difficult 
to evaluate the complex interactions between different components 
before a fully functional system is available.  
We present a simplified example of IP selection and interconnect 
optimization to demonstrate how platform exploration steps can be 
done on a virtual platform. The same methodology can be applied 
for more complex performance analysis, including non-sequential 
data transfer when a bus internal buffer is introduced. We present 
the SDR platform architecture refinement as follow: 
Stringent timing constraints in baseband processing require efficient 
data transfers between different processing elements (PEs). Hence, 
interconnect has to be optimized for high performance and low 
power consumption (e.g., bus frequency). In our design, we consider 
multi-layered AMBA2 as the interconnect standard. We adopt the 
AMBA TLM library [9], which is a set of API which model low-
level bus signals as high-level read/write transactions. Direct 
memory access controllers (DMACs) are used for data transfers. 
There are six types of data flow including, Digital Front End (DFE) 
to Baseband Engine (BBE) to Forward Error Correction Engine 

 
 
 

 
 

Figure 3: a) Single bus architecture (left), b) A snapshot of the 
corresponding transaction trace (right) 

(FECE), FECE to main memory (MM) and three types are in an 
opposite direction at the transmission. Burst data transfer is used 
because it matches the wireless modem execution flow which 
corresponds to a regular chain of DSP kernels applied to block of 
samples. In the most stringent case of IEEE 802.11n MIMO, the 
flow between DFE and BBE has the most demanding rate of 512 
Mbit/s per antenna. The total required throughput is at least the sum 
of these six types of transfers (1550 Mbit/s) and scaling up linearly 
with the number of antennas. In 2x2 MIMO case, the required data 
rate is 3.1 Gbit/s, so a 32-bit bus at 200 MHz offers effective rate of 
3.2 Gbit/s is sufficient. However, this only holds for a fully 
pipelined bus without taking into account the control overhead of 
the bus. To guaranty real time execution, one need to implement 
deterministic interconnect and verify the effective bandwidth at 
design time.  
In our platform exploration, we examine the system performance 
based on simulating the real behavior of the selected IPs and the bus 
connectivity on the platform. Interconnect optimization is performed 
by exploring different bus architectures and progressively searching 
for the optimal configurations. At each step, bus throughput and bus 
utilization are evaluated. A simple SW testbench is developed on 
the ARM ISS to perform the profiling (interconnect stress test). It 
emulates the interconnect request at maximum load. 
We start with a simple bus architecture (see Figure 3-a) where all 
the processing elements (PEs) and a single-port DMAC (ARM 
PL081) are connected to a bus. The disadvantage of this architecture 
is the exclusive usage of the bus. This means only one data transfer 
is allowed at a time while other transfers are blocked. We configure 
a transfer from BBE to DFE. The simulated throughput is 1.8 Gbit/s 
(see Table 1-a), which is below the optimal bus throughput of 3.2 
Gbit/s. The limited FIFO depth of the DMAC IP (4-word) and the 
control overhead of the bus protocol hamper continuous data 
transfers (see Figure 3-b).  
In the initial bus architecture, bus bandwidth is the bottleneck. 
Hence, we double the bus capacity by splitting the bus into two 
segments. The transfer bottleneck is now shifted from the 
interconnect to the DMAC. In this architecture, we select a dual-port 
DMAC (ARM PL080) that bridges the two bus segments as shown 
in Figure 4-a. By overlapping the read/write transactions over time, 
one bus segment is performing a read transaction while the other 
bus segment is writing the data that was obtained from the previous 
read operation. Theoretically the bus throughput doubles using this 
interconnect configuration.  
We configure a transfer from BBE to DFE. The simulation result 
shows a surprisingly low bus utilization of 20% (see Table 1-1b). 
Using the profiling tool, the transaction trace shows that the 4-word 
read/write bursts are split into a multiple of inefficient single-word 
transfers (see Figure 4-b). 
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Figure 4: a) Segmented bus architecture with a dual-port DMAC 
(left), b) A snapshot of the corresponding transaction trace (right) 
 
 
 
 
 
 

 
Figure 5: a) Segmented bus architecture with two single-port 

DMACs 
 
 
 
 

Figure 5: b) A snapshot of the corresponding transaction trace 
Based on the unexpected performance of the selected DMAC in our 
setting, we select another DMAC with more appropriate 
implementation. The performance statistics show that to optimize 
the transfer rate, we have to reduce the bus overhead involved in 
switching the read/write operations and also to increase the 
parallelism of the transfers among the bus segments.  
Next, we replace the dual-port DMAC by 2 single-port DMACs 
(Barco Silex BA612) with an adjustable FIFO depth. We identify 
that burst length of 16-word gives a reasonable tradeoff between 
throughput and latency as the increased burst length introduces extra 
delay for the access of the lower priority of the two transfers.  
The adaptation of two DMACs requires modification of the 
interconnect as both DMACs need to have access to the bus 
segments to perform back to back parallel data transfers. We 
configure a multi-layer AHB bus as shown in Figure 5-a. The 
concurrency of multiple 16-word burst transfers between the two 
segments is shown in Figure 5-b). The bus throughput increases 
(see Table 1-1c) to 4.3 Gbit/s which is sufficient for 802.11n. 

By further applying the platform exploration technique described, 
we obtain an SDR interconnect architecture with optimal data 
transfer performances (see Figure 6). An interrupt mechanism is 
used to communicate between the ARM and the rest of the platform 
components. 

4. RTL REFINEMENT AND 
VERIFICATION 

In this section we describe the uses of co-simulation and co-
emulation. We also show some experimental results of the 
simulation speed based on the two verification techniques.  

Table 1: Data transfer performance under different bus 
configurations.  

Optimization 
Steps 

Bus Configurations Throughput 

(Gbit/s) 

Bus Utilization 

(%) 

1a Single bus with single- 
port DMAC 

1.8  57 

1b Segmented bus with dual-
port DMAC 

1.3 20 

1c Segmented bus with two 
single-port DMACs (16- 
word internal buffer size) 

4.3  68 
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Figure 6: A platform interconnect architecture 

4.1 Co-simulation 
In co-simulation, RTL models are simulated together with TLM 
models. It is used to enable individual RTL refinement of the 
components while using the rest of the TLM models as testbench. 
For legacy IP, co-simulation is often the only option as SystemC 
models are not always available. However, the major drawback of 
co-simulation is the low simulation speed. 
Co-simulation ranges from instantiating a single HDL model in a 
SystemC design to instantiating a single SystemC module in an 
HDL design. At the early stage of RTL refinement, we use co-
simulation as most blocks are defined at TLM. When more blocks 
are simulated at RTL level, we can switch to co-emulation.  
In our framework, the SystemC simulator is master and calls the 
RTL simulator to simulate the imported RTL components. This 
requires the generation of an “RTL proxy module”. The RTL proxy 
module is a SystemC wrapper that interfaces through the Verilog 
PLI interface with the actual RTL model. The RTL proxy code is 
generated automatically by Platform Creator. 

4.2 Co-emulation  
Pure HW emulation is typically used to speed up RTL verification. 
However, the disadvantage is the need to develop specific 
synthesizable RTL testbenches. Therefore we use co-emulation, a 
new verification technique to speed up the simulation while keeping 
SystemC platform testbenches in the same simulation environment. 
We use Mentor VStationTBX 1.3.0.3 and Mentor VStationPRO 
6.1.0.13 as our emulation environment. 
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During co-emulation, RTL blocks are executed on the emulator 
while SystemC blocks are simulated on a PC. Next, we show how 
the inter language function calls of SystemVerilog enable co-
emulation.  

4.2.1 Transactors 
The “Direct Programming Interface” (DPI) of SystemVerilog allows 
a SystemVerilog component to call a SystemC function and vica 
versa. These communication pipes between SystemVerilog and 
SystemC can be seen as transactors. Recent RTL simulator versions 
allow SystemVerilog models to be simulated together with Verilog 
and VHDL models. Such transactors can be thought of as the 
cable(s) connecting the emulator which contains the RTL part of the 
simulation with the host PC running the SystemC part of the 
simulation. 
During a transaction, the simulation control is temporarily 
transferred from the emulator to SystemC (see Figure 7). Clock 
gating is used to temporarily stop the HW. The SystemC simulator 
executes the function which is called through the transactor. This 
function in turn may trigger events which starts other processes or 
threads. Results of these processes or threads have to be sent back to 
the called function and this function has to wait for these results. 
When the function called by the transactor finishes, the HW 
continues. The actual time during which the HW is stopped depends 
on the workstation load. The HW clock was stopped during the 
transaction, so from the view of HW, the SystemC function returns 
immediately (zero execution time). 

5. CASE STUDY - SPEEDUP EVALUATION 
We would like to set up experiments to evaluate how much speedup 
can be obtained using co-emulation compared to co-simulation. The 
system under test consists of the Digital Front End (DFE Rx), 
DMAC and the AMBA Interconnect. 
The DFE Rx core is used for wireless packet detection by searching 
for packet preamble in a flow of incoming sample data. It consists of 
an Automatic Gain Control (AGC) unit, a synchronization 
processor, decimations filters and a buffer for storing incoming I 
and Q samples. The detailed description of the DFE Rx design can 
be found in [2].  
To compare the simulation speed, two comparable system setups are 
described in Table 3. For co-simulation, the AGC and DMAC are 
described in RTL, since this is the only available implementation. 
The synchronization processor model is an ISS and the rest of the 
platform are modeled in SystemC. For co-emulation, all 
components except the testbench are described at RTL level. A 
diagram shown in Figure 8 describes the setup of the different data 
transfers between SystemC/VHDL interface under co-simulation.   
As a reference application for the comparison, the reception of a 
packet is simulated. Input stimuli (I/Q values) are read from a file at 
the SystemC I/O interface.  
 
 

 
 
 

Figure 7: The transfer of control during co-emulation. 
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Figure 8: Data flows between SystemC/ VHDL interface 
First, power calculations are done on the AGC. Based on the 
calculation results, AGC subsequently wakes up the 
synchronization processor, filters and FIFO. When a 
synchronization point is found after autocorrelation, a valid 
preamble is received. Then the packet samples are transferred 
over the AHB bus (TLM model) read by the DMAC (RTL side) 
and finally written back to the memory (SystemC side) for 
baseband processing. This experiment extensively tests the 
simulation of the AGC, synchronization processor, DMAC, the 
AMBA interconnect (bus transactions) and the data transfers 
between SystemC/VHDL interface. Therefore it is a good 
showcase for speed measurement when most RTL simulations are 
shifted to the emulator under co-emulation. 
The simulation speed is measured in number of simulated clock 
cycles per second under the duration of a packet reception. For 
co-simulation, simulation speed of 1k cycles/sec is obtained, 
while co-emulation goes up to 104k cycles/sec. In our 
experiments, we also observed that the speed bottleneck mainly 
depends on the amount of traffic flowing between the 
SystemC/VHDL interface. The complexity of the RTL block has 
less impact on the simulation speed. When we place an additional 
DMAC RTL model onto the platform, there is only marginal 
reduction in speed. An alternative way to speed up co-simulation 
would be to temporality disable the clock input to the RTL blocks 
during it idle time, though it may not always be possible in certain 
cases. 

5.1 Synergy of Co-simulation and Co-
emulation  
Co-simulation and co-emulation are essential for HW/SW co-
verification but they should be used for different purposes within 
the design cycle. Their properties are compared under a number 
of different aspects. The comparisons are summarized into a Cost-
Benefit matrix as shown in Table 2. 
 
Speed: With the help of the HW emulator, simulation can be 
speeded up by a factor of 100. There are factors which determine 
the speed limit of the two verification techniques: 
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Co-emulation: Mainly depends on the number of 
transactions passing between the emulator and the SystemC 
via the transactors. The critical path in synthesized design 
defines the emulator clock speed. 
 
Co-simulation: The speed bottleneck is the interface between 
the SystemC and RTL simulators. The number of events 
inside the RTL design has a relatively small influence on the 
simulation speed. 
 

Hardware Resources: For co-simulation, a PC is required to 
simulate the virtual platform. For co-emulation, a HW emulator is 
needed. 
 

Ease of Use: To enable co-simulation, only a simple SystemC 
proxy is required. These proxy blocks are readily available in the 
Platform Creator tool. For co-emulation, the learning curve is 
steeper as considerable effort is required to create custom 
transactors.  
 

Debugging Ability: Full system visibility is available on the 
virtual platform during co-simulation, whereas in co-emulation, 
SW debugging is more difficult. Co-simulation provides more 
controllability and debugging facilities of the complete system. 
For example, it is feasible to set a break point to stop the entire 
system at once, whereas it is difficult to stop the clock of the HW 
on the emulator at the instruction boundaries of the ARM. The 
Platform Creator tool has profiling functionalities to trace and  
 

 
 
 
 
 
 
 
analyze the status of the system such as the bus contention and 
cache statistics. 
Usability for SW Development: Co-simulation allows multiple 
instances of the platform to be simulated and hence concurrent 
usage of the virtual platform on individual PC for SW 
development is possible. In case of co-emulation, concurrent SW 
development within the team is limited as there is only one 
instance of the platform running on the emulator.  

6. CONCLUSIONS  
We presented a practical use of a complete ESL design flow from 
high level virtual platform modeling to HW/SW co-verification of 
a large scale SDR SoC design. We discussed the advantages of 
using the ESL tool to achieve a more efficient design via the 
demonstration of platform exploration steps during the SDR 
platform architecture refinement. We successfully co-emulated 
our design in the CoWare’s SystemC and the Mentor’s emulator 
simulation environment via the custom transactors which we 
developed. We presented a cost-benefit matrix between two 
verification techniques, co-simulation and co-emulation. We also 
performed platform experiments based on a wireless application 
to evaluate the simulation speed of the aforementioned 
verification techniques in our ESL environment.  
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Table 3: Platform configurations with major components 
shown under the two verification environments. 

Platform Components Co-simulation 
(Virtual 
Platform) 

Co-emulation 
(Emulator + 
SystemC) 

AGC (DFE Rx) RTL RTL 

Sync Pro (DFE Rx) ISS RTL 

FIFO and filter (DFE Rx) SystemC  RTL 

DMAC RTL RTL 

AMBA System SystemC  RTL 

Other system level 
components 

SystemC  RTL 

Stimuli generation and 
evaluation 

SystemC  SystemC  

Table 2: Cost-Benefit Matrix of co-simulation and co-emulation. 

 Speed  HW Resources Ease of Use Debugging 
Ability 

Usability for SW 
Development  

Co-simulation Slow (1k cycles per 
second)* 

Linux PC  Automatically generated  
SystemC proxy  

Full system 
visibility 

Concurrent usages 

Co-emulation Fast (104k cycles 
per second)* 

Hardware emulator 
+ Linux PC 

Knowledge to create  
custom transactors  

Difficult to set 
breakpoints 

Single user usage 

*Result obtained from our DFE Rx experiment. 
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