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ABSTRACT

We present a novel hybrid approach for performance analysis of a
system design. Unlike other approaches in this area, in this paper
we do not focus on the determination of pessimistic best-case and
worst-case quantities of system properties. Our proposed analy-
sis methodology determines qualitative numbers between best-case
and worst-case of system properties and quantifies them with prob-
abilities. For this issue, we combine local coarse-grained profiling
and formal system-level analysis models in a hybrid approach for
an early quantitative determination of qualitative system proper-
ties. Our approach considers the control-flow of communicating
processes and the impact of blocking communication instances on
the temporal behavior of the entire system during formal analysis.
This can be used for determining the global system performance.
The application of our new methodology leads to an inclusion of
probabilities concerning system properties and allows an early per-
formance risk estimation of a design with regard to predefined sys-
tem requirements and constraints.

Categories and Subject Descriptors: B.8.2 [Performance Anal-
ysis and Design Aids] G.3 [Probability and Statistics]: Stochastic
Processes

General Terms: Performance, Measurement

Keywords: Performance Analysis, Probabilistic Risk Quantifica-
tion

1. INTRODUCTION

The gap between complexity growth and increasing time-to-
market pressure is continuously growing. Several approaches try to
close the gap by abstracting system properties in an automated de-
sign process. Early available design characteristics are essential for
designers to validate a design concerning requirements. Whereas
different approaches exist to incorporate worst-case and best-case
properties of the system, the intervals (for e.g. performance) are
often too pessimistic and far away from the real system behavior.
Moreover, rare cases that appear only once like initial cache misses
can expand the intervals of present quantitative best-case or worst-
case analysis too much. Therefore, a resulting system architecture
with regard to these worst-case analyses is quite often overdimen-
sioned. Although this might be acceptable for real-time critical
systems, the designer does not know about the typical quantities
of qualitative properties at an early design stage. The amount of
cases that violate the requirements is unknown. Figure 1 depicts
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a typical scenario in which the requirement for a system property
is between the best-case and the worst-case. Without any quantita-
tive characterization of the qualitative system property, the designer
does not know, how many cases are critical and not met. The risk
for property m (e.g. end-to-end latency or buffer utilization) in this
scenario is characterized by the sum of the probabilities P(m;) of
all cases m; between the worst-case wc(m) and the requirement
req(m) of the system property.

P(m) worst-case requirement best-case
wc(m) req(m) bc(m)
i critical cases uncritical cases :

—

M A

Figure 1: Quantitative Evaluation

Estimations are often sufficient for an early evaluation of the de-
sign properties. We apply coarse-grained profiling for determin-
ing the execution time of communication free parts of a system
model. This architectural mapping process is briefly described in
Section 3. The resulting quantities are incorporated in an analytic
system model, the communication dependency graph (CDG) pre-
sented in Section 2.1. Using this graph, we are performing system-
level analysis to determine qualitative statements about the system
behavior. Qualitative means that we identify possible cases be-
tween best-case and worst-case. These cases are quantified with
probabilities and their interrelation is considered by our analysis
approach. Our novel methodology tries to combine the advantages
of both worlds: We derive local execution time distributions by
profiling dedicated components and we perform formal communi-
cation analysis to explore the global module interaction with re-
spect to execution time profiles between best-case and worst-case
bounds. The remainder of the paper is organized as follows: Us-
ing the execution times of the activity model that is presented in
Section 2.1, we calculate idle times. These idle times are repre-
sented by discrete probability distributions of time the control-flow
of the processes has to wait in blocking communication endpoints.
Our methodology for idle time determination is called communica-
tion analysis and is presented in Section 4. The derived quantified
qualitative information can further be used for an exploration of
the underlying system architecture. Our evaluation methodology is
presented in Section 5. We applied our methodology for qualitative
design evaluation on a real design of a Viterbi decoder. The results
are shown in Section 6.

2. STATE OF THE ART

Approaches that only rely on best-case/worst-case assumptions
are very often too pessimistic for real scenarios. Therefore, re-
lated work on performance analysis has to be evaluated with re-



spect for their capability of extending these worst-case/best-case
assumptions.

Timed Petri Nets [24] are able to represent the internal behavior
of a system. Although there exist stochastic extensions by gen-
eralized stochastic Petri nets (GSPN) [14], these do not consider
execution times of the real system components. Furthermore, syn-
chronization by communication and the specification of communi-
cation types have to be modeled explicitly and can not be extracted
from executable functional specifications like a SystemC model of
a design.

System-level performance and power estimation based on
Stochastic Automata Networks (SAN) are introduced in [13]. The
system including probabilities of execution times is modeled ex-
plicitly in SAN. The real execution behavior of the components
related to timing and control-flow of a functional implementation
is not considered.

A method for analyzing the worst case timing behavior of con-
current systems is based on communicating automata [20], an ex-
tension to timed automata [3, 6]. However, these models rely on
totally synchronous communication. This restriction reduces the
possible degree of concurrency and is not realistic for communica-
tion with buffering and latencies. Stochastic automata [7] extend
the model by general probability distributions to verify the perfor-
mance of systems. However, the system has to be modeled explic-
itly and no bottom-up evaluation of a functional system model is
given.

In [25], the authors abstract from the internal processes and op-
erate on an acyclic task graph. This model is based on the assump-
tion that each task has a statically determined execution time and
each task starts its execution once all input signals are available.
The main drawback of this model is the missing support of con-
ditional control structures. Therefore, the basic task graph model
is extended by adding control dependencies [16, 23]. Due to the
acyclic structure, the modeling of different communication pro-
tocols and data-dependent loops is not allowed. The model was
extended by a stochastic characterization of execution time prob-
abilities [12]. The internal control-flow of the processes, com-
munication protocols and synchronization primitives are still not
considered. No method for deriving the abstract model from real
implementations is given. Recent efficient approaches address gen-
eral hardware/software platforms, with respect to user-specified I/O
event models [17, 8, 2]. The main issues are caused due to the fo-
cus on the I/O stream behavior and the missing consideration of
the control-flow of the processes. Furthermore, no quantified qual-
itative properties between upper and lower bounds of the system
characteristics are determined. In [1] an analysis method was pre-
sented that allows the extraction of hierarchical event streams out
of the control-flow graph of a system. The analysis focuses the
determination of worst-case system properties based on best-case
module event analysis. An enhancement for reducing pessimism in
worst-case performance analysis was presented in [21]. Execution
traces are incorporated to determine tighter bounds of performance
properties. The model is still abstract and does not consider the in-
ternal control-flow of processes as well as it focuses on worst-case
properties.

Improvements on WCET analysis of software processes for
tightening the bounds of resulting intervals by incorporating depen-
dencies and correlations between code fragments have been pre-
sented in [5, 10]. Although these methods are promising for the
analysis of single software tasks, they are not applicable on sys-
tems with complex interaction and communication. Furthermore,
they only focus the determination of WCET and not the behav-
ior between worst-case and best-case. On the other hand, profil-
ing is used for the determination of characteristics like execution
time, resource utilization or memory requirements. This approach
is very fine-grained and slow. Transaction Level Modeling (TLM)
uses models with components on different levels of abstraction for
speeding up simulation with a potential loss of accuracy. Profiling
or simulating a complete system of parallel processes consumes a
lot of computational resources and synchronization overhead for
coupling multiple simulators is an issue. A modification of the ar-
chitecture or the functionality of a component requires to analyze
the entire system again [22, 9].
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2.1 Activity Model

To represent the temporal behavior of a system, a model called
communication dependency graph (CDG) is used. It was originally
developed for formal communication analysis by determining com-
munication instances that synchronize the control-flow of commu-
nication partners [18]. We apply this model for the system-level
representation of a design. The model considers temporal best-
case and worst-case properties of communication and computation
properties. We extend the model in Section 3 for quantitative de-
termination of the qualitative design properties.

A communication dependency graph (CDG) denotes a consoli-
dated representation of a system consisting of communicating pro-
cesses. In each process, only communication endpoints and the
temporal and causal behavior between them is considered. The
control-flow is represented by edges connecting communication
endpoints. An edge exists if at least one path in the control-
flow graph connects the communication endpoints without pass-
ing any other communication endpoint. The communication end-
points are characterized concerning the synchronization behavior,
and whether they represent sending or receiving events. A CDG is

basically denoted by
CDG :=< Vepe, Ecpc, Ecom,Tcpa,lcpa >, where

o Vo pa is aset of nodes representing communication endpoints.

o Ecpce € Vepa X Vepe is aset of directed edges describing the prece-
dence dependencies between nodes.

e Ecom C Vsena X Viec, with
send =V € Vopa : Tcpa(v) € {sendasync, sSendsync} and
Viee = v € Vopa : Tcpac(v) € {receiveasync, receivesync} is
a set of directed edges describing the communication instances

e The function Tc pa (v) :
Vepa — {sendasync, sendsync, receivessync, receivesync} de-
notes the type of each node.

e The edge weights are represented by the function lcpg : Fopa —
Nop X Ng with minimum and maximum execution time lc pg (v1,v2) =
(€Smins CSmax ) between the nodes vi, v2 € Vepa.

Figure 2: Communication Dependency Graph

A CDG example consisting of three processes i, P>, and P is
depicted in Figure 2. The processes communicate via asynchronous
communication instances C'; with non-blocking sender and block-
ing receiver nodes.

3. ARCHITECTURAL MAPPING

In this section, we briefly explain our mapping and exploration
flow depicted in Figure 3. The starting point is a functional Sys-
temC [15] model of a design, a platform description, mapping in-
formation, and the environment of the system. Although we are
focusing on mapping of software processes onto microcontrollers
in this paper, our approach is applicable for a hardware realization
of the functionality as well. The SystemC model is simulated to-
gether with a specified environment. The environment defines the
interaction of the world with the model, (e.g. sensor packets for
an automotive control system) and the period with jitter between
the packets. We use introspection for gaining access to the com-
munication data sent between SystemC processes. As results, we
determine temporally ordered communication calls of each process
and the data sent through each communication channel.



3 Untimed i
: ‘ Platform ModelJ ‘ SystemC ModelJ ‘ Environment J
! T

I
L] L]

Communication
Data

Specification

Execution Time
Profiling

Untimed
Simulation

Architectural Mappingf

3 ; " Activity Model Communication and

' Execution TlmesJ——‘ Elaboration H Endpoints J System Abstraction
1 CDG

1 7

| ]

| ‘ Waiting Times J._{ Communicati H Sy nizing ‘ Quantitative

. y 7 Evaluation

| of Qualitative

1| Performance Properties

! Analysis

Figure 3: Mapping and Analysis Flow

We use the ordered communication calls for elaborating a con-
solidated control-flow as it is represented by Ecpg and Vopg in
each CDG process. The communication data are used as input for
determining the execution time of code fragments on the target plat-
form with regard to the data computed by the design originating
from the environment. For performing execution time profiling, we
have to map each process from the original SystemC model to the
target platform. Therefore, we are using the tool PORTOS [11] to
generate a set of C/C++ files, each including the functionality of
one SystemC process. The access to SystemC ports is mapped to
special read (...) and write (...) calls as depicted in Fig-
ure 4a.

After compilation, each single process is executed on an In-
struction Set Simulator (ISS). Therefore, we extended the Sim-
pleScalar [4] ISS to handle the special syscalls contained in the
communication stubs. When a communication function is called,
the special syscall is recognized by our extension to the ISS. Two
timestamps are taken that encapsule the computation time of the
communication routine. Using the first timestamp of communica-
tion instance C; and the last timestamp of the previous communi-
cation instance C;_1, the computation time between these two sub-
sequent communication instances of one process is calculated. In
Figure 4a, the computation time between receiving C; and sending
C'i+1 is calculated by t3 — to.

In the next step, the collected execution times are combined with
the elaborated control-flow to the activity model, the CDG.

Based on the CDG, communication analysis is performed as de-
scribed in Section 4 to determine the impact of blocking commu-
nication on the global temporal behavior of the entire system. Fur-
ther results are the detection of non-synchronizing communication
instances that indicate need for buffer insertion or structural bottle-
necks in the system design.

Relating to Section 5, these information are used for quantitative
evaluation of qualitative system properties.

3.1 Execution Time Models

As already mentioned in the introduction, best-case and worst-
case execution times are not sufficient for qualitative design evalu-
ation. For representation of qualitative timing properties of a CDG
edge, we have to extend the basic CDG timing representation. Two
different execution time models are introduced. For the calcula-
tion of the behavior concerning the real order of execution times,
we extend it with a vector of ordered execution times ls(e) with
e € Ecpc. This means that each particular execution time of each
edge e is stored. This enables performance analysis of the sys-
tem without any need for determining execution times again. We
assume a deterministic temporal behavior of the components with
regard to the same input data. We extend the basic definition of the
CDG with

e The function Iscpa(e) : Ecpa — Ny

with ls(e) = (Is1,...,1lsy) (1)
For our probabilistic estimation approach, we assume that the
edge e can have n different execution times Ip1, ..., [p,. These ex-

ecution times appear with probabilities of P(Ip1), ..., P(Ipn). The
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execution times and probabilities can be calculated from profiled
execution times represented by Is(e). Therefore, the number of oc-
currence of each different execution time Is; € [s(e) is summed up
as n; and divided by the number n of all profiled execution times.
lp; = ls; and P(lp;) = n;/n. Furthermore, Ip(e) can be taken
from a specification or assumed by the designer.

We extend the basic definition of the CDG with

e The function Ilpcpc(e) : Ecpa — (Ng x RT)™

lp1, P(lp1)

with Ip(e) = ,n € Nand 2)

Ipn, P(lpn)

> Plp)=1

i=1l..n

3)

3.2 Activity Model Elaboration

In this section, we briefly introduce our method for elaborat-
ing the CDG analysis model from execution traces of instrumented
SystemC models. The ordered vector of communication endpoints
CE that was derived from untimed simulation is used as input of
the algorithm. The ce € CE are characterized by unique IDs.
The algorithm assumes that a deterministic control-flow according
to the order of communication endpoints exists. Nevertheless, the
algorithm is able to incorporate branches in the control-flow even
if the branches end at different communication endpoints. If the
branch selection is changing indeterministically, the control-flow is
unrolled. If the branch selection is deterministic, the algorithm de-
tects recurring states and inserts backward edges in the elaborated
process representation.

The input of the algorithm is the vector C'E of communication
endpoints. Each communication endpoint is characterized by its
blocking property, and whether it is send or receive. It returns a
set of nodes V;.¢s and a set of edges E.s as a representation of one
CDG process. At the beginning, new nodes are inserted as long
as no other node with the same ID exists in V... When a node
with an already existing ID is inserted, the assumption is that a
backward edge to the existing node is inserted. The current state is
stored. Then the next nodes from C'E are compared with the exist-
ing successors of the already existing node in the CDG. If there is a
deviation between the order of the nodes in C'E and the already in-
serted nodes in Ve, the algorithm uses backtracking and restores
the state that was saved before inserting the backward edge. After
that, a new node and an edge connecting the node with its successor
are inserted. Otherwise, if the same node from which the backward
edge was created is reached, the insertion of a backward edge was
correct and the state of the system after inserting the nodes from
CE is stored.

A small elaboration example is shown in Figure 4b. The list of
communication endpoints depicted on the left side is elaborated to
the process representation on the right side.

A ]

<read, input>
<write, address>
<write, data>
<write, address>
<write, data>
<write, ready>
<read, input>
<write, address>
<write, data>
<write, address>
<write, data>
<write, ready>
<read, input>
S >

(a) Execution Time (b) Elaboration Example

Determination
Figure 4: CDG Elaboration

Later, execution times are annotated to the edges of the elab-
orated graph using the ID of enclosing communication endpoints
and the order of communication instances.



4. COMMUNICATION ANALYSIS

The objective of communication analysis is the determination of
waiting times in blocking communication endpoints. The time a
process has to wait in a blocking endnode of communication in-
stance C' = (vs,v,) of a CDG is denoted by the slack variable
z(C'). This time is calculated beginning at the last communica-
tion instance Cpre = (vn, vy) that potentially synchronizes the two
processes. With an iterative algorithm, we are using already deter-
mined slack values z(C;) for the calculation of subsequent ones.
The algorithm terminates if the vector of system wide slack values
recurs. Therefore, the following operators for path calculation have
to be defined. Their definition for both models of computation as
well as illustrative examples are given later.

1. Summing up latencies &

2. Calculation of slacks in blocking communication nodes by

subtraction of latencies &

3. Incorporation of slacks communication

nodes ®

in blocking

4. Traversing a (potentially) non-synchronizing communication
instance ®—

o

Starting path calculation from (potentially) unsynchronized
communication |z(C')| -

The condition for synchronization and the quantitative determina-
tion of waiting times can be formulated by the following two equa-
tions:

z(C) = (|2(Cpre)l - @ l(vp ~ vs)) © (l(vp ~> vy)
z(C) = U(vn ~ v5) © (|12(Cpre)|- & Lve ~> vr))

“)
®)

The selection of one of these equations depends on the position of

the blocking node vy, in the control-flow of the processes, whether
it is prior to v, or prior to v,.

The equations mean that the control-flow of a process has to wait
if it arrives at the blocking communication endpoint of a communi-
cation instance before the control-flow of the communication part-
ner arrives at the non-blocking endpoint. The application of the
operators has to be defined for the two presented models.

4.1 Execution Time Vectors

The vector [s(e) can be used for determining the same perfor-
mance characteristics as determined by a simulation of the system
of communicating processes. A modification of one component
only demands for determining the execution time characteristics
of this component as long as the functionality does not change.
In comparison to our probabilistic estimation approach (Section
4.2), we need to store the ordered vector of execution times Is(e)
instead of summing up the occurrence of equal execution times.
Depending on the environment of each component, these data can
grow up to some gigabytes for each component configuration. For
the ¢-th utilization of an edge ecp¢ in system analysis, the i-th
value of [s(e) is used. The operations @ and © are treated as
+ and —. The incorporation of a slack in a blocking communi-
cation node by the operation &, is handled as +maz(0, z(C)).
Traversing a potentially unsynchronized communication instance
is treated as +maz(0, —z(C)). The operation |z(C)|- is han-
dled as max (0, —z(C)). Although we are using max expressions
in this paper, we do not define a new semantics for the (mazx, +)
algebra.

4.2 Execution Time Distributions

Here we describe our proposed analytic approach for probabilis-
tic estimation of the system behavior. Our model of computation
assumes that each execution time of edge e; can be followed by
each execution time of edge e>. Obviously, this blind combina-
tion ignores potential dependencies of code blocks and may lead to
a misprediction of system properties itsself. As presented in Sec-
tion 2, several approaches exist to identify dependent code blocks
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for WCET [5, 10] and worst-case performance analysis [21]. Ex-
perimental results in Section 6 show that the deviation between the
probabilistic estimation and the real behavior is under 15%. Never-
theless, we work on an extension to the proposed method by apply-
ing an additional correction operator for incorporating depencies
of execution times. This method can be integrated in the proposed
design-flow but this issue is out of scope of this paper. Ip is applied
instead of [ for denoting latency distributions. Although the needed
operations are based on basic probability theory, issues according
the incorporation of waiting times and non-synchronizing commu-
nication have to be considered. Waiting times at communication
endpoints can not be simply combined with each different execu-
tion time of the path leading to this CDG node. When waiting times
at blocking CDG nodes are incorporated in path calculation, it has
to be ensured that they are only combined with the execution times
they were calculated from. Otherwise, the analysis itsself would
lead to a misprediction of the system behavior. Furthermore, if

(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Figure 5: Operand Application Examples

communication is not or not always synchronizing the control-flow
of the processes due to timing issues this impact has to be incorpo-
rated as well. This needs to be defined with regard to a traversion
of a non-synchronizing communication instance and the incorpora-
tion of waiting times at the blocking communication endpoint. The
blocking property of a node is illustrated by two concentric circles
surrounding it. Below, the five mentioned operators are defined and
illustrated by the examples in Figure 5.

(1.) Concerning the example depicted in Figure 5a that considers
two subsequent edges (v1,v2) and (v2,v3) € Ecpa, with a =
Ip(v1,v2),b = Ip(va,v3), T(v2) = {sendasync, receiveasync s
the latency Ip(v1 ~~ v3) is denoted by:

Ip(vy ~ v3) = o™ g™ = L)
Cli—1)yn+j = (ai +bj7P(ai) . P(bj)) 1 <i<m,1<j<n

(2.) For calculating the time the control-flow has to wait at commu-
nication instance C' = (vs, v,) depending on the paths Ip(vy ~»
vs) = a and lp(v2,v,) = b from a previous communication in-
stance Cpre = (v2,v1) that synchronizes the communicating pro-
cesses, the result of

z(C) =

Cli—1)n+j

2™ g p(m) — mem)
(ai —bj, P(a;) - P(b;)):1<i<m,1<j<n

consists of tupels of time z and probability P(x), the control-flow
has to wait in the blocking communication endpoint. Figure 5b
presents a simple example.

(3.) Like illustrated in Figure 5c two edges (v1,v,) and (v, v2) €
Ec¢pe with a = Ip(vi,v,) and b = Ip(vy, v2) and a communica-
tion instance C' = (vs, vr) With 7(vr) = receivesync are given.
For incorporating the time the control-flow waits in v, we define:

(a(m) R4 I(C)(P'm)) @ b = (P g p(n)

(ai + maz(—=z(C) (i—1)p+q,0), P(@(C)(i—1)p+q))
1<i<m,1<q<p

Ip(vy ~ v2) =

Cli-1)p+q =

(4.) Given are a communication instance C' = (vs, vr) and a path
(1)1 ~ US) with lp(l)l ~ Us) = a. T(’Us) = Sendasync, T(UT)
receivesync. Then

™ @ z(C«)(P‘m) — c(Pm)
(a; + maw(—w(C)(i_l)p+q, 0), P(w(C)<i_1)p+q))
1<i<m,1<q<p

Ip(vy ~ vy) =

Cli-Dpt+q =



incorporates the timing impact of traversing a potentially unsyn-
chronizing communication instance C. An example scenario is de-
picted in Figure 5d.

(5.) When the synchronization condition in Equation 4 and 5 for a
communication instance C' is formulated, the influence on timing
effected by a potentially non-synchronizing previous communica-
tion instance Cpy has to be considered. The operation |z(Cpre)|—
is defined by:

RO)

(maxz(xz(C);,0), P(z(C);))
1<1<k

l2(C)*] -

4]

It is not necessary to calculate the entries in the slack matrix if no
negative entry will be contained in it. In that case, these values are
not needed and can be removed for optimization issues. The term
a ®+ x(C) can be used instead for symbolic slack incorporation.
As an example, Ip(v1,vs) = a, Ip(v2,vr) = b, Ip(vyr, v3) = cand
the asynchronous communication instance C' = (vs, vy-) are given.
The previous synchronizing communication instance was (vi, v2).
C' is completely synchronizing. The calculation of Ip(va ~ v3) is
defined by:

p(vs ~v3) = (b @y ()™ ™) @ W
_ (b(") ®4 (a(m) s b("))) ® R

= (bj+ai—bj,P(a;) - P(b;)) @ ™
Due to condition ( 3)

= (a;, P(a;)) ® k) — g (m) ® (R
1<i<m,1<j53<n

The application of communication analysis is briefly presented in
Section 5.

4.3 Classification of Execution Times

For reducing computational effort of the probabilistic estimation
approach, different execution times can be classified to groups. Al-
though this may lead to a loss of accuracy, it provides an effective
method for deriving an initial overview about the qualitative sys-
tem behavior with lower computational effort. Arbitrary classifi-
cation algorithms can be applied. Examples are a division of the
execution time distribution of an edge to equidistant intervals or a
classification depending on a maximal distance ¢, to its neighbors.
All execution times in each interval are combined to one execution
time and weighted depending on their probabilities. The probabili-
ties are summed up. If each interval has a size of n, the maximum

number of operations m (for e.g. @) is reduced to m/n>.

5. QUANTITATIVE EVALUATION

In this section, we briefly want to present the application of
our novel approach for qualitative system analysis that is based on
an approach for quantitative system analysis [18]. Our approach
for performance analysis uses the information on waiting times in
blocking communication endnodes that are determined using com-
munication analysis. One direct result from communication analy-
sis is the identification of permanently non-synchronizing commu-
nication instances. This leads to data loss due to high input rates.
The risk of data loss can be determined using our methodology as
well as the impact of buffer insertion. These information can be
used for detecting bottlenecks and for explorating the underlying
system architecture. The same operators as defined in Section 4 are
used for determination of the performance characteristics. We are
not presenting new analysis methods for system properties in this
paper. We describe the quantitative evaluation of qualitative prop-
erties between best-case and worst-case. Our extension to the anal-
ysis methodology can be applied to previously published analysis
methods, like e.g. the determination of worst-case response time
(WCRT), system latency, component utilization or access conflicts
on shared communication resources [19] for performance risk eval-
uation. In Section 6, we use the end-to-end system latency between
the input v; and the output vo that can be determined by computing
l(vr ~ vo) as example.
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The analysis does not only allow the determination of compu-
tation resource characteristics. The information on communica-
tion instances and the temporal relation between them can be ap-
plied to determine the impact of the communication infrastructure
on the system characteristics. Therefore, typical parameters like
latency and transmission time of communication instances are in-
corporated. The proposed approach allows an exploration towards
the functionality, the environment, the mapping, and the underlying
platform. A modification of components or an exchange of com-
plete subsystems can be reflected without completely analyzing the
entire system again.

6. EXPERIMENTAL RESULTS

In this section, we present experimental results from the appli-
cation of our methodology. According to the flow presented in
Section 3, we started with a SystemC model of a Viterbi decoder
consisting of nine processes and mapped the two processes with
the main functionality, vit_fwd and vit_bwd each to a Pow-
erPC 604 with 100 MHz. The resulting elaborated CDG represent-
ing the inter-process communication structure is depicted in Fig-
ure 6.

Vit bwd Vitmem ¢

O
'

Bytemem_r

Figure 6: Viterbi Decoder CDG

The edge weights characterizing the latencies of the four mem-
ories were annotated with 60 ns from the memory specification.
The same latencies were used for the module vit_stack that
has the same latency characteristics like memory. We profiled the
execution times relating to two different environments the decoder
processed. We used a 1 MB pgm image as one input and a 320 KB
XML file as another. The data packages arrived with an inter-arrival
time of 160.3 ms. Of course, this arrival time model can be mod-
ified using probabilities, periods and jitters. Some execution time
distributions of Viterbi CDG edges determined using the pgm im-
age are depicted in Figure 7. It is apparent that these distributions
do not correspond to common statistical distributions often used
in theoretical models. Then we used the information derived from
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Figure 7: Execution Time Distributions
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profiling and calculated the end-to-end latency Ip(vr ~» vo) of the
entire design between the nodes v and vo using both approaches
presented in Section 4 and Section 5. These results are depicted
in Figure 8. With a growing amount of input data, the upper and
lower bounds of the packet latency calculation using execution time
vectors (I.) were getting closer to the limits of the probabilistic es-
timation approach(Il.). Please note that the intervals determined
using static timing analysis [18] are much larger, but they can be
also included to the execution time distribution. A closer inspection
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Figure 8: Viterbi Decoder Packet Latency

on a comparison between packet latency calculation using execu-
tion time vectors, probabilistic latency estimation and probabilistic
latency estimation with run-time classification is depicted in Fig-
ure 9a and 9b. The classification uses equidistant intervals of 50 ns.
For a comparison of the three results, we subtracted the accumu-
lated values of both estimated curves from the curve using execu-
tion time vectors. These results are depicted in Figure 9¢c and 9d.
The maximum deviation of the estimated curve without classifica-
tion is below 15% using the pgm and below 2% using the XML as
input. This shows moreover that the used input data have an im-
pact on the typical design latency. The application of classification
leads to a maximum deviation of the estimated curves below 25%
using the pgm and below 10% using the XML. The applied classi-
fication algorithm reduced the number of necessary arithmetic op-
erations by 35%. Concering the XML input data, the probabilistic
estimation without classification needs 34% less arithmetic oper-
ations than using execution times vectors. The related execution
time profiles /s need 1.3 GB of storage.
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7. CONCLUSION AND FURTHER WORK

The early availability of quantitative design characteristics for
comparing system requirements with design properties is valuable
for designers. Unlike other approaches in this area, we did not fo-
cus on the determination of pessimistic best-case and worst-case
quantities of system properties. Our proposed analysis methodol-
ogy determines qualitative numbers between best-case and worst-
case of system properties and quantifies them with probabilities.
Relating this issue, we developed a hybrid approach for incorporat-
ing execution time profiling and system-level analysis techniques.
We presented two different models of computation: One for incor-
porating execution time vectors from profiling and one that com-
bines all execution times to a distribution function. The determined
quantities can be used to evaluate the performance risk of a design
relating to requirements from the specification. We implemented
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our analysis methods and presented experimental results from a
real-world design, a Viterbi decoder. The comparison of both ap-
proaches shows, the hybrid probabilistic estimation approach al-
lows quite accurate requirement evaluation at system-level. Next
steps towards an enhancements of the probabilistic estimation ac-
curacy are the application of techniques known from WCET analy-
sis for incorporating dependencies between code fragments at this
high level of abstraction.

8. REFERENCES

[1] K. Albers, F. Bodmann, and F. Slomka. Hierarchical event streams and event
dependency graphs: A new computational model for embedded real-time
systems. In ECRTS '06: Proceedings of the 18th Euromicro Conference on
Real-Time Systems, pages 97-106, Washington, DC, USA, 2006. IEEE
Computer Society.

K. Albers and F. Slomka. Efficient feasibility analysis for real-time systems
with edf scheduling. In DATE ’05: Proceedings of the conference on Design,
Automation and Test in Europe, pages 492-497, Washington, DC, USA, 2005.
IEEE Computer Society.

R. Alur. Timed Automata. In Proceedings of Computer-Aided Verification,
1999.

T. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastructure for
computer system modeling. IEEE Computer, 35(2):59-67, 2002.

G. Bernat, A. Colin, and S. M. Petters. Wcet analysis of probabilistic hard
real-time systems. In RTSS '02: Proceedings of the 23rd IEEE Real-Time
Systems Symposium (RTSS’02), page 279, Washington, DC, USA, 2002. IEEE
Computer Society.

S. Bradley, W. Henderson, and D. Kendall. Using Timed Automata for
Response Time Analysis of Distributed Real-Time Systems. In Proceedings of
Workshop on Real-Time Programming WRTP, 1999.

J. Bryans, H. Bowman, and J. Derrick. Model checking stochastic automata.
ACM Trans. Comput. Logic, 4(4):452-492, 2003.

S. Chakraborty, S. Kiinzli, and L. Thiele. A General Framework for Analysing
System Properties in Platform-Based Embedded System Designs. In
Proceedings of DATE, Munich, 2003.

N. Dhanwada, R. A. Bergamaschi, W. E. Dungan, I. Nair, P. Gramann, W. E.
Dougherty, and I.-C. Lin. Transaction-level modeling for architectural and
power analysis of PowerPC and CoreConnect-based systems. Springer: Design
Automation for Embedded Systems, 2000.

S. V. Gheorghita, S. Stuijk, T. Basten, and H. Corporaal. Automatic scenario
detection for improved wcet estimation. In DAC ’05: Proceedings of the 42nd
annual conference on Design automation, pages 101-104, New York, NY,
USA, 2005. ACM Press.

M. Krause, O. Bringmann, and W. Rosenstiel. Target Software Generation: An
Approach for Automatic Mapping of SystemC Specifications onto Real-Time
Operating Systems. Springer: Design Automation for Embedded Systems, 2007.
S. Manolache, P. Eles, and Z. Peng. Schedulability analysis of applications with
stochastic task execution times. Trans. on Embedded Computing Sys.,
3(4):706-735, 2004.

R. Marculescu and A. Nandi. Probabilistic application modeling for
system-level performance analysis. In DATE ’01: Proceedings of the
conference on Design, automation and test in Europe, pages 572-579,
Piscataway, NJ, USA, 2001. IEEE Press.

M. A. Marsan, G. Conte, and G. Balbo. A class of generalized stochastic petri
nets for the performance evaluation of multiprocessor systems. ACM Trans.
Comput. Syst., 2(2):93-122, 1984.

W. Miiller, W. Rosenstiel, and J. Ruf, editors. SystemC: methodologies and
applications. Kluwer Academic Publishers, Norwell, MA, USA, 2003.

P. Pop, P. Eles, Z. Peng, and T. Pop. Analysis and optimization of distributed
real-time embedded systems. In DAC '04: Proceedings of the 41st annual
conference on Design automation, pages 593—-625, New York, NY, USA, 2004.
ACM Press.

S. Schliecker, M. Ivers, and R. Ernst. Integrated Analysis of Communicating
Tasks in MPSoCs. In CODES+ISSS "06. ACM Press, 2006.

A. Siebenborn, O. Bringmann, and W. Rosenstiel. Worst-case performance
analysis of parallel, communicating software processes. In Proceedings of the
Tenth International Symposium on Hardware/Software Codesign, 2002.

A. Siebenborn, A. Viehl, O. Bringmann, and W. Rosenstiel. Control-Flow
Aware Communication and Conflict Analysis of Parallel Processes. In
Proceedings of the 12th Asia and South Pacific Design Automation Conference
ASP-DAC 2007, Yokohama, Japan, 2007.

'W. Stark and S. A. Smolka. Compositional Analysis of Expected Delays in
Network of Probalistic I/O Automata. In IEEE Symposium on Logic in
Computer Science, 1998.

E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative characterization of
event streams in analysis of hard real-time applications. In Real-Time and
Embedded Technology and Applications Symposium, 2004. Proceedings. RTAS
2004. 10th IEEE, pages 450-459, 2004.

T. Wild, A. Herkersdorf, and G.-Y. Lee. TAPES-Trace-based architecture
performance evaluation with SystemC. Springer: Design Automation for
Embedded Systems, 2006.

Y. Xie and W. Wolf. Allocation and Scheduling of Conditional Task Graph in
Co-Synthesis. In Proceedings of DATE, Munich, 2001.

A. Yakovlev, L. Gomes, and L. Lavagno. Hardware Design and Petri Nets.
Kluwer, 2000.

T.-Y. Yen and W. Wolf. Performance Estimation for Real-Time Distributed
Embedded Systems. In IEEE Transactions on Parallel and Distributed Systems,
volume 9, November 1998.

[2]

[3]
[4

[5

[6

[7

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(191

[20]

[21]

[22]

(23]
[24]
[25]




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


