
Compile-Time Decided Instruction Cache Locking Using
Worst-Case Execution Paths∗

Heiko Falk
Computer Science 12

University of Dortmund
D-44221 Dortmund

Heiko.Falk@udo.edu

Sascha Plazar
Computer Science 12
University of Dortmund

D-44221 Dortmund
Sascha.Plazar@udo.edu

Henrik Theiling
AbsInt Angewandte Informatik

Science Park 1
D-66123 Saarbr-ucken

theiling@absint.com

ABSTRACT
Caches are notorious for their unpredictability. It is difficult
or even impossible to predict if a memory access results in
a definite cache hit or miss. This unpredictability is highly
undesired for real-time systems. The Worst-Case Execution
Time (WCET) of a software running on an embedded pro-
cessor is one of the most important metrics during real-time
system design. The WCET depends to a large extent on
the total amount of time spent for memory accesses. In the
presence of caches, WCET analysis must always assume a
memory access to be a cache miss if it can not be guaran-
teed that it is a hit. Hence, WCETs for cached systems are
imprecise due to the overestimation caused by the caches.

Modern caches can be controlled by software. The soft-
ware can load parts of its code or of its data into the cache
and lock the cache afterwards. Cache locking prevents the
cache’s contents from being flushed by deactivating the re-
placement. A locked cache is highly predictable and leads
to very precise WCET estimates, because the uncertainty
caused by the replacement strategy is eliminated completely.

This paper presents techniques exploring the lockdown of
instruction caches at compile-time to minimize WCETs. In
contrast to the current state of the art in the area of cache
locking, our techniques explicitly take the worst-case exe-
cution path into account during each step of the optimiza-
tion procedure. This way, we can make sure that always
those parts of the code are locked in the I-cache that lead
to the highest WCET reduction. The results demonstrate
that WCET reductions from 54% up to 73% can be achieved
with an acceptable amount of CPU seconds required for the
optimization and WCET analyses themselves.

Categories and Subject Descriptors: B.3.2 [Memory
Structures]: Cache memories; B.3.3 [Memory Structures]:
Worst-case analysis; D.3.4 [Programming Languages]: Com-
pilers; Optimization

General Terms: Algorithms, Performance

∗Partially funded by the European IST FP6 NoE ARTIST2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

1. INTRODUCTION
In contrast to the speed of memories, processor speed has

increased dramatically in the past years. To bridge the in-
creasingly large gap between processor and memory speed,
memory hierarchies based on caches are today’s state of the
art. Caches have the advantage of being transparent to the
software running on a system – no code modification has to
be done since caches are hardware controlled. Caches are ef-
fective in reducing the average-case execution time (ACET)
of a system.

For real-time systems with hard timing constraints, caches
are problematic due to their unpredictability. Since they
are hardware controlled, it is virtually impossible to de-
termine the latency of a memory access. To verify that
timing constraints are met, the designer needs to know the
WCET which may be heavily overestimated in the presence
of caches. Such overestimates are disadvantageous since
they lead to higher production costs of the entire system.
For these reasons, Real-time designers have often used pro-
cessors without caches. Such systems suffer a low average-
case performance since each memory access is served by the
slow main memory. Processors with scratchpad memories
have both a good average-case and worst-case performance.
However, caches are more common than scratchpads and
can be found in almost any modern processor.

Modern caches allow to lock their contents, i. e. to pro-
tect it from being flushed by disabling the replacement. This
way, it is possible to predict access times of data or instruc-
tions that have been locked in the cache, and to make precise
statements about the cache’s worst-case timing.

In this paper, we present techniques for compile-time de-
cided I-cache lockdown to minimize WCETs. Our algo-
rithms determine a set of functions of a program that is
locked into the cache at system startup time. During the
whole execution time of the program exploiting cache lock-
ing, the locked cache’s contents remains invariant (“static
locking”). Cache contents selection is done such that the set
of selected functions leads to the highest WCET reductions.

WCET minimization is a difficult task due to the inher-
ent worst-case nature of WCETs. In this paper, WCET
refers to an upper bound of the maximum execution time a
software can ever take. In terms of an application’s control
flow graph (CFG), the WCET is the execution time along
the longest path through the CFG from the program’s start
to its end node. Realistic applications typically have more
than one path through their CFGs. In general, there are
lots of feasible parallel paths through a CFG. Almost all
these paths are irrelevant for the WCET since the WCET

143

only depends on the length of the worst-case execution path
(WC-path). However, if an optimization modifies an ap-
plication and reduces its WC-path WP, it is possible that
after this modification, a completely different path WP’ is
the new WC-path.

In the course of an optimization, the WC-path can change
within the CFG. An optimization reducing WCET must
take these WC-path changes into account if it wants to be
effective. If not, code modifications may be performed at
places in the CFG being irrelevant for the WCET since they
do not lie on the current WC-path. Hence, the optimization
does not perform an effective code transformation. Unfortu-
nately, previously published cache locking optimizations for
WCET reduction do not take changing WC-paths into ac-
count. The techniques presented in this paper are superior
to the current state of the art in that they recompute the
current WC-path after each taken decision. Hence, we can
be sure to achieve maximum WCET reductions since only
relevant code is locked in the I-cache. In addition, our tech-
niques for WC-path recomputation are realized efficiently
preventing excessively long runtimes of our optimizations.

Section 2 gives a survey of related work. Section 3 presents
our proposed workflow of I-cache locking, followed by the
WC-path aware I-cache locking algorithm in Section 4. Sec-
tion 5 describes the benchmarking results, and Section 6
summarizes this paper and gives an outlook on future work.

2. RELATED WORK
The papers [4, 7] present different algorithms for static

I-cache lockdown. These publications are very close to the
work presented in this paper. In [7], the authors present two
heuristics for cache contents selection. The first one tries to
minimize CPU utilization by locking an I-cache. The second
algorithm minimizes interference between tasks. In [4], an
additional genetic algorithm for cache locking is proposed.
All three algorithms have in common that they do not con-
sider changing WC-paths at all. Instead, the WC-path is
determined only once before the optimization process takes
place. After that, optimization is done along this single
WC-path. The authors admit that their approach is non-
optimal. Due to the consideration of only one WC-path, we
call such techniques “single-path analyses” in the following.

In [6], the techniques of [4, 7] for I-cache locking are ex-
tended to deal with changing WC-paths. However, the way
how WC-paths are recomputed is not detailed. The au-
thors use a parameter N trading off accuracy of WC-path
recomputation with runtime consumption. Since runtimes
for WC-path recomputation are still very high, the authors
are unable to provide results for some of their benchmarks.
In contrast, the techniques presented here scale much better
so that we can present results for very large benchmarks.

The work of [8] is complementary to this paper since it
presents a D-cache locking algorithm for WCET minimiza-
tion. Using an extended version of reuse vectors, a system
of cache miss equations is set up describing where data reuse
translates to locality. These equations can be solved stati-
cally and define a set of data to be locked in the D-cache.
Data dependencies in the CFG which can not be analyzed
statically are handled by a heuristic that locks data which is
likely to be accessed. In this paper on D-cache locking, the
WC-path is not considered – neither implicitly nor explicitly.

In terms of predictability, locked caches behave similar to
software-controlled scratchpad memories. In the past, sev-

Compiler
Execu-
table

Linker

I-Cache
Optimizer

aiT WCET
Analysis

ANSI-C
Source

WCET-
Optimized

Exe

Startup
Code

Linker

O
b
je

c
t

F
ile

s

E
L
F

B
in

a
ry

In
fo

rm
a
tio

n
Figure 1: Workflow of I-Cache Locking

eral papers were published exploiting scratchpads for energy
dissipation minimization. In [9, 10], the influence of scratch-
pads on WCET prediction is studied. Even though WCET
is targeted in that work, the selection algorithm deciding
which objects to be placed in the scratchpad is not WCET-
aware. Instead, a selection algorithm for energy reduction
is employed, and the effect of this energy reduction strat-
egy on WCET is evaluated afterwards. Hence, that work is
not a true WCET-aware optimization and does not consider
WC-paths at all.

3. WORKFLOW
As target architecture, we chose the ARM920T processor.

This family of ARM processors is commonly used and is thus
a representative embedded processor. Its I-cache is 16 kB
large. The cache is 64-way set-associative, each of the 64
sets holds 8 lines. The line size is 32 bytes. Lockdown can be
done per set, always over all 8 lines of a set. Hence, locking
can be realized at a granularity of 256 bytes. Locking is
realized by two coprocessor registers, the victim base pointer
and the victim pointer register [2].

The techniques for I-cache locking presented in this pa-
per are realized as post-pass optimization, i. e. they take
place after compilation and linking. The optimization work-
flow (cf. Figure 1) takes a compiled and linked binary ex-
ecutable for the ARM920T processor as input. Using tools
from the GNU binutils suite, some useful information is ex-
tracted from this ELF binary, e. g. the contained functions,
their start addresses and sizes in bytes. In a second step,
static WCET analyses of the binary are performed. For
this purpose, the commercial software aiT for ARM [1] is
used. Depending on the structure of the binary program
under analysis, aiT needs to be invoked several times. Af-
ter all calls of aiT are done, WCET-relevant data of the
binary’s functions (e. g. execution frequencies and WCETs
of functions, caller / callee relationships) are extracted from
aiT’s outputs. Using this data, the main selection algorithm
takes place. It determines those functions to be locked in the
I-cache. During optimization, the selection algorithm con-
tinuously updates its WC-path without any further WCET
analysis. After the selection is done, additional startup code
is emitted that performs the lockdown of the selected func-
tions before program execution. The binary program needs
to be re-linked with this new startup code again, resulting
in an optimized executable.

4. WC-PATH AWARE ALGORITHM FOR
I-CACHE LOCKING

This section presents the proposed algorithms for WC-
path aware I-cache locking. First, an execution flow graph
needs to be built (cf. Section 4.1). Using this graph, the
WC-path can be computed as described in Section 4.2. The

144

algorithm for I-cache contents selection is presented in Sec-
tion 4.3.

4.1 Execution Flow Graph Generation
Using information of the WCET analyzer aiT (cf. Sec-

tion 3), the context-specific function call graph (CCG) of
the application under analysis is built. In contrast to a nor-
mal call graph, where each function is represented by ex-
actly one graph node, a single function can be represented
by several nodes in the CCG. This is due to the fact that
aiT distinguishes so-called execution contexts for functions.
Such a context contains information about all different ways
a function f can be invoked in the normal call graph.

Example 1: Assume the
conventional call graph depicted
as the left graph. As can be
seen, function c is called from b

and d. Hence, our WCET ana-
lyzer attaches two different con-

main

b

c

a d

main

b

c1

a d

c2

texts to c. The first context contains the information that c

can be invoked via the path main → a → b → c, and the sec-
ond context contains the path main → d → c. In the CCG,
function c is instantiated twice, each node representing an
invocation of c via one of the two contexts.

In the CCG, each node represents a function in a certain
context. An edge (x, y) indicates that function x directly
calls y in a context. Weights wx attached to nodes of the
CCG represent a function’s WCET for a particular con-
text, and edge weights w(x,y) computed by aiT represent
how many times y is called by x in a context.

However, the WC-path required for cache contents selec-
tion can not be computed using the CCG, because informa-
tion about the control flow within functions is hidden in the
CCG. For example, the code if (z) a(); else d(); results
in structurally the same CCG as a(); d(); even though the
resulting WC-paths are differing. To overcome this problem,
the CCG is translated into the execution flow graph (EFG)
which correctly models all possible execution paths between
functions.

Definition 1. The EFG is a weighted graph EFG = (V ,
E, wv, we). V represents the set of context-specific func-
tions. The node weight wv represents the context-specific
WCET of function v for a single execution of v. The edge
weight we = w(x,y) denotes an upper bound of how many
times execution flow passes from x to y in a context. The
edges in the EFG are created such that all paths from the
source node to the sinks in the EFG correspond to all possi-
ble ways of passing the control flow between the functions.

Example 2: Assume the CCG shown in Example 1, and
that main looks as follows: if (z) a(); else d(); Due to the
if-else-statement in main, there are two mutually exclusive
paths how the functions can be executed: main → a → b →
c1 or main → d → c2. However, if main looks as follows:
a(); d();, there is only one possible sequence of function
invocations: main → a → b → c1 → d → c2. This path
contains the edge (c1,d) since after the first invocation of c,
the flow of execution passes back to main where d is called
unconditionally afterwards. These different constellations
of execution flow need to be captured by the EFG, since it
models all possible ways of invoking functions.

To generate the EFG, a depth-first search of the CCG is
combined with static WCET analysis (cf. Figure 2). The

1 list<node> DFS(CCG C, EFG G, node s) {
2 list<node> pathEnds = (s);

3 C→setVisited(s);

4 if (G = ∅) {
5 C = doWCETAnalysis(s);

6 G→InsertNode(s, C→ws); }
7 for (v ∈ C→getChilds(s))

8 if (!C→visited(v))

9 if (C→wv == 0) {
10 CCG D = doWCETAnalysis(v);

11 G→InsertNode(v, D→wv);

12 G→InsertEdge(s, v, C→w(s,v));

13 pathEnds += DFS(D, G, v); }
14 else {
15 G→InsertNode(v, C→wv);

16 for (node n ∈ pathEnds)

17 G→InsertEdge(n, v, C→w(s,v));

18 pathEnds = DFS(C, G, v); }
19 return pathEnds; }

Figure 2: DFS-like Algorithm for EFG Generation

CCG computed by aiT can contain nodes v with a weight of
0, i. e. functions with WCET 0. This situation indicates that
v does not lie on the WC-path, because aiT reports WCETs
only for those functions being on the WC-path. Hence, if a
node s has non-zero weight, but a child v of s has weight
zero, this implies that s calls v conditionally, as discussed
in Example 2, because the WC-path contains s but not v.
Using such WCETs of zero, the internal structure of func-
tions can be deduced which is required for EFG construction
(lines 9 - 13). If a conditional function call is detected this
way, a new parallel path in the EFG branching from s and
containing v is created.

Since our cache contents selection algorithm requires to
know the WCET of all functions, including those not lying
on the current WC-path, aiT is invoked several times. In the
above situation (s, v) with ws �= 0 and wv = 0, aiT is called
again (line 10), now not with main as starting point, but with
v. The algorithm by itself has linear complexity since each
node of CCG is visited only once, and the resulting EFG
has the same size as the CCG. The computational overhead
for WCET analyses performed during EFG generation is
estimated in Section 4.3.

4.2 WC-Path Construction
By definition, the WC-path is the path with maximal ex-

ecution time the flow of control through a program can ever
take. Since the EFG created in Section 4.1 reflects all pos-
sible execution paths within a program, the WC-path can
be determined by finding the longest path from a program’s
start to its end nodes. Here, path lengths refer to the sum
of the edge weights (execution frequencies) multiplied by
node weights (execution times). To determine the longest
path in EFG, we employed a modified variant of Dijkstra’s
algorithm [3] finding shortest paths in graphs (cf. Figure 3).

Our algorithm maintains three different data structures.
The set of nodes S contains all nodes already processed.
For a given node v, the array d contains the longest distance
between the start node s and v. Here, distance denotes
the product of a node’s WCET with its execution frequency
(lines 4, 13). For a node v, the array p contains the prede-
cessor of v on the longest path from s to v. In contrast to
Dijkstra’s algorithm, our code always processes that node v0

145

1 set<node> WC Path(EFG G, node s, set<node> e) {
2 set<node> P = ∅, S = { s };
3 for (node v ∈ G→V)

4 d[v] =

(
0 if v = s
G → w(s,v) ∗ G → wv if (s, v) ∈ G → E
−∞ otherwise

5 p[v] =

j
s if (s, v) ∈ G → E, s �= v
undefined otherwise

6 while (S != G→V) {
7 v0 = v ∈ (G→V \ S) | d[v] � max ;

8 if (d[v0] == −∞)

9 break;

10 S = S ∪ { v0 };
11 for (node v ∈ G→getChilds(v0), v �∈ S)

12 if (d[v0] + G→w(v0,v) ∗ G→wv > d[v]) {
13 d[v] = d[v0] + G→w(v0,v) ∗ G→wv;

14 p[v] = v0; } }
15 for (node v ∈ e | d[v] � max ; v �= s; v = p[v])

16 P = P ∪ { v };
17 P = P ∪ { s };
18 return P; }

Figure 3: Algorithm for WC-Path Construction

leading to longest distances (line 7). During each iteration,
the arrays d and p are invariantly updated such that longest
distances are considered (lines 13, 14), instead of shortest
ones in the case of Dijkstra’s algorithm.

Using the array p computed by Algorithm 3, the WC-path
from a program’s start to an end node can be determined by
simply indexing p[v], starting with v equal to the program’s
end node with longest distance, until v is equal to the start
node (lines 15 - 17).

As can be seen from Figure 3, no further WCET analyses
are required for WC-path construction, since all WCET-
relevant data is already included in the EFG. Hence, the
complexity of our WC-path construction algorithm solely
depends on the EFG. The entire algorithm depicted in Fig-
ure 3 has a complexity of O((|V | + |E|) log |V |).
4.3 I-Cache Contents Selection

The overall algorithm for WC-path aware I-Cache con-
tents selection is depicted in Figure 4. Basically, the algo-
rithm constructs a set L of functions to be locked in the
I-cache. In the beginning, the algorithm performs the setup
of the EFG (line 5) and of the initial WC-path (line 8). Here-
after, the algorithm iterates as long as there is an unlocked
node v on the WC-path whose size fits into the remaining
cache capacity (line 9).

For each other unlocked node x, its gain g[x] is computed
(line 11). g[x] represents the gain when moving x from main
memory to the locked I-cache, per byte of the size of x. Let
wx denote the WCET of x if x is placed in main memory,
wl

x is the WCET of x being in the I-cache, sx the size of x
in bytes, and w(∗,x) be the overall execution frequency of x
over all contexts on the WC-path. Then, g[x] is defined as

g[x] =
wx − wl

x

sx
∗ w(∗,x)

sx is extracted from the binary program currently optimized
(cf. Section 3). The values wx and w(∗,x) are the node and
edge weights of x in the EFG. To determine the WCET of
x if x is placed in the locked I-cache, a WCET analysis is
done exclusively for x without consideration of any other
function of the program B. During this WCET analysis, it

1 set<function> CacheLocking(binary program B) {
2 set<function> L = ∅;
3 int S = Cache Size ;

4 EFG G = ∅;
5 DFS(∅, G, "main");

6 for (node v ∈ G→V | sv ≤ S)

7 wl
v = lockedWCETAnalysis(v);

8 set<node> P =

WC Path(G, "main", G→getSinks());

9 while (∃ node v ∈ P |
(v→getFunction() �∈ L) ∧ (sv ≤ S)) {

10 for (node x ∈ G→V | x→getFunction() �∈ L)

11 g[x] = Compute Gain(x, G, wl
x, P);

12 node x = x′ ∈ P | (x′→getFunction() �∈ L) ∧
(sx′ ≤ S) ∧ (g[x′] � max);

13 L = L ∪ { x→getFunction() };
14 S = S - sx;

15 for (node x′ ∈ G→V |
x′→getFunction() == x→getFunction())

16 G→wx′ = wl
x′;

17 P = WC Path(G, "main", G→getSinks()); }
18 return L; }

Figure 4: Algorithm for I-Cache Contents Selection

is assumed that x is entirely placed in the locked I-cache.
The computation of wl

x takes place only once during the
initialization phase (line 7).

After all gains are computed, the node x with the highest
gain is selected for lockdown (line 12). Lockdown is per-
formed by adding the function represented by x to L (line
13). The amount of free I-cache space is adjusted (line 14)
and the weight of all EFG nodes x′ representing the cur-
rently locked function is set to the WCET of x′ after lock-
down (lines 15, 16). Using these new node weights, the new
WC-path after lockdown of x is computed (line 17). Finally,
the overall set of locked functions is returned which then
serves for startup code generation as explained in Section 3.

Algorithm 4 has linear complexity, again. All computa-
tions of wl

x (line 7) are as costly as one entire WCET analy-
sis of program B. During EFG generation (line 5), another
complete WCET analysis of B is done (cf. line 5 of Figure 2).
Since only sub-graphs of B need to be re-analyzed during
EFG generation, and since each node is visited only once,
all WCET analyses done in line 10 of Figure 2 are in total
as costly as one full WCET analysis of the entire program
B. In total, the computational overhead for WCET analy-
ses required by our algorithms is bounded by a maximum
of 3 times of the overhead of a single WCET analysis, even
though the WCET analyzer may be invoked more often.

5. EVALUATION
This section evaluates the impact of I-cache locking on

WCET. First, the benchmarking workflow is presented in
Section 5.1. Benchmarking results are given in Section 5.2.

5.1 Benchmarking Methodology
The techniques presented in Section 4 are fully imple-

mented. Our tool for WC-path aware I-cache locking was
applied to five real-life benchmarks. For each benchmark,
Table 1 lists the size of its binary executable, the total num-
ber of functions (source code plus library functions), the
number of lines of the benchmark’s source codes and finally
the benchmark’s origin.

146

Size #Fct #LoC Origin

ADPCM 109 kB 19 950 mrtc.mdh.se

G723 107 kB 15 1,620 sun.com

Statemate 145 kB 21 1,201 mrtc.mdh.se

Compress 105 kB 11 528 mrtc.mdh.se

MPEG2 595 kB 210 7,916 mpeg.org/MSSG

Table 1: Benchmark Characteristics

To demonstrate the effectiveness of our techniques not
only for such a large I-cache of 16 kB as the one of the
ARM920T, we provide results for cache sizes varying be-
tween 64 bytes and up to 16 kB in the following. For each
considered cache size, the source codes of the benchmarks
were compiled and linked to an executable program. For
this executable, a WCET analysis was done leading to the
WCET of the unoptimized benchmark for a cache of the
given size in conventional operating mode, i. e. cached in-
structions are replaced dynamically. The application of the
workflow described in Section 3 led to an optimized binary
executable of a benchmark exploiting I-cache lockdown. A
second WCET analysis of this optimized executable resulted
in the benchmark’s WCET when using cache locking.

The used WCET analyzer aiT is able to compute WCETs
only for systems with normally operating caches. Locked
caches are not directly supported. To obtain WCET esti-
mates for locked caches, we provided aiT with additional
annotations. These annotations make aiT assume that the
functions selected for I-cache lockdown were placed in a
memory region having exactly the same access latency as a
locked I-cache of the ARM920T, i. e. 1 cycle. In all WCET
analyses done for benchmarking, a main memory access was
assumed to require 4 additional wait states.

5.2 Benchmarking Results

WCETs

Figure 5 depicts the effect of our WC-path aware I-cache
lockdown strategy on the resulting WCETs. It shows the
WCETs of the benchmarks after I-cache locking as a per-
centage of the WCETs without cache locking. The 100%
base line thus reflects the WCETs of the benchmarks for a
system with I-cache in normal operation mode.

As can be seen from Figure 5, the proposed techniques
achieve significant WCET reductions for all cache sizes. Al-
ready for a very small I-cache of 64 bytes, lockdown leads
to improvements between 2% (ADPCM) and 38.3% (G723).
The large WCET reduction for G723 is caused by locking
two very small but WCET-critical functions for absolute
value computation and quantization.

With increasing I-cache sizes, even higher WCET reduc-
tions were achieved since more functions were locked in the
I-cache, thus leading to a proportionally higher predictabil-
ity of instruction fetches. Per benchmark, a monotonic de-
crease of WCETs was observed with increasing I-cache sizes.
For some benchmarks (G723, MPEG2), smoothly decreas-
ing WCET curves were obtained. This smooth decrease
shows that many small functions lie on the WC-path of these
benchmarks. By increasing the I-cache size by only a few
bytes, these benchmarks benefit since the additional cache
space is used for lockdown of functions on the WC-path.

In contrast, ADPCM exhibits a stepwise WCET decrease
with increasing cache sizes. Here, the steep WCET reduc-
tion down to 34% when increasing the cache size from 128

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

64 128 256 512 1024 2048 4096 8192 16384

Cache Size [bytes]

R
e
l.

W
C

E
T

[%
]

ADPCM G723 Statemate Compress MPEG2

Figure 5: Relative WCETs after I-Cache Locking

bytes to 256 bytes stems from the lockdown of a system li-
brary function for integer division. This system function is
heavily used within ADPCM during sine and cosine com-
putations. When increasing the I-cache size further to 512
bytes, another reduction of WCET down to 27% was ob-
served. Hereafter, a saturation is reached so that caches
larger than 512 bytes do not lead to more reductions of the
WCET of this benchmark.

The overall largest WCET reductions were achieved for
an I-cache size of 16 kB which is the size of the ARM920T’s
native configuration. For this scenario, WCET reductions
between 54.6% (MPEG2) and 73.1% (ADPCM) were mea-
sured. On average over all five benchmarks, a WCET re-
duction of 60.1% was achieved for a 16 kB I-cache.

Overhead of Startup Code

Obviously, I-cache locking involves some overhead, since ad-
ditional startup code realizing lockdown is required (cf. Sec-
tion 3) taking additional cycles. These cycles are not in-
cluded in Figure 5, because WCET analysis using aiT starts
with the function main, and the startup code is executed
before main. However, our measurements have shown that
the overhead is negligible. With increasing code sizes to be
locked, the overhead also increases, whereas the WCETs of
the benchmarks decrease. Hence, when expressing the lock-
down overhead as percentage of a benchmark’s WCET cy-
cles for a given cache size, the overhead must be maximal for
a cache size of 16 kB. For 16 kB, the overhead ranges from
0.01% (MPEG2) up to 10.8% (Compress). The overhead
for Compress at 16 kB is misleading since it is the smallest
benchmark in our setup (cf. Table 1). Compress reaches a
saturation point at 2 kB – larger locked caches do not trans-
late into further WCET reductions. For a 2 kB cache, the
overhead for I-cache lockdown of Compress is only 1.35%.
As can be seen, the overhead is by far over-compensated by
the savings achieved using I-cache lockdown.

With constantly 300 bytes, the size overhead of the startup
code is negligible, too.

CPU Runtimes for Optimization

As discussed in Section 4, the WCET analyzer is invoked
several times during the entire optimization process. This
behavior is due to the fact that several WCET analyses are
required to obtain all the execution frequencies and WCETs
of all functions of a benchmark, once when being locked in
the I-cache and once when residing in main memory. How-
ever, a noticeable contribution of this work is that all re-
quired WCET analyses are performed off-line during an ini-
tialization phase. No WCET analysis is done during the
entire optimization process at all.

147

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

64 128 256 512 1024 2048 4096 8192 16384

Cache Size [bytes]

W
C

E
T

[m
s

]
Multisort WC-Path Multisort Single-Path

Figure 6: WCET Comparison with Single-Path
Analysis

For ADPCM, the entire optimization for a given cache
size only takes 6 CPU seconds on an AMD Athlon system
running at 2.4 GHz. These 6 CPU seconds include all re-
quired WCET analyses as well as the time spent by the
algorithms proposed in Section 4. For MPEG2 being by far
the largest benchmark (595 kB), a total of 2,179 CPU sec-
onds is required. These 36 CPU minutes are definitely not
lightweight. But under consideration that 52 WCET analy-
ses are needed for MPEG2, and since these 36 CPU minutes
are only required once during initialization, our approach is
still perfectly suited to generate highly efficient production
code or to perform design space exploration.

In contrast to existing literature [6], our approach does
not lead to excessively increasing CPU runtimes. The al-
gorithms presented in this paper have linear or logarithmi-
cal complexity. Since WCET analyses are done during a
preprocessing step before the core optimization algorithms
are executed, our overall runtimes including WCET analysis
time are highly moderate, whereas those of e. g. [6] do not
seem to scale well.

Comparison with Single-Path Analysis

Besides this aspect of scalability, another important contri-
bution of our work is the explicit consideration of chang-
ing WC-paths during optimization, in contrast to “single-
path analyses” like e. g. [4, 7]. Figure 6 shows the result-
ing absolute WCETs for varying I-cache sizes for the mul-
tisort benchmark [10]. Per cache size, the WCETs of our
techniques (“Multisort WC-path”) are compared with the
results of an I-cache locking mechanism similar to [4, 7]
and computing the WC-path only once during initialization
(“Multisort Single-Path”).

As can be seen, both cache allocation techniques lead to
the same numbers for cache sizes of 64 to 512 bytes. When
increasing the cache size from 64 bytes to 128 bytes, both
algorithms move a bubblesort routine being on the initial
WC-path onto the I-cache. However, this lockdown of bub-
blesort on the I-cache leads to a change of the WC-path,
which, in contrast to our approach, is not considered by the
single-path technique. As a consequence, the single-path
technique is unable to reduce WCETs further since it oper-
ates on incorrect WCET data from this moment on. Our
WC-path aware cache locking technique keeps track of the
changing WC-path and locks a selectionsort routine onto
the I-cache for cache sizes greater equal than 1 kB. As can
be seen from this example, our cache allocation technique
reduces the WCET of the benchmark by 55%, whereas the
single-path approach only leads to 36% of improvement.

6. CONCLUSIONS
This paper presents an approach for compile-time decided

I-cache locking to minimize WCETs of real-time systems.
The contributions of this work are twofold. First, we con-
sider the phenomenon that WC-paths may change during
the course of an optimization by keeping track of such chang-
ing WC-paths within our optimization. Second, our inte-
grated WC-path recomputation techniques are realized in
an efficient way preventing the runtimes of our optimiza-
tions to increase excessively. Combined, these contributions
represent an improvement over the current state of the art
which either consists of not considering changing WC-paths
at all, or leads to unacceptable optimization runtimes.

For the presented complex benchmarks, we report WCET
reductions between 54% and up to 73% for an ARM920T
processor. These improvements were achieved within an
acceptable amount of time required for optimization. For
most of the benchmarks, the entire optimization takes place
within a few CPU seconds. Only for a complete MPEG2
encoder, several CPU minutes were required. The benefit
of considering changing WC-paths during optimization is
demonstrated by a comparison of our approach with a tech-
nique representing the current state of the art. This com-
parison shows that we are able to outperform the so-called
single-path techniques by more than 30%.

In the future, we will focus on lockdown of D-caches and
on predictable locking schemes modifying the cache contents
at runtime. We will also integrate the proposed algorithms
into a WCET-aware C compiler [5] to exploit lockdown of
code fragments smaller than functions, like e. g. basic blocks.

7. REFERENCES
[1] AbsInt Angewandte Informatik GmbH. Worst-Case

Execution Time Analyzer aiT for ARM. 2006.

[2] ARM920T Technical Reference Manual. Advanced
RISC Machines Ltd., Literature Number ARM DDI
0151C, 2002.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data
Structures and Algorithms. Addison-Wesley, 1987.

[4] A. M. Campoy, I. Puaut, A. P. Ivars, et al. Cache
contents selection for statically-locked instruction
caches: An Algorithm Comparison. In Proc. of
ECRTS, July 2005.

[5] H. Falk and P. Lokuciejewski. Design of a
WCET-Aware C Compiler. In Proc. of ESTIMedia,
Oct. 2006.

[6] I. Puaut. WCET-centric Software-controlled
Instruction Caches for Hard Real-Time Systems. In
Proc. of ECRTS, July 2006.

[7] I. Puaut and D. Decotigny. Low-Complexity
Algorithms for Static Cache Locking in Multitasking
Hard Real-Time Systems. In Proc. of RTSS, Dec.
2002.

[8] X. Vera, B. Lisper, and J. Xue. Data Cache Locking
for Higher Program Predictability. In Proc. of
SIGMETRICS, June 2003.

[9] L. Wehmeyer and P. Marwedel. Influence of Onchip
Scratchpad Memories on WCET Prediction. In Proc.
of WCET, June 2004.

[10] L. Wehmeyer and P. Marwedel. Influence of Memory
Hierarchies on Predictability for Time Constrained
Embedded Software. In Proc. of DATE, Mar. 2005.

148

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

