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ABSTRACT
Memory is one of the most significant detrimental factors in
increasing the cost and area of embedded systems, especially
as semiconductor technology scales down. Code compres-
sion techniques have been employed to reduce the memory
requirement of the system without sacrificing its functional-
ity. Bitmask-based code compression has been demonstrated
to be a successful technique that produces low compression
ratios while having a fast and simple decompression engine.
However, the current approach requires dictionary sizes of
+16K bytes to produce acceptable results, adding significant
overhead to the system. In this paper, we develop a new hy-
brid encoding method that combines the traditional bitmask-
based encoding and prefix-based Huffman encoding as well as
a new dictionary selection technique based on a non-greedy
algorithm. The combination of these two new methods re-
duces the compression ratio by 9-20% and performs well with
small dictionary sizes.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Data compaction
and compression

General Terms
Algorithms, Design

Keywords
Code Compression, Bitmask, Embedded Systems

1. INTRODUCTION
The demand for ultra-portable, high-performance, and

low-power embedded systems is at an all time high with
more than 98% of all programmable processors running in
embedded mode. Today’s cell phones, for example, handle
entertainment/media functions, communication duties, and
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office tasks on relatively meager hardware resources. As
more sophisticated functionalities are expected from these
systems, their memory requirement will grow. Memory struc-
tures, however, require too much area, are too costly, and
consume a significant amount of the energy budget to be
generously used in embedded systems[1, 2]. As semiconduc-
tor technology scales down, the static energy consumption of
memory structures becomes dominant. Therefore, the size
of the memory has a much greater impact on the battery
life of these systems [3].

To address this issue, code compression techniques have
been employed to reduce the memory requirement of the
system without sacrificing its functionality. In addition to
evaluating a technique on compression ratio, one needs also
consider the following for embedded systems: 1) placement
of decompression engine, 2) the area overhead, and 3) per-
formance hit caused by decompression latency.

There are two types of decompression engine designs: pre-
cache and post-cache designs. In pre-cache designs, the
engine sits between the processor and the main memory,
whereas in post-cache designs it is placed between the cache
and the processor core [4]. In a post-cache design, the system
cache stores compressed instructions. A post-cache design
can reduce the energy consumption of the system by employ-
ing a smaller cache and reduce traffic between main memory
and the processor. Post-cache designs, however, need to be
fast to keep pace with a processor core. Unlike pre-cache
designs, there are no latencies for the decompression engine
to exploit. The complexity and speed of a decompression
engine is the major factor that can prevent a compression
method from being post-cache compatible.

Dictionary-based compression methods are one of the best
candidates for post-cache designs as they have simple and
fast decompression mechanisms. Among these, bitmask-
based schemes provide low compression ratios compared to
simpler frequency-based techniques [5, 6, 7]. In addition
to compressing highly frequent instructions, these methods
compress many instructions that are not stored in the dic-
tionary by saving a reference to a close-by dictionary entry
(in terms of Hamming distance) and some bit toggling in-
formation.

Even though the current bitmask-based compression algo-
rithms achieve compression ratios below 60%, they require
large dictionary sizes of at least 4k-8k entries. With 32-bit
instruction lengths, this means 16K to 32K bytes of static
memory is needed just to store the dictionary. This is a
substantial memory requirement and significantly increases
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the cost of the processor, given the fact that most embed-
ded processors have cache sizes in the same order. Adding a
32K-byte dictionary would considerably increases the power
consumption of the core because leakage power is the dom-
inant component of power loss in semiconductor technology
today. Consequently, memory structures such as caches and
dictionaries add a sizable power consumption overhead to
the core regardless of their low transistor activity [3].

The purpose of this work is to design a compression scheme
that 1) has a small and fast decompression engine, 2) re-
quires a small dictionary, and 3) produces low compression
ratios.

This paper explores the landscape of bitmask-based code
compression. We carefully study the performance of the
state-of-the-art implementation and present a detailed anal-
ysis of its strengths and limitations. Drawing upon our lean-
ings, we develop a hybrid encoding method that combines
traditional bitmask-based dictionary encoding with Huff-
man encoding and a new dictionary selection method based
on a non-greedy algorithm.

Our results show that the combination of these two new
methods reduces the compression ratio by 9-20% with larger
improvements seen for smaller dictionary sizes.

2. BITMASK-BASED DICTIONARY
COMPRESSION

A general dictionary compression scheme starts by creat-
ing a dictionary of a small number of instructions. The dic-
tionary instructions are then replaced in the original code
with indices to the dictionary. The number of bits used
to represent the index is significantly fewer than the bits
in the original instruction, resulting in the compression of
the code. A frequency-based dictionary compression scheme
simply picks the most frequent instructions as the dictionary
entries.

Bitmask-based compression takes the frequency-based com-
pression one step further by leveraging the short hamming
distance between some of the instructions. There are two
types of compressed instructions: dictionary entry (DE) in-
structions and dictionary children (DC) instructions. Figure
1 shows the physical construction of the different types of
instructions as well as an example of bitmask compression.
A DE instruction has its original instruction code stored
in the dictionary. When compressed, this instruction only
needs to reference the index of corresponding dictionary en-
try. A DC instruction depends on a different instruction,
namely a DE, to be coded. When compressed, it contains a
reference to the index of the DE instruction along with some
bits that specify the bitmask required to recover the instruc-
tion from its associated DE. The C-bit specifies whether an
instruction is compressed or not. The C-bit is followed by
bits representing the dictionary index in compressed instruc-
tions. The number of these bits depends on the dictionary
size. The mask code decides the number and type of masks
that should be used to process the dictionary entry in order
to retrieve the original instruction. In DC instructions they
contain the information about the number and type of the
masks required. The mask info bits contain more detailed
information about the masks including their location and
the actual bit toggles needed. The bit toggling information
is kept as a string of 1’s and 0’s, where each 1 (0) means
that specific bit in the DE should (not) be toggled.

0
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Figure 1: Instruction types and example of bitmask
compression.

When a decompression system encounters a DE, it ac-
cesses the dictionary and retrieves the desired instruction
specified by the dictionary index. A DC also has an index
value; after the decompression system retrieves the contents
of a dictionary entry it then proceeds to toggle bits as speci-
fied by the mask data in the DC (performed by an xor oper-
ation). For an uncompressed instruction the decompression
agent just strips the first bit off the UC.

3 . D I C TI O NA RY SELEC TI O N A LG O R I TH M
In a frequency-based dictionary compression, the selec-

tion of the dictionary is a straightforward task, as it picks
the most frequent instructions. The same task, however,
becomes an NP-hard problem in a bitmask-based version.
That is because one has to balance and incorporate instruc-
tion frequency information and instruction coverage infor-
mation to select good entries.

In the presence of several mask options, a certain instruc-
tion can be matched with numerous instructions at possibly
different mask costs. The algorithm tries to select the dic-
tionary entries so that many other instructions are mapped
efficiently to the same dictionary entry resulting in shorter
length for many instructions. In order to solve this prob-
lem, a graph is populated with nodes each representing a
unique instruction in the binary. Given a preselected set of
masks, an edge is created between two nodes if it is possible
to match them using at least one of the masks. If more than
one mask type can be used to match two instructions, the
one with the minimum cost, i.e. shortest mask info bits is se-
lected. Figure 2 presents the flowchart of dictionary selection
algorithm for the latest work on bitmask-based compression
method [7].

Although the algorithm shown in Figure 2 provides a fast
and easy way to pick the dictionary entries, it fails in two
aspects: First, the selection of entries round by round can be
detrimental to future selections. If, for example two nodes
with very high frequencies are connected to each other, se-
lection of one as a dictionary entry will remove the other
one as a dictionary child, even though that could have been
an excellent dictionary entry itself. To alleviate this prob-
lem, the Seong algorithm employs a threshold for keeping
some children with high frequencies in the graph for future
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Figure 2: The original bitmask-based dictionary se-
lection.

selection rounds. However, this may have an adverse effect
because the threshold used to filter out possible dictionary
entry candidates (refer to Figure 2), at times, may disallow
too many instructions from becoming dictionary children.
This is best shown in Figure 3. It presents the distribution
of different types of instructions over instruction frequency
for the gsm-toast application with the dictionary size of 512
entries. We see that the Seong selection scheme leaves a lot
of instructions uncompressed compared to our new selection
technique, which will be described shortly.
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Figure 3: CDF of instructions in the original un-
compressed file over frequency.

The second problem observed regarding the aforemen-
tioned algorithm is that it is not possible to associate a
certain DC node with a specific DE node that results in
maximum savings. This issue is shown with an example in
Figure 4. The framework of regular selection does not pair
Node C with the best DE instruction.
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Frequency

1. Nodes A and B are recognized to be DE.
2. Node C is recognized as DC.
3. Based on edge analysis on Node C, the edge CB 
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4. Node C is removed from graph as child of Node B

Children-First Selection

1. Node A is recognized first as DE.
2. Node C is removed from graph as child of Node A 
and labeled as DC.
3. Node B is recognized as DE.
4. Node B enters dictionary without Node C as DC.

Regular Selection

Figure 4: Example of children-first optimization.

In order to alleviate the problems described above, we pro-
pose a two-step dictionary selection with a specialized opti-
mization. From our analysis of binary codes from mibench
[8], we noticed that there are always instructions of high fre-
quency that are profitable dictionary entries based on just
frequency.

Given this observation, we can direct the algorithm to
pick all these highly frequent instructions together, making
sure none of them will be omitted in a greedy round-by-
round approach. The selection of these nodes constitutes
the backbone of the first part of our dictionary selection
algorithm as shown in Figure 5.
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Figure 5: Our proposed bitmask-based dictionary
selection.

In this algorithm, we need to first determine the minimum
frequency that allows a node to be picked as DE in the first
step. We call this value Selection Frequency Threshold or
SFT. We have found that the SFT selection can be auto-
mated based on dictionary size. In order to achieve mini-
mum compression ratio, our experiments show that the SFT
should be selected such that a certain percentage of dictio-
nary is selected in the first step. This percentage is very close
across different benchmarks and depends on dictionary size
only. In this algorithm, we pick the SFT so that 60%, 63%,
70% or 77% of the dictionary is filled in the first step for
dictionary sizes of 512, 1024, 2048 or 4096 respectively. The
next step is to create edges between nodes on opposite sides
of the SFT. Note that all nodes above the SFT (i.e. with
frequency higher than the SFT) are certain DE nodes and
the nodes below the SFT are possible candidates to be their
children. Since, a possible DC may be connected to more
than one DE above the SFT, it gets to choose the best DE
with maximum saving (i.e. child picks parent). We call this
approach children-first optimization. In the final step of part
1 selection, the guaranteed DE nodes and their associated
DC nodes are removed from the graph.

The remaining entries in the dictionary are selected in the
second part. This step is very similar to the regular bitmask-
based dictionary selection. However, there is no thresholding
done when picking the DC nodes of a newly selected DE, as
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it does not prove to be profitable anymore after completion
of part 1.

This two-step children-first selection scheme eliminates
the adverse affects of the greedy algorithm and applying
thresholds when selecting children. Furthermore, it maps
DC instructions to the best possible DE, resulting in an
improved compression ratio. In the following section, we
present our new hybrid encoding method in addition to a
flexible mask selection approach.

4. FLEXIBLE MASK SELECTION AND A
HYBRID ENCODING METHOD

In this section, we present flexible mask selection and a
different encoding for masks. Previous work [7] studied vari-
ous types of mask sizes and configurations. Fixed placement
masks are proved to be the most profitable type of masks.
A 4-bit fixed placement mask (4f), for example, can only
be applied at nibble boundaries and a (2f) mask can be ap-
plied at half-nibble boundaries. Sliding masks, which can
be applied anywhere on an instruction word, are not very
profitable because they require more bits to store location
information. The previous mask selection method consists
of first picking a set of two masks and then the resulting sub-
sets of this selection as possible mask configurations. The
mask codes are then encoded as a standard 2-bit code.

We observe two limitations with this method: First, it
is not flexible in terms of mask selection and confines itself
to different combinations made out of two initially selected
masks. We call this type of mask selection, subset mask
selection. Second, it encodes all mask codes in equal length
regardless of their distribution. We believe by providing
flexibility both in the mask selection and mask encoding,
the compression ratio can be improved significantly.

We allow the use of flexible non-subset mask selections
such as: no-mask, 4f, 8f, (2f, 4f). Note that three different
masks, namely 2f, 4f and 8f are used to create this selection.
In previous work the 8f mask was regarded as a costly mask
pattern and discarded from consideration. The reason be-
hind this was subset selection forced combination of 8f with
another mask, increasing the total mask cost beyond what
can be acceptable. However, we found that many two mask
patterns could be replaced with the 8f pattern, reducing the
compressed instruction’s length. Table 1 shows the costs
of various masks we tried. Our analysis of different mask
selections is presented in Section 5.

Table 1: Mask Costs

Mask
Location Mask Total
# of bits # of bits # of bits

1s 5 1 6
2f 4 2 6
4f 3 4 7
8f 2 8 10

2f,4f 7 6 13
4f,4f 6 8 14

The bitmask instruction formats presented in Section 2
have three fixed-length sections for DE and DC instructions:
c-bit, dictionary index, and mask code. DC instructions
have additional bits for mask information. In all bitmask
compressed files DE encoded instructions are the majority
and contribute the most to the compression ratio because
they have the shortest length. Figure 6 shows the distribu-

tion of compressed instructions in a sample program, raw-
caudio, in terms of the mask configuration they use. As
seen, DE instructions have the largest majority.

no mask(DE)  61%2f_4f  20%

4f  5%

2f  14%

Figure 6: The breakdown of compressed instructions
based on their mask configuration.

Huffman prefix encoding of the mask code is a simple and
elegant way to improve compression ratio. The mask code
for a DE instruction gets reduced to 1 bit. Some DC in-
structions do incur additional cost because their mask codes
become longer, but the DE savings outweigh those costs.
This hybrid method of combining prefix encoding of the
mask code with regular encoding of the dictionary indices, is
able to leverage the advantages of Huffman encoding with-
out inheriting any of the weaknesses it would incur if entire
instructions were Huffman encoded. Huffman encoding is
most efficient when there are only a few symbols to encode,
because codes are short and decoding is very simple.

The decompression engine required for this scheme is not
any more complex than the one needed for the regular bit-
mask approach. The one-cycle engine modified by Seong in
[6] from Lekatsas’s design in [9] needs very little modifica-
tion. Instead of decoding a fixed 2-bit mask code the new
decompression engine will decode a prefix code of up to 3-
bits, which is easily accomplished with little to no overhead.

5. RESULTS
Our experiments were conducted with 32-bit ARM bina-

ries taken from Mibench [8]. In particular we used rawcau-
dio, rawdaudio, cjpeg, djpeg, gsm-toast, gsm-untoast, rijn-
dael, basic-math, and susan. These applications are a good
representation of software used across all types of embedded
computing in the automotive, mobile phone, security, and
media sectors.

Figure 7 shows the compression ratio of three different
dictionary selection algorithms for four different sizes of dic-
tionary. It can be seen that the two-step selection algorithm
produces significantly better results compared to regular bit-
mask selection even without the children-first optimization.
Also highlighted in Figure 7, is the inefficiency of the pre-
vious bitmask method at small dictionary sizes(512, 1024)
where a simple frequency based dictionary children produces
lower compression ratios.

Prefix encoding of the mask codes also improves compres-
sion ratio by sizable amounts. Small dictionaries benefit by
2-3% points and larger dictionaries benefit by 3-4% points;
this is because dictionary entry instructions comprise a much
larger majority of the compressed file when compressed with
large dictionaries.

We experimented with different mask combinations that
are not necessarily subsets of a two mask scheme done in
previous work; and also studied the effects of increasing the
number of mask configurations used. Note that in standard
binary encoding of the masks, the number of combinations
need to be powers of 2, otherwise, some codes will be wasted.
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In Huffman encoding this is not the case. In any mask com-
bination, one code is always reserved to represent ”no mask”
option. Therefore, in a 2-bit standard encoding, one is re-
stricted to three mask configurations. Using prefix encoding
allows the use of a few additional mask configurations. The
limiting factor here is the complexity and speed of a prefix
decoder, which increases as the number of symbols grows.
The results from this exploration are shown in Figure 8.
An interesting thing to notice is that every unconventional
mask configuration outperforms the standard one shown in
the first column. The bars for the standard mask code are
missing for the last two combinations as they have more
than 3 mask types, which along with the no-mask options
exceeds 4 combinations, making it impossible to use a 2-
bit mask code. The best results ultimately comes from the
mask configuration shown in the second column: 4s, 8f, and
2f 4f. This configuration replaces the stand alone 2f mask
with the 8f in a standard subset combination. The reason it
outperforms the standard selection is that many dictionary
children instructions using 2f 4f masks, use the the single 8f
mask, which saves three bits per instruction.
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Now with all the modifications made to the original bitmask-
based compression framework, Figure 9 presents the final av-
erage compression ratios achieved over all the benchmarks.
Our new method has better compression ratios and is very
efficient at small dictionary sizes. The difference between
using a 512 entry dictionary versus a 4096 entry dictionary
with our method is less than 5% points compared to the 15%
points difference with the original method.
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Figure 9: Compression ratios

6. CONCLUSIONS
We developed a new dictionary selection technique for

bitmask-based dictionaries and a new flexible encoding scheme
to store compressed instructions. We are able to achieve
compression ratios previously seen in 4096-entry and 8092-
entry dictionaries with dictionaries of 512 and 1024 entries.
Overall we have reduced the compression ratios of small dic-
tionaries by 20% and large dictionaries by 9%. Our com-
pression technique is compatible with a 2-cycle post-cache
decompression engine that extends the benefits of code com-
pression to the internal instruction cache of a processor.
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