
An Integrated ARM and Multi-core DSP Simulator

Sharad Singhai Ming-Yung Ko Sanjay Jinturkar Mayan Moudgill John Glossner
Sandbridge Technologies Inc.

1 N Lexington Ave
White Plains, New York, 10601, USA
jglossner@sandbridgetech.com

ABSTRACT
In this paper we describe the design and implementation
of a flexible, and extensible, just-in-time ARM simulator
designed to run co-operatively with a multi-core DSP sim-
ulator on x86 hosts. The integrated simulator can boot
ARM/Linux alongside another operating system running on
DSP cores, thus truly supporting a heterogeneous multi-core
operating environment. In addition, the simulator facili-
tates exploration of several system design parameters such
as memory latencies, cache organization etc. via lightweight
user-defined instrumentation.

We provide performance results and highlight the impact
of design choices on our overall performance and design ob-
jectives. We also discuss implementation techniques and
trade-offs between the competing requirements of simula-
tion speed versus accuracy in a complex multi-core simula-
tion environment.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code gen-
eration, Optimizations, Incremental compilers, Run-time en-
vironments

General Terms
Design, Measurement, Performance

Keywords
ARM, just-in-time compilation, multi-core simulation, per-
formance measurement, dynamic translation, Embedded ar-
chitectures

1. INTRODUCTION
In this paper we describe the design and implementation

of a flexible, and extensible, just-in-time ARM simulator
designed to run co-operatively with a multi-core DSP sim-
ulator on x86 hosts. The integrated simulator can boot

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-826-8/07/0009 ...$5.00.

ARM/Linux alongside another operating system running on
DSP cores, thus truly supporting a heterogeneous multi-core
operating environment. In addition, the simulator facili-
tates exploration of several system design parameters such
as memory latencies, cache organization etc. via lightweight
user-defined instrumentation.

This multi-core simulator is actively being used in an
industrial setting. It has been shipped to multiple wire-
less industry vendors, who are using it for physical layer
simulation of GSM, WCDMA, TDS-CDMA, Wireless LAN,
WiMax/WiBRO along with their protocol stacks. In this
paper we focus on the design of ARM simulator and its per-
formance.

The low-power multi-threaded Sandblaster processor [9]
offers an efficient and flexible software-defined radio (SDR)
platform for wireless communication applications, such as
WCDMA with GSM/GPRS capability [6]. To streamline
application development, a comprehensive bundle of soft-
ware tools including simulator, compiler, assembler, debug-
ger, and profiler is provided [5].

2. BACKGROUND
We developed a multi-core simulator for DSP and wireless

applications. However, in this paper we focus on the ARM
microprocessor. There are several existing ARM simulators.
However, our motivation for developing an integrated multi-
core simulator was to provide an ultrafast ARM and DSP
co-simulation environment.

Our design goals and requirements were:

Instruction simulator A functional simulator as opposed
to an architectural cycle-accurate simulator,

Speed A simulator that could execute millions of ARM and
DSP instructions per second on an x86 host,

Integration with DSP simulator Seamlessly integrate and
leverage existing DSP, memory, and peripheral simu-
lation infrastructure,

Flexibility of simulation Easily support different ARM
architecture versions,

Detailed instrumentation Support easy instrumentation
of user programs to identify bottlenecks, and

Multiple platforms Support multiple host environments.
We were interested in hosting the simulator on Linux
as well as on Windows in a production environment.

33

Both our DSP and ARM simulators utilize just-in-time
(JIT) translation technology, which refers to the dynamic
translation of target instructions (ARM in our case) to the
host instructions (x86 in our case). Just-in-time means that
the target instructions are translated just as they are needed
for execution. Thus JIT compilation typically interleaves
instruction translation with the instruction execution and is
incremental in nature.

JIT compilation1 improves the runtime performance of a
program, and has been testified to be practically effective.
We also utilize JIT compilation to accomplish integration of
two almost independent simulators for heterogeneous archi-
tectures, i.e., ARM and Sandblaster DSP.

3. SIMULATOR DESIGN
In this section we describe the details of our simulator de-

sign and implementation. We discuss our techniques for fast
ARM instruction decoding and tight x86 code generation.

3.1 Simulation Modes
Our integrated simulation can proceed in three modes,

which differ in terms of increasing level of detail and associ-
ated complexity.

Mode 1: Straight-line ARM application code In this
simulation mode, an ARM application executes in stand-
alone mode, with only a subset of system calls being
modeled. This is somewhat limited in its abilities,
however, it works at the fastest speed with the MMU
being off.

Mode2: ARM code with system-level simulation In
this mode, the ARM code assumes existence of periph-
erals and Linux operating system, thus simulating the
whole environment including exceptions and memory
latencies. It supports the MMU but not DSP cores.

Mode 3: ARM code along with DSP In this most de-
tailed (and the most complex) simulation mode, ARM
programs executes concurrently with the multi-core
DSP with two distinct operating systems. The DSP
runs a proprietary operating system and ARM runs
Linux operating system with MMU on.

These three simulation modes have implications for the
simulator design. Figure 1 shows the JIT compiled instruc-
tions for the ARM only simulation modes versus mode 3,
when an intervening DSP instruction (C1) must be executed
between the two ARM instructions (A1 and A2). In the
ARM only simulation (modes 1 and 2), the x86 instructions
continue without having to save/restore x86 state for the
next ARM instruction, thus resulting in greater speedup.

3.2 Just-in-time compilation
In this section, we describe the details of our JIT compi-

lation for converting ARM instructions to x86 instructions.
We use a table-driven decoding method of ARM instruc-

tions. ARM 32-bit instructions have a regular pattern and
the opcode can be determined by looking at only a small
subset of 32 bits. Figure 2 shows the layout of the ARM
32-bit instructions. We needed to decode only shaded 12
bits in order to find the opcode.

1We use the terms JIT compilation and JIT translation in-
terchangeably.

X86 seq for A1

X86 seq for A2

Save ARM context
Restore DSP context

Save DSP context
 Restore ARM context

Straight-line ARM
simulation

ARM simulation
interspersed with DSP

simulation

X86 seq for A1

X86 seq for C1

X86 seq for A2

Figure 1: Mixed ARM and DSP JIT compilation

32-bit
ARM Instruction

bit 0bit 7 bit 4bit 20bit 27bit 31

Figure 2: ARM 32-bit instruction decoding

We use Sandbridge-specific system architectural descrip-
tion language (sADL) to describe the opcodes. It is a higher
level language which generates C header files for instruction
decoding, code generation and disassembly. This sADL de-
scription is very succinct as proved by the fact that about
5000 lines of ARM v5TE DSP enhanced instruction set de-
scription generated more than 17000 lines of C code for JIT
engine. In addition, various headers of about 10000 lines are
also generated which includes an ARM disassembler for use
in debugger.

Any regular ARM instruction can write to the program
counter, complicating JIT engine. However, we can stati-
cally determine whether a particular instruction modifies pc
or not—if it does, then we generate the appropriate sequence
for a branch otherwise the pc is simply incremented.

3.3 Processor modes
ARM processors have seven different operating modes.

These modes differ in what privileges are available in that
mode as well as in accessible registers. There are 31 general-
purpose 32-bit registers, however, in any given mode only 16
of them are visible.

We implement processor modes by maintaining separate
register sets for each mode and updating the visible register
set contents in response to a mode switch. Since the mode
switch instructions are relatively rare, this approach incurs
low-overhead. There are a few instructions which allow ac-
cess to another mode’s registers and we take care to ensure
such accesses are done correctly.

3.4 Conditional execution
Almost all ARM instructions can be executed condition-

ally depending upon 4-bit condition flag, implying a total of
16 conditions. In fact, unconditional execution is just an-
other condition. There are four (five in ARM architecture
version v5 and above) condition flags in the current proces-
sor status register (CPSR). Each 32-bit ARM instruction has
a 4-bit condition code field specifying under which combina-

34

tion of condition flags this instruction should be executed.
In our experience, tight condition code generation turned
out to be crucial for high performance.

3.5 Granularity of compilation
There are varying approaches to when a JIT compilation

is performed in a JIT simulation. A completely demand
driven approach is too expensive and an a priori approach
is wasteful because many program paths may never be exe-
cuted.

In our simulator we translate the ARM application code
on a page-by-page basis, the page size in our case is 4 KB.
At the end of each translated page we generate a call to
the JIT compiler to translate the next page. Note that the
control may still transfer out of translated page because of
branches, function calls, exceptions, and so on.

An additional thorny issue is that of self-modifying code.
If the corresponding x86 instructions are not immediately
updated then the old instructions will be executed. Fortu-
nately, such uses involve cache/tlb flush or invalidate oper-
ations for correctness. Our JIT compiler relies upon inter-
cepting such cache flush/invalidate operations and we dis-
card cached x86 code sequences. This guarantees that the
JIT compiler is reinvoked.

3.6 System call implementation
For mode 1, we implement Linux operating system calls

via traps from the generated target code to the C code. The
ARM simulator makes a mode switch from the user mode
to the system mode and forwards system calls to the un-
derlying host operating system. This approach resulted in
much faster and controlled system calls along with access to
the host file system. For example, we can instrument sys-
tem calls without modifying any of the original Linux kernel
code. Note that the underlying operating system could be
different than Linux, e.g., Windows. We have an additional
complexity related to simulating big-endian ARM/Linux on
Windows with little-endian x86 host.

For modes 2 and 3, the system calls are not given any
special treatment and are simulated as regular instructions.
This mode faithfully simulates the operating system, but is
correspondingly slower.

3.7 Peripheral models
In order to boot up ARM/Linux on simulator we needed

to model at least a subset of peripherals found on our de-
velopment hardware. Once the operating system is booted,
the peripherals generate interrupts according to the simu-
lated clock. We modeled the serial port (PL011), vectored
interrupt controller (PL190), multi-port memory controller
(PL172), general purpose input/output (PL061), real time
clock (PL031), and flash memory conforming to the CFI
(common flash interface).

3.8 Instrumentation
Our simulator also allows user-defined instrumentation to

be linked in during the JIT compilation. Thus the instru-
mentation overhead remains very lightweight as a call is
inserted only for the event of interest. Currently, a user
defined program can intercept and measure dynamic in-
struction counts, cycles during external memory accesses,
cycles during cache accesses, and static and dynamic op-
code frequencies (as a post-pass). An important side-effect

of this dynamically-linked instrumentation call infrastruc-
ture is that the amount of code the user has to write is
typically very small. In this regard our simulator is similar
to Hazelwood’s simulator [7].

3.9 Simulating memory
We model discontiguous SDRAM (with holes in address

space) which requires special handling. For a memory load
(or store), if the base is always zero, we can directly load
from the given offset. For discontiguous memory, we need
to do more expensive bounds check and issue a data abort
if a memory access lies outside of the discontiguous memory
space.

We also support memory-mapped peripherals via special
memories, which instead of loading from the simulated mem-
ory, use function pointers to load/store/initialize the corre-
sponding range of memory addresses. Thus a new peripheral
model can be easily added. We run ARM in big-endian, how-
ever, our host platform, Intel x86 platform, is little-endian.
We need to do appropriate endian-conversion when loading
code/data from the simulated memory.

We perform memory translation when the memory man-
agement unit (MMU) is enabled. We support this via ad-
dress translation in software with the corresponding over-
head for each access. However, a few simple applications not
requiring MMU can run in Mode 1 at much faster speed.

3.10 Debugging support
Debugging programs in a JIT environment is a much harder

task because the host instruction set (x86 in our case) may
be completely different from the target instruction set (ARM
in our case). Even the assembly level debugging is diffi-
cult because an application programmer might want to set
breakpoint at a particular point in target code (ARM code)
whereas only breakpoints available are for the host code
(x86) on the host debugger. It should not be left to the
user to decipher target state from the host state.

In order to facilitate low-level debugging, we implemented
a debugger inside the simulator which has the ability to stop
the ARM program at ARM instruction boundaries, synchro-
nize the ARM state held in host x86 registers and display
ARM register contents. We also implemented instruction
and data breakpoints.

4. EXPERIMENTAL RESULTS
In this section, we demonstrate the ARM simulator per-

formance results for real world applications.
We measure speed in terms of ARM instructions executed

per second on a 2.4GHz Pentium 4 CPU. We believe that
the raw instructions executed per second is a better measure
than the cycles per second. For example, the cycle count
is different in our simulation depending upon whether the
other 4 DSP cores are accessing memory at the same time.2

In Figure 3 we display the performance of our simulator on
a 2.4GHz Pentium 4 Linux machine simulating ARM proces-
sor in mode 1. We use commonly used wireless applications.
We get average performance closer to 110 million instruc-
tions per second (MIPS). These benchmarks were compiled
with ARM/Linux gcc with O3 level of optimizations.

2We model a single-port SDRAM shared among 4 DSP cores
and ARM.

35

Simulator Performance

62 64

121 121 120 120

186

0

20

40

60

80

100

120

140

160

180

200

AMR encoder AMR decoder EFR encoder EFR decoder FFT InvFFT Viterbi

Benchmarks

E
xe

cu
ti

o
n

 P
er

fo
rm

an
ce

 in
 M

IP
S

 (
2.

4G
H

z
P

en
ti

u
m

 4
)

Figure 3: Simulator Performance

Dynamic Instruction count (in millions)

1126

206

2972

313

617 618

1815

0

500

1000

1500

2000

2500

3000

3500

AMR encoder AMR decoder EFR encoder EFR decoder FFT InvFFT Viterbi

Benchmarks

D
yn

am
ic

 In
st

ru
ct

io
n

s
(i

n
 m

ill
io

n
s)

Figure 4: Benchmark Dynamic Instruction Counts

Figure 4 describes the dynamic instruction count (in mil-
lions) for each benchmark application. The number of in-
struction executed varies from a low of about 200 millions
to about 3 billion for these benchmarks. These dynamic in-
struction counts while certainly lower than the typical SPEC
benchmarks, are nonetheless representatives of the commu-
nication algorithm kernels.

The benchmarks are summarized below.

AMR Adaptive Multi-Rate speech traffic channels is a speech
coding algorithm which uses variable bit-rate encod-
ing and decoding. The encoder processes an input file
which contains 425 frames of binary speech data. The
decoder uses this coded data as input and produces
decoded speech output.

EFR enhanced full rate speech traffic channels is also a
speech coding algorithm like AMR, but it uses a fixed
rate for all input speech data. Coder uses input data,
and outputs to a file and decoder uses the encoded
data as input.

FFT It is Fast Fourier Transform commonly used in many
algorithms for time domain to frequency domain con-
version. Our particular version uses double-precision
floating points and computes 512 point FFT. Inverse
FFT (InvFFT) uses a similar computation, except that
it computes the inverse Fourier transform.

Viterbi This benchmarks uses Viterbi algorithm for for-
ward error correction as typically used in CDMA and

Time spent in JIT compilation

1.2

2.6

0.93

2.13

1.3
1.5

3.27

0

0.5

1

1.5

2

2.5

3

3.5

AMR encoder AMR decoder EFR encoder EFR decoder FFT InvFFT Viterbi

Benchmarks

P
er

ce
n

ta
g

e
ti

m
e

sp
en

t
in

 J
IT

 c
o

m
p

ila
ti

o
n

Figure 5: Percentage time spent in JIT compilation

Frequency of opcodes (AMR encoder)

9 8 8 7 6
4 4 4 3

38

0

5

10

15

20

25

30

35

40

MOV LDR CMP ADD B BX BL TEQ STR SUB

ARM opcodes

P
er

ce
n

ta
g

e
fr

eq
u

en
cy

Figure 6: Frequency of opcodes in AMR encoder

GSM, 802.11 wireless LANs, and several other com-
munication applications.

4.1 Time spent in JIT compilation
To measure the time spent in JIT compilation (as opposed

to executing the code), we profiled the whole ARM simulator
on host. Figure 5 shows the percentage time spent in compi-
lation of the code versus executing the generated code. We
observe that the process of JIT compilation itself is quite
efficient as only about 3% of the total time is spent in JIT
compilation in these benchmarks. The higher JIT compila-
tion time of Viterbi is due to the higher percentage of control
code.

4.2 Effect of branches on performance
To better understand the difference in performance be-

tween AMR and other benchmarks, we instrumented the
AMR encoder and one representative benchmark, FFT to
generate a dynamic count of opcodes executed. Figures 6
and 7 display the percentage frequency of top ten opcodes
in AMR encoder and FFT respectively.

From these figures, we observe that the AMR encoder ex-
ecutes more frequent branch opcodes (B, BX, BL), for a total
of 17%, while the FFT has only 6% branches (B, BL). These
branches contribute to the slower speed of ARM instruction
execution for AMR versus FFT. FFT has a regular loop-
nest structure. We also observe that the load/store instruc-
tions themselves are not the bottleneck, because the FFT
has 47% of load/store instructions (LDR, STR, LDM, STM), and

36

Frequency of opcodes (FFT)

34

20

15

9

6
4 3 2 2 2

0

5

10

15

20

25

30

35

40

LDR MOV ADD STR SUB B CMP LDM STM BL

ARM opcodes

P
er

ce
n

ta
g

e
F

re
q

u
en

cy

Figure 7: Frequency of opcodes in FFT

yet the number instructions executed per second is better
than AMR.

5. RELATED WORK
The Sandblaster architecture has SIMD vector processing

unit, and architecturally visible pipelines, similar to other
DSP processors [4, 11].

Dynamic translation is an effective technique employed
in compiler, simulation, and software instrumentation. Ex-
amples of dynamic compiler include Java JIT compiler [3],
Shade [2], and ATOM [10]. A typical JIT example for in-
strumentation is the Pin project [8, 7], which allows users
to insert function calls within a binary code to perform sta-
tistical analysis, performance profiling, and debugging.

System emulators provide extensible platforms when mul-
tiple systems are desired to run on host processors. For
ARM architecture, the most widely deployed embedded pro-
cessor, QEMU tool uses dynamic translation to emulate mul-
tiple ARM processors on several hosts [1].

6. FUTURE WORK
Our simulator provides essential elements for a whole sys-

tem simulation, e.g., boot Linux, and run multi-core sim-
ulation with ARM and DSP applications running concur-
rently. A simple cache invalidation approach is currently
implemented for flushing code regions; a more sophisticated
mechanism could be explored. Our ARM simulation envi-
ronment provides a base software structure for simulating
ARM architecture version up to ARM v5. We plan to ex-
tend to the other ARM processor versions.

Although our models are functionally correct, cycle accu-
rate modeling of memory and peripheral devices is another
potential direction. The task involves modeling of AMBA
bus arbitration, multi-port memory controller, and various
peripheral controllers.

Modeling of 16-bit Thumb or 8-bit Jazzelle instruction set
is another direction to extend our ARM simulator. Because
of our modular simulator design, the integration of vector
floating point (VFP) co-processor model should be relatively
easy.

7. SUMMARY
In this paper we describe the design and implementation

of an ultrafast, flexible, just-in-time ARM simulator running

on x86 host. This simulator was developed as a part of an
integrated system-level multi-core DSP and ARM simula-
tor. We discuss various design alternatives and demonstrate
that reasonable simulator performance can be achieved by
a combination of techniques. Our experience has been that
the JIT compiler itself is a small part of the overall system
design and one must carefully weigh various alternatives to
achieve overall system performance without sacrificing mod-
ularity and portability.

We would like to thank Sean Dorward for his contribu-
tions. We also thank many anonymous reviewers for their
extremely useful suggestions.

8. REFERENCES
[1] F. Bellard. QEMU, a fast and portable dynamic

translator. In 2005 USENIX Annual Technical
Conference — FREENIX Track, pages 41–46, 2005.

[2] B. Cmelik and D. Keppel. Shade: A fast instruction-set
simulator for execution profiling. In ACM
SIGMETRICS Conference on the Measurement and
Modeling of Computer Systems, pages 128–137, May
1994.

[3] T. Cramer, R. Friedman, T. Miller, D. Seherger,
R. Wilson, and M. Wolczko. Compiling Java just in
time: Using runtime compilation to improve Java
program performance. IEEE Micro, 17(3):36–43,
May/June 1997.

[4] J. Fridman and Z. Greenfield. The TigerSHARC DSP
architecture. IEEE Micro, 20(1):66–76, 2000.

[5] J. Glossner, S. Dorward, S. Jinturkar, M. Moudgill,
E. Hokenek, M. Schulte, and S. Vassiliadis. Sandbridge
software tools. In the 5th Workshop on Embedded
Computer Systems: Architectures, Modeling, and
Simulation, pages 269–278, Samos, Greece, July 2005.

[6] J. Glossner, D. Iancu, J. Lu, E. Hokenek, and
M. Moudgill. A software defined communications
baseband design. IEEE Communications Magazine,
41(1):120–128, January 2003.

[7] K. Hazelwood and A. Klauser. A dynamic binary
instrumentation engine for the arm architecture. In
International Conference on Compilers, Architectures,
and Synthesis for Embedded Systems (CASES), pages
261–270, Seoul, Korea, October 2006.

[8] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building customized program analysis tools with
dynamic instrumentation. In Programming Language
Design and Implementation, pages 190–200, Chicago,
IL, June 2005.

[9] M. J. Schulte, J. Glossner, S. Jinturkar, M. Moudgill,
S. Mamidi, and S. Vassiliadis. A low-power
multithreaded processor for software defined radio.
Journal of VLSI Signal Processing, 43(2–3):143–159,
June 2006.

[10] A. Srivastava and A. Eustace. ATOM: a system for
building customized program analysis tools. SIGPLAN
Notices, 39(4):528–539, 2004.

[11] O. Wolf and J. Bier. StarCore launches first
architecture — Lucent and Motorola disclose new
VLIW-Based approach. Microprocessor Report,
12(14):1–4, October 1998.

37

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

