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ABSTRACT 
This paper presents a new register assignment heuristic for 
procedures in SSA Form, whose interference graphs are chordal; 
the heuristic is called optimistic chordal coloring (OCC). Previous 
register assignment heuristics eliminate copy instructions via 
coalescing, in other words, merging nodes in the interference 
graph. Node merging, however, can not preserve the chordal 
graph property, making it unappealing for SSA-based register 
allocation. OCC is based on graph coloring, but does not employ 
coalescing, and, consequently, preserves graph chordality, and 
does not increase its chromatic number; in this sense, OCC is 
conservative as well as optimistic. OCC is observed to eliminate 
at least as many dynamically executed copy instructions as 
iterated register coalescing (IRC) for a set of chordal interference 
graphs generated from several Mediabench and MiBench 
applications. In many cases, OCC and IRC were able to find 
optimal or near-optimal solutions for these graphs. OCC ran 1.89x 
faster than IRC, on average. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – compilers. 

General Terms 
Algorithms, Performance. 

Keywords 
Register Assignment, Static Single Assignment (SSA) Form, 
Chordal Graph. 

1. INTRODUCTION 
Register allocation is one of the most challenging compiler 
optimizations from both a theoretical and practical standpoint. 
Recent work in register allocation has focused on using the Static 
Single Assignment (SSA) form as an intermediate representation. 
The primary motivation for this is a recent proof that the 
interference graph for an SSA Form is a chordal graph [1, 6, 15]; 
although chordal graphs can be colored optimally and efficiently 

in polynomial time [11], a coloring solution alone does not yield 
an effective solution for register assignment. 

Register allocation in compilers consists of two separate sub-
problems: spilling and register assignment; this paper focuses on 
the latter. Spilling partitions all of the scalar variables that are live 
at each point in the program between the k registers available in 
the target architecture and memory, which is much costlier to 
access. Register assignment must map each of the non-spilled 
variables to the k target registers, with the goal of eliminating as 
many dynamically executed copy instructions as possible. A copy 
instruction between two variables can be eliminated by assigning 
both of the variables to the same register; the resulting instruction 
copies the content of the register to itself, and thus does not 
change the state of the processor, and can therefore be eliminated.  

One important advantage of using SSA Form is that all of the 
copy instructions in an application can be eliminated while SSA 
Form is constructed [4]. After translating out of SSA Form, the 
only remaining copies are those that are inserted to replace ϕ-
functions, an integral part of the SSA representation. Although it 
has never been formally proven or empirically observed that SSA-
based register allocation is superior to traditional methods, the 
ability to eliminate the vast majority of copies up front appears to 
be a conceptual advantage at the very least.  

To date, one SSA-based register allocation algorithm has been 
published by Hack et al. [16]. This allocator performs spilling and 
coalescing in two separate steps, unlike prior non-SSA-based 
graph coloring allocators (e.g. [5, 8, 12, 22, 28]). The spilling 
phase is similar in principle to linear scan register allocation [23], 
but traverses the program’s dominator tree instead; register 
assignment, in contrast, is based on graph coloring. It is our belief 
that future SSA-based register allocators will also separate 
spilling and coalescing into distinct phases, unless just-in-time 
(JIT) constraints dictate that both be solved in conjunction.  

One of the key requirements of register assignment is that no 
more than k colors can be used to color the interference graph. In 
order to minimize copies, the vast majority of prior register 
assignment heuristics employ a technique called coalescing. To 
eliminate a copy y ← x, the nodes in the interference graph 
corresponding to x and y are merged. Node merging, however, 
can increase the chromatic number of the interference graph. 
Conservative coalescing techniques [5, 12, 17-18] prevent 
coalescing unless it can be proven that doing so will not increase 
the chromatic number beyond k. Although the spilling phase 
ensures that the resulting interference graph is k-colorable using a 
simple greedy algorithm, it is generally NP-Complete to 
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determine whether the graph remains k-colorable after coalescing 
even a single copy [3].    

In SSA Form, however, the interference graph is chordal. The 
chromatic number of a chordal graph G = (V, E) can be 
computed in O(|V| + |E|) time using a simple greedy algorithm 
[11]; however, coalescing cannot preserve the chordal graph 
property unless additional interference edges are added. To 
address this need, this paper introduces a new coalescing 
heuristic, Optimistic Chordal Coloring (OCC) for chordal 
graphs that does not employ coalescing and ensures that a legal 
k-coloring is found.  

We have tested the OCC heuristic on a set of interference 
graphs generated from embedded applications taken from the 
Mediabench [20] and MiBench [14] benchmark suites. We 
compared OCC with Iterated Register Coalescing (IRC) [12], 
an established technique for register assignment for interference 
graphs. We also compare the results with an optimal algorithm 
based on Integer Linear Programming (ILP) [13]. We report the 
following results: 

• For all but 3 applications, both OCC and IRC found 
solutions of optimal cost. OCC found a better result that 
IRC in only one case. We caution that this result is limited 
to a few embedded applications and is not necessarily 
representative of other classes of applications (e.g. 
scientific, general-purpose, etc.).  

• For all but 3 applications, OCC ran faster than IRC; on 
average, OCC ran 1.89x faster than IRC. The 3 
applications where IRC was faster generally had small 
interference graphs with relatively few ϕ-functions. Two 
of these three applications featured optimal solutions with 
0 copies, indicating that conservative coalescing 
eliminated every copy. The more complicated techniques 
employed by OCC worked against its runtime in these 
cases.  

The paper is organized as follows. Section 2 introduces SSA 
Form, chordal graphs, and defines the problem of register 
assignment. Section 3 summarizes related work in the area of 
register allocation, focusing specifically on coalescing 
techniques. Section 4 describes the OCC heuristic in detail, and 
compares its execution to prior heuristics based on coalescing. 
Section 5 presents our experimental evaluation of the OCC 
heuristic, which is compared to both the IRC heuristic and the 
optimal ILP solution for register assignment. Section 6 
concludes the paper.  

2. PRELIMINARIES 
2.1 SSA Form 
Any instruction of the form x ← … is a definition of variable x; 
any instruction of the form … ← x is a use of x. A procedure is 
defined to be in Static Single Assignment (SSA) Form [4, 9-10] 
if every variable is defined once and each use of a variable 
corresponds precisely to one definition. Fig. 1 shows a CFG 
fragment (a) converted to SSA Form (b). Variable x is defined 
on both sides of a condition and used at a block following the 
condition. The definitions of x are renamed to x1 and x2, in Fig. 
1 (b); a ϕ-function is introduced to merge x1 and x2 into x3, and 
the use of x is replaced with a use of x3. 

 
In Fig. 1 (b), if the left path is taken, then x3 receives the value of 
x1; if the right path is taken, then x3 receives the value of x2. ϕ-
functions are always placed at the beginning of a basic block and 
execute in parallel.  

Following register assignment, we translate out of SSA Form 
using swap and parallel copy instructions, as described by Hack 
et al. [15]. If swaps and parallel copies are not available in the 
target architecture, then the Swap Problem [4] may occur. Hack et 
al. suggested that 3 xor operations can be used to implement a 
swap. This approach generally works, but at a higher cost (i.e. 3 
single-cycle instructions per swap compared to 1).  

Unfortunately, some processors have dedicated registers for 
floating point values. The xor instruction may not be able to 
access these registers. In this case, 3 copy instructions are 
required; however, if no register is free, then some variable must 
be spilled in order to free up a register. The choice of which 
variable to spill in such a circumstance is beyond the scope of this 
paper; we simply assume that swap instructions are available.  

The Lost Copy Problem, which is also beyond the scope of this 
paper, can be rectified by critical edge splitting [2, 4].  

2.2 Chordal Graphs 
Let G = (V, E) be an undirected graph. For v∈V, N(v) is the set 
of vertices adjacent to v. An Elimination Order (EO) is a function 
σ : V → {1, 2, …, |V|} that assigns a unique value to each vertex. 
The vertices are named such that for vertex vi∈V, σ(vi) = i. Let 
Vi = {vj∈V| j < i}, and Gi = (Vi, Ei) be the subgraph of G induced 
by Vi. G0 is defined to be the empty graph and Ni(v) = N(v)∩ Vi. 
The basic idea of an elimination order is that graph Gi+1 can be 
constructed from Gi by adding vi+1 to Vi and adding all edges 
belonging to Ni(vi+1) to Ei. A Perfect Elimination Order (PEO) is 
an elimination order that sastisfies the property that Ni(vi) is a 
clique in Gi. A Chordal Graph is any graph that has a PEO. An 
interference graph for an SSA Form program is provably chordal 
[1, 6, 15]. 
A PEO for a chordal graph can be computed in O(|V| + |E|) time 
using Maximum Cardinality Search (MCS)  [27], whose 
pseudocode is shown in Fig. 2(a).  
Given a PEO, an optimal color assignment can be computed for a 
chordal graph in O(|V| + |E|) time using Gavril’s algorithm 
shown in Fig. 2(b) [11]. Inductively, assume that a legal coloring 
has been found for vertices v1, …, vi-1, now consider vi. The only 
vertices that constrain the color assigned to vi are those in Ni(vi), 
which is a clique. Therefore, it suffices to assign the smallest 
color to vi that is not assigned to a vertex in Ni(vi). 

x ← x ←

… ← x

(a) 

x3 ← φ(x1, x2) 
… ← x3 

x1 ← x2 ←

(b) 

Figure 1. A CFG fragment (a) in SSA Form (b) 
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Gavril’s algorithm is not the only algorithm that can optimally 
color a chordal graph. A heuristic called Simplification [19, 21], a 
variant of which has been used in the past for graph coloring 
register allocation [5, 8, 12, 22, 28], can also produce optimal 
colorings for chordal graphs [2]. Simplification repeatedly 
removes the vertex of minimal degree from the graph and pushes 
it onto a stack. The top-to-bottom order of vertices in the stack is 
then treated as an EO. Color assignment then proceeds using the 
same basic greedy approach as Gavril—assign each vertex that 
smallest color not assigned to one of its neighbors. 

2.3 Problem Statement 
Let G = (V, E) be a k-colorable interference graph for a procedure 
in SSA Form, where k is the number of registers in the target 
architecture; since spilling has occurred already, the assumption 
that G is k-colorable is reasonable, and since the procedure is in 
SSA Form, G is chordal. Consequently, χ(G), the chromatic 
number of G, can be computed in O(|V| + |E|) time, and χ(G) < k.  

Now, consider a generic ϕ-function, y ← ϕ(…, x, …). Let ry and rx 
be the registers assigned to y and x respectively. If ry ≠ rx, then a 
copy ry ← rx must be inserted on the CFG edge leading into the 
block containing the ϕ-function. On the other hand, if ry = rx, then 
the copy instruction is an identity operation that does not change 
the state of the machine; it can therefore be eliminated.  

Runtime profiling is used to determine the execution frequency of 
basic blocks, and also the number of times each CFG edge is 
taken. If runtime profiling information is not available, a static 
profile can be generated based on loop nesting depth. If the CFG 
edge that supplies x as a parameter to the ϕ-function is taken t 
times, then eliminating the copy shaves t  processor cycles off the 

total execution time of the application (assuming a 1-cycle copy 
instruction and a single-issue processor).  

The goal of the register assignment problem is to eliminate as 
many dynamically executed copies as possible while still ensuring 
that the assignment of variables to registers is legal. For our 
purposes, we introduce an extended interference graph G = (V, E, 
Eϕ, w), where w is a weight function that assigns integer weights 
to the ϕ-edges in Eϕ based on profiling information; Eϕ is defined 
as follows:  

( ){ EyxyxyxE ∉∧≠= ,,ϕ   (1) 

( )},......, xy ϕ←∃∧  

For ϕ-edge e = (x, y), w(e) is the dynamic execution count of the 
CFG edges leading into the basic block containing the ϕ-function 
defining y, where x occurs in the parameter slot.  

Fig. 3 shows a sample problem instance: an interference graph, 
including the weighted ϕ-edges. The weights correspond to the 
number of times a copy instruction would execute if two vertices 
incident on the same ϕ-edge are assigned different colors. Any 
legal coloring of G that uses at most k colors is a solution to the 
problem of register assignment for a procedure. The problem can 
be solved individually for each procedure.  

The efficacy of a coloring solution is the number of dynamic 
copies removed based on the estimated profile, w, which is 
derived from the color assignment. If f is a legal color assignment 
of G, we define an objective function, F, which computes the 
number of dynamically executing copies that will be eliminated: 

 ( ) ( )
( )
( ) ( )

∑
=
∈=

=

yfxf
Eyxe

ewfGF
ϕ,

,    (2) 

 

 

Algorithm: Chordal Color Assignment 
Input: Chordal Graph G = (V, E), PEO σ 

Output: Color Assignment f : V → {1… χG} 

1 For Integer : i ← 1 to |V| in PEO order 
2.  Let c be the smallest color not assigned 
  to a vertex in Ni(vi) 
3. f(vi) ← c 
4. EndFor 

Figure 2 Pseudocode for Maximum Cardinality Search 
[27] (a) and Chordal Color Assignment [11] (b) 

Algorithm: Maximum Cardinality Search 
Input: Chordal Graph G = (V, E) 
Output: PEO σ : V → {1… |V|} 

1∀ v∈V:    Let T(v) ← 0; σ(v) ←φ  
2. For Integer : k ← 1 to |V| 
3. Select v∈V∋ T(v) is maximum 
4. σ(v) ← k 
5. ∀ u∈N(v)∋ σ(v) =φ :   T(u) ← T(u) + 1 
6. EndFor 

(a) 

(b) 

A 
B C 

D E 

I 

F 
G

H 

L 
K J 

M

Interference Edge ϕ-Edge 

ϕ-Edge 

(B, G) 
(C, I) 
(C, L) 
(D, M) 
(E, I) 
(F, L) 
(F, M) 
(G, M) 
(K, M) 

Weight 

3 
2 
5 
7 
3 
4 
5 
3 
2

Figure 3. A sample problem instance: an interference 
graph with weighted ϕ-edges 
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The optimal color assignment, f*, is the legal color assignment 
that uses at most k colors such that F(G, f*) > F(G, f) for every 
legal color assignment f. The decision analogue of this problem is 
NP-Complete, even for chordal interference graphs [3, 24].  

This interference graph is chordal, and its chromatic number is 4. 
If application consists of one procedure, then 4 registers are 
allocated. Any legal 4-coloring of the interference graph suffices; 
however, there are many 4-colorings, each of which will cause a 
different number of copies to execute dynamically. Table 1 shows 
two legal 4-colorings. The first executes 20 copies dynamically; 
the second executes 14, and is a better solution. 

3. RELATED WORK 
This paper was motivated, in part, by a recent theoretical study of 
the complexity of register assignment via coalescing due to 
Bouchez et al. [3]. In particular, Bouchez et al. identified 4 
categories of coalescing, as discussed in subsections 3.1-3.4. 

It is important to note that to coalesce a copy y ← x, the nodes in 
the interference graph corresponding to x and y are merged into a 
new node, xy. The OCC heuristic, contrast, does not employ node 
merging, but retains the benefits of coalescing. 

3.1 Aggressive Coalescing 
Aggressive coalescing recklessly eliminates copy instructions 
without regard for the effect on the chromatic number of the 
interference graph. The first graph coloring register allocator by 
Chaitin [8] employed aggressive coalescing; Briggs et al. [5] later 
showed that this approach can cause additional spilling, and 
introduced conservative coalescing, which is discussed in 
subsection 3.2. Today, aggressive coalescing is most often studied 
under the context of translating out of SSA Form while 
minimizing the number of copies inserted while doing so [7, 24, 
26]; it is also used as a phase of optimistic coalescing, which is 
discussed in Section 3.3. Bouchez et al. [3] showed that 
aggressive coalescing is NP-Complete, even for graphs containing 
at most 3 interference edges. 

3.2 Conservative Coalescing 
Conservative coalescing recognizes that load and store 
instructions, which are required for spilling, are generally more 
costly than copy instructions. Eliminating a copy is generally a 

good idea, but the effectiveness of doing so will cause further 
spills. Conservative coalescing criteria only allow copies to be 
coalesced if it can be proven that doing so will not cause 
additional variables to be spilled. Conservative coalescing criteria 
have been proposed by Briggs et al. [5], George and Appel [12], 
and Kaluskar [18]. The theoretical power of different versions of 
the Briggs et al. and George and Appel criteria has been studied in 
greater detail by Hailperin [17]. Bouchez et al. [3] have shown 
that conservative coalescing is NP-Complete for chordal graphs.  

The limitations of conservative coalescing were well-known to 
Briggs et al. [5], who introduced the concept. In many cases, a 
copy y ← x could not be coalesced due to a large number of 
neighbors of high degree; however, depending on the assignment 
of colors to their neighbors, it still may be possible to assign the 
same color to x and y during simplification, without node 
merging. This approach is called biased coloring.  

3.3 Optimistic Coalescing 
Park and Moon [22] and Vegdahl [28] observed that coalescing 
can have positive effects at well. Park and Moon introduced 
optimistic coalescing, which performs aggressive coalescing until 
no further coalescing is possible due to interferences. Some of the 
copies are then decoalesced when doing so can reduce spilling.  

3.4 Incremental Coalescing 
Both the aggressive and conservative approaches consider one 
copy instruction at a time for coalescing; this is called 
incremental coalescing. Bouchez et al. [3] identified situations 
where incremental coalescing yields sub-optimal results. Using 
conservative coalescing as an example, Bouchez et al. found an 
interference graph, where there are 2 copies, neither of which 
satisfies the criteria for conservative coalescing; however, if both 
copies are coalesced together, the criteria would be satisfied. 
Coalescing one copy at a time, unfortunately, can not achieve the 
best result. Unfortunately, if an interference graph contains k 
copies, then there are 2k different subsets of copies that can 
coalesced in conjunction. Unless it is proven that P = NP, the 
optimal solution can only be found by coalescing every possible 
combination of copies and testing whether or not the resulting 
interference graph is k-colorable. Clearly, doing so would be 
prohibitively expensive. An analogous situation occurs in the 
context of decoalescing in the optimistic strategy.  

4. OPTIMISTIC CHORDAL COLORING 
The Optimistic Chordal Coloring (OCC) heuristic is influenced 
by previous coalescing techniques, but does not explicitly merge 
nodes. This ensures that the interference graph remains chordal 
and k-colorable, which satisfies the criteria for conservative 
coalescing. At the same time, OCC attempts to mimic the use of 
aggressive coalescing in the optimistic strategy. OCC identifies 
independent sets of nodes to which it would like to assign the 
same color; however, OCC does not coalesce these nodes. During 
color assignment, which processes nodes in PEO order, OCC 
makes every effort to ensure that all nodes in the same 
independent set receive the same color. It is not always possible 
to do so, however; when this occurs, the situation is analogous to 
decoalescing, as discussed in Section 3.3.  

The identification of independent sets of nodes that would be 
coalesced in the context of aggressive coalescing, but not 

Node 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 

Color (1) 

1 
2 
3 
1 
2 
3 
1 
2 
3 
4 
1 
2 
1 

Color (2) 

1 
3 
2 
4 
1 
3 
4 
2 
1 
3 
4 
2 
4 

20 copies 

Table 1.  
Two color assignments for the graph in Figure 1. 

14 copies 
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coalesced by OCC, is called pseudo-coalescing. Pseudo-
coalescing is the key feature that sets the OCC heuristic apart 
from other heuristics based on coalescing.  

Subsections 4.1-4.5 describe the different phases of our 
implementation of the OCC heuristic in detail. 

4.1 Simplification 
Let G = (V, E) be a K-colorable graph and v∈V. If |N(v)| < K, 
then G’ = (V’, E’) is K-colorable, where V’ = V – {x} and E’ is the 
subgraph of G induced by V’. In short, even if every neighbor of v 
is assigned a unique color, there is still at least one free color 
available for v [19]. Consequently, v can be removed from G, the 
resulting graph G’ can then be colored, and a color can then be 
assigned to G after the fact. Many graph coloring register 
allocators [5, 8, 12, 22, 28] employ some type of simplification,  

This is the use of simplification in the context of register 
allocation that was alluded to at the end of Section 2.2. The 
difference is that in Section 2.2, simplification was used as a 
heuristic to find the optimal coloring of a chordal graph (it can 
also act as a heuristic to find colorings of general graphs, with no 
guarantees of optimality).  

Simplification is not necessary to compute a minimum coloring of 
a chordal graph; however, simplification is still useful for register 
assignment on chordal graphs as long as it is restricted to vertices 
having no incident ϕ-edges. Suppose that vertex v is incident on 
several ϕ-edges. If vertices that interfere with v occur prior to v in 
the PEO, then the colors assigned to these vertices constrain the 
color that can be assigned to v. By removing these vertices by 
simplification, fewer constraints are placed upon v at the time its 
color is assigned, and it is therefore more likely that color 
assignment can eliminate more copies involving v.  

In the context of coloring chordal graphs for register assignment, 
Grund and Hack [13] used simplification to reduce the number of 
vertices that must be colored using their ILP. After coloring the 
remaining subgraph, colors are assigned to all vertices that were 
removed earlier by simplification. We essentially do the same 
thing here, but employ the OCC heuristic for coloring rather than 
the optimal ILP. 

4.2 Biased MCS 
In general, any technique that assigns colors to vertices incident 
on ϕ-edges earlier rather than later during the coloring process 
will lead to fewer dynamic copies than an alternative that assigns 
colors to them later. Although simplification is effective, it is not 
the only method that can achieve this. A chordal graph may have 
many different PEOs, an the PEO produced by MCS [27] in Fig. 
2(a) is not particularly favorable in this respect.  

We make the following modification to the MCS algorithm. 
During each iteration, let S be the set of vertices v such that T(v) is 
maximum (line 3 of Fig. 2(a)). For vertex s∈S, let W*(s) be the 
sum of the weights of the φ-edges incident on s. When there is a 
choice between multiple vertices with maximum T-values, W* is 
used as a tiebreaker, and the vertex with the maximal W* value is 
chosen. This approach generally places vertices with high W* 
values as early as possible in the PEO. This allows these vertices 
to be assigned colors before many of their neighbors, which 
means fewer constraints on the number of available colors. This 
approach is called Biased Maximum Cardinality Search (BMCS). 

4.3 Aggressive Pseudo-Coalescing 
Pseudo-coalescing is similar in principle to coalescing: both 
identify an independent set of nodes in the interference graph that 
“should” be assigned the same color. Coalescing merges these 
nodes into a single node, therefore enforcing the decision 
regarding coloring; pseudo-coalescing, in contrast, simply retains 
the independent sets. The color assignment heuristic, discussed in 
subsection 4.4, then attempts to assign each node in the same 
independent set the same color. This approach is conservative for 
chordal graphs, because the decision not to merge nodes ensures 
that the chromatic number of the interference graph does not 
exceed k.  

Let S(v) be the independent set to which node v belongs. Initially, 
S(v) = {v} for every vertex. Let N(S(v)) = {N(x)|x∈S(v)}. In other 
words, N(S(v)) is the set of nodes that are adjacent to at least one 
vertex in S(v). Two distinct vertices u and v can be pseudo-
coalesced if N(S(u))∩ S(v) and S(u)∩ N(S(v)) are both empty; if 
so, then the two sets are merged.  

Pseudo-coalescing is effectively the same as coalescing, but 
without the node merging. If u is coalesced into some node c1 and 
v is coalesced into c2, then N(S(u))∩ S(v) and S(u)∩ N(S(v)) are 
both empty in the context of pseudo-coalescing if and only if c1 
and c2 are not adjacent in the interference graph under coalescing. 

The aggressive pseudo-coalescing phase in OCC is incremental 
[3], meaning that one ϕ-edge is pseudo-coalesced at a time. We 
sort the ϕ-edges by weight, and consider them for pseudo-
coalescing in Decreasing Sorted Order (DSO). Except for node 
merging, aggressive pseudo-coalescing is exactly the same 
problem as aggressive coalescing: the goal is to maximize the sum 
of the weights of the ϕ-edges that have been (pseudo-)coalesced. 
Since this problem is NP-Complete [3], considering ϕ-edges in 
DSO order is a heuristic, and does not guarantee optimality.  

4.3.1 Paths and Clique Rays 
Grund and Hack [13] identified two commonly occurring 
subgraphs in register assignment problems, shown in Fig. 4 (a) 
and (b),, and tailored their ILP formulation to exploit these types 
of subgraphs, when found. Specifically, they used the existence of 
such subgraphs to impose extra constraints (cuts) on the ILP 
which increase its rate of convergence. Here, we show that the 
DSO order can solve the aggressive coalescing problem optimally 
for these specific subgraphs.  

Fig. 4(a) shows a clique ray: a subgraph that consists of a clique 
C = {v1, …, vn} in the interference graph, and a node a∉C, such 
that there is a ϕ-edge (a, vi) for 1 < i < n. Clearly, S(a) can only 
contain one node in C. If there are no other ϕ-edges incident on 
any vertices in a clique ray, then DSO will process the maximum 
weighted ϕ-edge, emax = (a, vmax), first. (Pseudo-)coalescing a and 
vmax is optimal for the clique ray. 

Fig. 4(b) shows a path, two interfering nodes u and v, and a 
distinct path between them connected only by ϕ-edges. Here, we 
assume that there are no interference edges between nodes on the 
path, other than u and v, and that there is only one path between u 
and v via ϕ-edges. Clearly, the sets S(u) and S(v) must be distinct, 
so exactly one ϕ-edge on this path cannot be coalesced. The 
optimal edge, in this case, will be the edge of minimum weight, 
the edges visited last by the DSO heuristic. 
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In practice, clique rays and paths will be connected to other nodes 
via ϕ-edges. In this case, processing ϕ-edges in DSO order may 
not yield an optimal solution to aggressive (pseudo-)coalescing.  
It is also important to note that in the context of OCC or 
optimistic coalescing, optimal to the (pseudo-)coalescing does not 
guarantee that the overall register assignment will be optimal. 

4.4 Optimistic Chordal Color Assignment 
Similar to chordal coloring, vertices are processed in PEO order. 
Now, suppose that vertex v is the first vertex in S(v) to be 
assigned a color, c. Optimistically, we assign color c to every 
other vertex in S(v) as well. This may lead to a temporarily illegal 
coloring, but a legal color for some other vertex u∈S(v) can 
always be found when u is processed later in the PEO. Different 
techniques for color assignment are applied to each subsequent 
vertex in the PEO, depending on whether or not it is incident on 
any ϕ-edges. 

Suppose that vi is not incident on any ϕ-edges. Since G is a 
chordal graph, we know that there will be at least one color 
available for vi that is not assigned to a vertex in Ni(vi); however, 
we may have optimistically assigned color c to some vertex 
u∈N(vi) – Ni(vi). If possible, we should attempt to respect this 
optimistic color assignment; if the same color is assigned to vi, 
then u will have to change its color when u is processed later in 
the PEO. First, we look for an available color that has not been 
assigned to any vertex in N(vi). If one such color is available, it is 
assigned to vi. If one such color is not available, then we resort to 
traditional chordal color assignment for vi, and a color not 
assigned to a vertex in Ni(vi) is assigned to vi. In short, the 
heuristic makes the effort to respect the optimistic assignment of 
colors to vertices later in the PEO, but will sacrifice the optimistic 
assignment in order to find a legal color for vi.  

Now, suppose that vi is not the first vertex in S(vi) to be assigned a 
color. Thus, vi has already been assigned some color c 
optimistically. If no vertex in Ni(vi) has been assigned color c, 
then vi retains the color—e.g. optimistic color assignment was 
successful. On the other hand, if c is not available, then some 
other color must be assigned to vi. In this case, vi is removed from 
S(vi), and a new color is selected. This process is rather complex. 

First and foremost, vi considers incident ϕ-edges (vi, x), where 
x∉S(vi). If possible, vi can be added to S(x), which will eliminate 
some different copies involving vi. Clearly, vi cannot interfere 
with any vertex in S(x). Second, if color c has been optimistically 
assigned to vertices in S(x), then no vertex in Ni(vi) can be 
assigned color c. If both of these criteria are satisfied, then vi can 
be added to S(x).  

If no color has yet been optimistically assigned to S(x), then the 
color assigned to v will be optimistically propagated to the 

vertices in S(x). Ideally, one would look for a color not assigned 
to any vertices in either Ni(vi) or N(S(x)); however, if no such 
color is found, the color that does the least amount of damage to 
S(x) should be chosen. It may be possible that the best choice is 
not to add vi to S(x). There may be multiple sets S(x) to which vi 
can be added. For each set, the best color is chosen to assign to vi, 
and the number of dynamically executed copies that would be 
eliminated by adding vi to each set is estimated. Among all sets, 
the best one is then chosen for vi.  

In conclusion, the optimistic chordal coloring heuristic may 
assign a color to a vertex before it is processed in the PEO. The 
heuristic makes every attempt to respect the optimistic 
assignment, but will undo the assignment in order to avoid an 
illegal coloring. The final decision regarding the color to assign to 
each vertex is still made in PEO order. The final assignment of 
colors to vertices is never undone.  

4.5 Refinement 
OCC is a heuristic. The sets of pseudo-coalesced vertices that are 
formed early in the color assignment may be broken up early due 
to colors assigned to interfering vertices. After color assignment, 
we make one last past over the set of φ-edges. Let e = (u, v) be 
one such φ-edge, and assume that f(u) ≠ f(v). Without loss of 
generality, if f(v) is not assigned to any neighbor of u, and 
swapping u’s color to f(v) will reduce the number of dynamically 
executed copies, then there is no reason not to make the swap. 
Likewise, an analogous decision can be made for v. If both colors 
are available for both vertices, the choice that leads to a greater 
reduction in the number of dynamically executed copies is 
chosen. The effectiveness of this refinement step is marginal; 
however, there is no reason not to apply it when useful. 

5. EXPERIMENTAL RESULTS 
Here, we compare the results of optimistic chordal coloring to 
iterated register coalescing (IRC) [12] and the optimal ILP 
formulation of the register coalescing problem by Grund and 
Hack [13]. We found that both OCC and IRC produce optimal or 
near-optimal solutions in many cases, and that optimal chordal 
coloring runs faster than iterated coalescing in most cases. The 
two heuristics were implemented in C++, while the ILP was 
solved using CPLEX. The code that generates the ILP from the 
input graph description was written in Java, and is thus interpreted 
rather than compiled.  
17 applications were selected from the Mediabench [20] and 
MiBench [14] suites and compiled and profiled using Machine 
SUIF [25]. Following profiling, each procedure in each 
application was converted to SSA Form and its interference graph 
was constructed. The reported runtimes are for the color 
assignment heuristics only, and do not reflect the costs of liveness 
analysis and interference graph construction. 
Table 2 lists each of the benchmarks and the number of registers 
used in the respective experiment. For each benchmark, the 
number of registers allocated was the maximum chromatic 
number among the interference graphs of each procedure. Since 
SSA Form was used and the interference graphs are chordal, the 
chromatic number can be computed optimally in polynomial time. 
The number of registers used for each procedure is thus the 
smallest number of registers that can ensure that no variables are 
spilled during register assignment.  
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C 

Figure 4. A 4-node clique ray (a) and a path (b).
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Tables 3 and 4 list the experimental results. Table 3 lists the 
number of copies dynamically executed for each register 
assignment heuristic/algorithm; data is not listed for IRC/OCC 
when the result is the same as the optimal solution. Table 4 lists 
the runtime (normalized to OCC). 
From Table 3, we can see that IRC and OCC found solutions that 
were optimal in all but three benchmarks. For gsm and 
jpeg_djpeg, both IRC and OCC found the same solution; for 
pegwit, OCC found a better solution than IRC, and it is only 1 
copy away from the optimal. The difference in solution quality 
between the heuristics and optimal was 2990 dynamic copies for 
gsm and 6283 for jpeg_djpeg.  The averages are dominated by the 
4 largest benchmarks. 
In all of these experiments, the translation out of SSA Form was 
performed using swap instructions. The number of dynamically 
executed copies may increase (along with possibly requiring 1 
additional register) if only copies are used due to the swap 
problem. On the other hand, if k-wide parallel copies are 
supported, the number of dynamic copies may be reduced as well, 
depending on how many can be issued in parallel. 
 

 

Table 4 shows the runtimes of optimal and IRC normalized to 
OCC. The optimal heuristic was run on a Dell Latitude D420 
laptop with an Intel Core Duo U2500 processor running at 1.2 
GHz and with 2.0 GB of RAM; the operating system was Ubuntu 
Feisty, and CPLEX 7.0 was used to solve the ILP. Although 
CPLEX 7.0 supports multi-core processing, a license supporting 
this feature was unavailable at the time the experiments were 
performed.  Thus only one of the two available cores was utilized. 
The IRC and OCC heuristics were run on a Dell Latitude D810 
laptop with an Intel Pentium M processor running at 2.0 GHz with 
1.0 GB of RAM; the operating system used was Fedora Core.  
From Table 4, it is easy to see that the runtime of the optimal 
solution runs is at least one order of magnitude greater than that 
of OCC. In all but 3 benchmarks, IRC ran slower than OCC; 
however, for crc32, dijkstra, and fft, IRC was faster. These 
benchmarks contained only a few relatively simple graphs that 
were among the fastest to color for all 3 heuristics. IRC, whose 
color assignment phase is based on simplification, colored these 
graphs quickly. OCC suffered runtime overhead due to the cost of 
computing a PEO in addition to simplification, as well as the 
refinement phase, which did not change the solution.  

5.1 The Effectiveness of Simplification 
We re-ran the experiments for OCC with the simplification phase 
disabled. The solutions produced for three benchmarks changed 
as a result. For gsm, the number of dynamically executed copies 
increased from 1912177 to 1938818, an increase of 1.01x; for 
pegwit, the number of dynamically executed copies increased 
from 49 to 50; and for susan, the number of dynamically executed 
copies increased from 2 to 138.  
Proportionally, the increase in dynamically executed copies was 
significant for susan, but in reality, a few hundred clock cycles is 
not particularly troubling. Nonetheless, the impact of disabling 
simplification may potentially be much greater for different and 
larger benchmarks. 

Dynamically Executed Copies 

Benchmark Optimal IRC OCC 
adpcm_rawcaudio 
adpcm_rawdaudio 
blowfish 
crc32 
dijkstra 
fft 
g721_decode 
g721_encode 
gsm 
jpeg_cjpeg 
jpeg_djpeg 
mpeg2dec 
mpeg2enc 
patricia 
pegwit 
sha 
susan 

6995016 
6995016 

0 
53322406 

0 
8209 

0 
0 

1909187 
541326 
272636 

2115 
95197 
1820 

48 
442 

2 

- 
- 
- 
- 
- 
- 
- 
- 

1912177 
- 

278919 
- 
- 
- 

72 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 

1912177 
- 

278919 
- 
- 
- 

49 
- 
- 

Average 4126084 4126630 4126629 

Table 3. Number of dynamically executed copy 
instructions for each benchmark 

Runtime (Normalized to OCC) 

Benchmark Optimal IRC 
adpcm_rawcaudio 
adpcm_rawdaudio 
blowfish 
crc32 
dijkstra 
fft 
g721_decode 
g721_encode 
gsm 
jpeg_cjpeg 
jpeg_djpeg 
mpeg2dec 
mpeg2enc 
patricia 
pegwit 
sha 
susan 

64.15 
158.32 
96.97 
1.50 
8.24 
6.84 

85.35 
113.20 
56.82 
84.96 

684.51 
91.97 
97.52 
20.84 

7851.58 
24.75 

11415.79 

2.13 
1.98 
1.28 
0.18 
0.84 
0.83 
1.50 
1.52 
1.81 
1.65 
2.17 
1.61 
1.75 
3.27 
2.14 
3.13 
2.47 

Average 2339.33 1.89 

Table 4. Runtime of the optimal and IRC heuristics, 
normalized to the runtime of OCC

Table 2. Number of registers allocated to an ASIP for 
each benchmark 

  
Benchmark 

  
Registers 

  
Benchmark 

  
Registers 

adpcm_coder 
adpcm_decoder 
blowfish 
crc32 
dijkstra 
FFT 
g721_decoder 
g721_encoder 
gsm 

14 
14 
14 
8 
6 

13 
16 
16 
16 

jpeg_cjpeg 
jpeg_djpeg 
mpeg2dec 
mpeg2enc 
patricia 
pegwit 
sha 
susan 
 

18 
39 
21 
45 
9 

13 
10 
20 
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5.2 The Effectiveness of BMCS 
Next, we replaced the BMCS with the traditional MCS and 
computed the PEO. A minor speedup was observed due to the fact 
that BMCS entails a small amount of sorting of the lists required 
to implement PEO construction.  
The quality of the solution was degraded for three benchmarks. 
For gsm, the number of dynamically executed copies increased 
from 1912177 to 2739189, an increase of 1.43x; for mpeg2enc, 
the number of dynamically executed copies increased from the 
optimal value of 95197 to 116669, an increase of 1.23x. For 
pegwit, the number of copies increased from 49 to 71.  
When simplification was disabled in conjunction with using an 
MCS, the results were considerably worse for many of the 
benchmarks. In practice, there is hardly any reason why a BMCS 
should not be used instead of an MCS; the runtimes of the other 
phases of allocation dominate the difference. 
Overall, the effect of simplification is greatest when many 
vertices incident on high-weight ϕ-edges are placed toward the 
end of the PEO. Removing interfering neighbors that occur earlier 
in the PEO significantly reduces the constraints on these vertices 
when their colors are assigned. At the same time, BMCS makes 
an extra effort to ensure that the very same vertices would be 
placed as early as possible in the PEO; and thus, simplification 
tends to remove vertices that are not incident on high-weight ϕ-
edges that occur later in the PEO. Thus, the overall effect and 
effectiveness of these optimizations appear to be quite similar. 

5.3 The Effectiveness of Refinement 
Lastly, we re-ran the experiments for OCC with only refinement 
disabled. The number of dynamically executed copies increased 
for 4 benchmarks: for gsm it increased from 1912177 to 1938818, 
the same result as when simplification was disabled in Section 
6.1; for jpeg_djpeg and pegwit, 1 additional copy was executed 
dynamically; and for mpeg2enc, the number increased from 
95197 to 96150, an increase of 1.01x. With the exception of gsm, 
refinement proved to be relatively ineffective on its own, and if 
simplification is used, it becomes even less effective. 
Nonetheless, only a handful of ϕ-edges appear to lead to the 
introduction of copies, so the overhead of refinement is limited.  
If the other phases of the algorithm do a good job with respect to 
color assignment, a post-processing phase, such as refinement, 
will have minimal opportunity to improve the quality of the 
solution. On the other hand, unless compile-time is of primary 
concern, there is practically no harm in running refinement 
following an initial color assignment. 

6. CONCLUSION 
A novel register allocation technique for chordal graphs that is 
both optimistic and conservative has been proposed in this paper. 
This technique, called optimistic chordal coloring (OCC), does 
not employ coalescing; doing so would destroy the chordal 
property of interference graphs for SSA Form programs. By 
ensuring that the interference graph remains chordal, and that 
colors are assigned to vertices in PEO order, OCC ensures that the 
chromatic number of the interference graph is never increased.  
Similar in principle to the optimistic coalescing heuristic of Park 
and Moon [22], OCC employs an aggressive pseudo-coalescing 
phase to identify independent sets of variables that should receive 

the same color under ideal circumstances. OCC makes every 
effort to assign these vertices the same color, and only deviates 
from this scheme when the desired color is not available.  
In practice, both OCC and iterated register coalescing produce 
similar—often optimal—results on a set of chordal interference 
graphs generated from a set of embedded applications. At present, 
it is not clear whether these graphs represent coincidentally easy 
problem instances, or whether copy folding during SSA Form 
effectively eliminates so many copies that the resulting 
interference graph is pragmatically easier to color well. 
In the future, we intend to test the OCC heuristic on chordal 
interference graphs generated from a larger set of applications, 
including those from outside of the embedded domain.   
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