
An Optimistic and Conservative Register Assignment
Heuristic for Chordal Graphs
Philip Brisk Ajay K. Verma Paolo Ienne

Processor Architecture Laboratory
Ecole Polytechnique Federale de Lausanne (EPFL)

Lausanne, Switzerland, CH-1015

{philip.brisk, ajaykumar.verma, paolo.ienne}@epfl.ch

ABSTRACT
This paper presents a new register assignment heuristic for
procedures in SSA Form, whose interference graphs are chordal;
the heuristic is called optimistic chordal coloring (OCC). Previous
register assignment heuristics eliminate copy instructions via
coalescing, in other words, merging nodes in the interference
graph. Node merging, however, can not preserve the chordal
graph property, making it unappealing for SSA-based register
allocation. OCC is based on graph coloring, but does not employ
coalescing, and, consequently, preserves graph chordality, and
does not increase its chromatic number; in this sense, OCC is
conservative as well as optimistic. OCC is observed to eliminate
at least as many dynamically executed copy instructions as
iterated register coalescing (IRC) for a set of chordal interference
graphs generated from several Mediabench and MiBench
applications. In many cases, OCC and IRC were able to find
optimal or near-optimal solutions for these graphs. OCC ran 1.89x
faster than IRC, on average.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – compilers.

General Terms
Algorithms, Performance.

Keywords
Register Assignment, Static Single Assignment (SSA) Form,
Chordal Graph.

1. INTRODUCTION
Register allocation is one of the most challenging compiler
optimizations from both a theoretical and practical standpoint.
Recent work in register allocation has focused on using the Static
Single Assignment (SSA) form as an intermediate representation.
The primary motivation for this is a recent proof that the
interference graph for an SSA Form is a chordal graph [1, 6, 15];
although chordal graphs can be colored optimally and efficiently

in polynomial time [11], a coloring solution alone does not yield
an effective solution for register assignment.

Register allocation in compilers consists of two separate sub-
problems: spilling and register assignment; this paper focuses on
the latter. Spilling partitions all of the scalar variables that are live
at each point in the program between the k registers available in
the target architecture and memory, which is much costlier to
access. Register assignment must map each of the non-spilled
variables to the k target registers, with the goal of eliminating as
many dynamically executed copy instructions as possible. A copy
instruction between two variables can be eliminated by assigning
both of the variables to the same register; the resulting instruction
copies the content of the register to itself, and thus does not
change the state of the processor, and can therefore be eliminated.

One important advantage of using SSA Form is that all of the
copy instructions in an application can be eliminated while SSA
Form is constructed [4]. After translating out of SSA Form, the
only remaining copies are those that are inserted to replace ϕ-
functions, an integral part of the SSA representation. Although it
has never been formally proven or empirically observed that SSA-
based register allocation is superior to traditional methods, the
ability to eliminate the vast majority of copies up front appears to
be a conceptual advantage at the very least.

To date, one SSA-based register allocation algorithm has been
published by Hack et al. [16]. This allocator performs spilling and
coalescing in two separate steps, unlike prior non-SSA-based
graph coloring allocators (e.g. [5, 8, 12, 22, 28]). The spilling
phase is similar in principle to linear scan register allocation [23],
but traverses the program’s dominator tree instead; register
assignment, in contrast, is based on graph coloring. It is our belief
that future SSA-based register allocators will also separate
spilling and coalescing into distinct phases, unless just-in-time
(JIT) constraints dictate that both be solved in conjunction.

One of the key requirements of register assignment is that no
more than k colors can be used to color the interference graph. In
order to minimize copies, the vast majority of prior register
assignment heuristics employ a technique called coalescing. To
eliminate a copy y ← x, the nodes in the interference graph
corresponding to x and y are merged. Node merging, however,
can increase the chromatic number of the interference graph.
Conservative coalescing techniques [5, 12, 17-18] prevent
coalescing unless it can be proven that doing so will not increase
the chromatic number beyond k. Although the spilling phase
ensures that the resulting interference graph is k-colorable using a
simple greedy algorithm, it is generally NP-Complete to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES’07, September 30-October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-826-8/07/0009…$5.00.

209

determine whether the graph remains k-colorable after coalescing
even a single copy [3].

In SSA Form, however, the interference graph is chordal. The
chromatic number of a chordal graph G = (V, E) can be
computed in O(|V| + |E|) time using a simple greedy algorithm
[11]; however, coalescing cannot preserve the chordal graph
property unless additional interference edges are added. To
address this need, this paper introduces a new coalescing
heuristic, Optimistic Chordal Coloring (OCC) for chordal
graphs that does not employ coalescing and ensures that a legal
k-coloring is found.

We have tested the OCC heuristic on a set of interference
graphs generated from embedded applications taken from the
Mediabench [20] and MiBench [14] benchmark suites. We
compared OCC with Iterated Register Coalescing (IRC) [12],
an established technique for register assignment for interference
graphs. We also compare the results with an optimal algorithm
based on Integer Linear Programming (ILP) [13]. We report the
following results:

• For all but 3 applications, both OCC and IRC found
solutions of optimal cost. OCC found a better result that
IRC in only one case. We caution that this result is limited
to a few embedded applications and is not necessarily
representative of other classes of applications (e.g.
scientific, general-purpose, etc.).

• For all but 3 applications, OCC ran faster than IRC; on
average, OCC ran 1.89x faster than IRC. The 3
applications where IRC was faster generally had small
interference graphs with relatively few ϕ-functions. Two
of these three applications featured optimal solutions with
0 copies, indicating that conservative coalescing
eliminated every copy. The more complicated techniques
employed by OCC worked against its runtime in these
cases.

The paper is organized as follows. Section 2 introduces SSA
Form, chordal graphs, and defines the problem of register
assignment. Section 3 summarizes related work in the area of
register allocation, focusing specifically on coalescing
techniques. Section 4 describes the OCC heuristic in detail, and
compares its execution to prior heuristics based on coalescing.
Section 5 presents our experimental evaluation of the OCC
heuristic, which is compared to both the IRC heuristic and the
optimal ILP solution for register assignment. Section 6
concludes the paper.

2. PRELIMINARIES
2.1 SSA Form
Any instruction of the form x ← … is a definition of variable x;
any instruction of the form … ← x is a use of x. A procedure is
defined to be in Static Single Assignment (SSA) Form [4, 9-10]
if every variable is defined once and each use of a variable
corresponds precisely to one definition. Fig. 1 shows a CFG
fragment (a) converted to SSA Form (b). Variable x is defined
on both sides of a condition and used at a block following the
condition. The definitions of x are renamed to x1 and x2, in Fig.
1 (b); a ϕ-function is introduced to merge x1 and x2 into x3, and
the use of x is replaced with a use of x3.

In Fig. 1 (b), if the left path is taken, then x3 receives the value of
x1; if the right path is taken, then x3 receives the value of x2. ϕ-
functions are always placed at the beginning of a basic block and
execute in parallel.

Following register assignment, we translate out of SSA Form
using swap and parallel copy instructions, as described by Hack
et al. [15]. If swaps and parallel copies are not available in the
target architecture, then the Swap Problem [4] may occur. Hack et
al. suggested that 3 xor operations can be used to implement a
swap. This approach generally works, but at a higher cost (i.e. 3
single-cycle instructions per swap compared to 1).

Unfortunately, some processors have dedicated registers for
floating point values. The xor instruction may not be able to
access these registers. In this case, 3 copy instructions are
required; however, if no register is free, then some variable must
be spilled in order to free up a register. The choice of which
variable to spill in such a circumstance is beyond the scope of this
paper; we simply assume that swap instructions are available.

The Lost Copy Problem, which is also beyond the scope of this
paper, can be rectified by critical edge splitting [2, 4].

2.2 Chordal Graphs
Let G = (V, E) be an undirected graph. For v∈V, N(v) is the set
of vertices adjacent to v. An Elimination Order (EO) is a function
σ : V → {1, 2, …, |V|} that assigns a unique value to each vertex.
The vertices are named such that for vertex vi∈V, σ(vi) = i. Let
Vi = {vj∈V| j < i}, and Gi = (Vi, Ei) be the subgraph of G induced
by Vi. G0 is defined to be the empty graph and Ni(v) = N(v)∩ Vi.
The basic idea of an elimination order is that graph Gi+1 can be
constructed from Gi by adding vi+1 to Vi and adding all edges
belonging to Ni(vi+1) to Ei. A Perfect Elimination Order (PEO) is
an elimination order that sastisfies the property that Ni(vi) is a
clique in Gi. A Chordal Graph is any graph that has a PEO. An
interference graph for an SSA Form program is provably chordal
[1, 6, 15].
A PEO for a chordal graph can be computed in O(|V| + |E|) time
using Maximum Cardinality Search (MCS) [27], whose
pseudocode is shown in Fig. 2(a).
Given a PEO, an optimal color assignment can be computed for a
chordal graph in O(|V| + |E|) time using Gavril’s algorithm
shown in Fig. 2(b) [11]. Inductively, assume that a legal coloring
has been found for vertices v1, …, vi-1, now consider vi. The only
vertices that constrain the color assigned to vi are those in Ni(vi),
which is a clique. Therefore, it suffices to assign the smallest
color to vi that is not assigned to a vertex in Ni(vi).

x ← x ←

… ← x

(a)

x3 ← φ(x1, x2)
… ← x3

x1 ← x2 ←

(b)

Figure 1. A CFG fragment (a) in SSA Form (b)

210

Gavril’s algorithm is not the only algorithm that can optimally
color a chordal graph. A heuristic called Simplification [19, 21], a
variant of which has been used in the past for graph coloring
register allocation [5, 8, 12, 22, 28], can also produce optimal
colorings for chordal graphs [2]. Simplification repeatedly
removes the vertex of minimal degree from the graph and pushes
it onto a stack. The top-to-bottom order of vertices in the stack is
then treated as an EO. Color assignment then proceeds using the
same basic greedy approach as Gavril—assign each vertex that
smallest color not assigned to one of its neighbors.

2.3 Problem Statement
Let G = (V, E) be a k-colorable interference graph for a procedure
in SSA Form, where k is the number of registers in the target
architecture; since spilling has occurred already, the assumption
that G is k-colorable is reasonable, and since the procedure is in
SSA Form, G is chordal. Consequently, χ(G), the chromatic
number of G, can be computed in O(|V| + |E|) time, and χ(G) < k.

Now, consider a generic ϕ-function, y ← ϕ(…, x, …). Let ry and rx
be the registers assigned to y and x respectively. If ry ≠ rx, then a
copy ry ← rx must be inserted on the CFG edge leading into the
block containing the ϕ-function. On the other hand, if ry = rx, then
the copy instruction is an identity operation that does not change
the state of the machine; it can therefore be eliminated.

Runtime profiling is used to determine the execution frequency of
basic blocks, and also the number of times each CFG edge is
taken. If runtime profiling information is not available, a static
profile can be generated based on loop nesting depth. If the CFG
edge that supplies x as a parameter to the ϕ-function is taken t
times, then eliminating the copy shaves t processor cycles off the

total execution time of the application (assuming a 1-cycle copy
instruction and a single-issue processor).

The goal of the register assignment problem is to eliminate as
many dynamically executed copies as possible while still ensuring
that the assignment of variables to registers is legal. For our
purposes, we introduce an extended interference graph G = (V, E,
Eϕ, w), where w is a weight function that assigns integer weights
to the ϕ-edges in Eϕ based on profiling information; Eϕ is defined
as follows:

(){ EyxyxyxE ∉∧≠= ,,ϕ (1)

()},......, xy ϕ←∃∧

For ϕ-edge e = (x, y), w(e) is the dynamic execution count of the
CFG edges leading into the basic block containing the ϕ-function
defining y, where x occurs in the parameter slot.

Fig. 3 shows a sample problem instance: an interference graph,
including the weighted ϕ-edges. The weights correspond to the
number of times a copy instruction would execute if two vertices
incident on the same ϕ-edge are assigned different colors. Any
legal coloring of G that uses at most k colors is a solution to the
problem of register assignment for a procedure. The problem can
be solved individually for each procedure.

The efficacy of a coloring solution is the number of dynamic
copies removed based on the estimated profile, w, which is
derived from the color assignment. If f is a legal color assignment
of G, we define an objective function, F, which computes the
number of dynamically executing copies that will be eliminated:

 () ()
()
() ()

∑
=
∈=

=

yfxf
Eyxe

ewfGF
ϕ,

, (2)

Algorithm: Chordal Color Assignment
Input: Chordal Graph G = (V, E), PEO σ

Output: Color Assignment f : V → {1… χG}

1 For Integer : i ← 1 to |V| in PEO order
2. Let c be the smallest color not assigned
 to a vertex in Ni(vi)
3. f(vi) ← c
4. EndFor

Figure 2 Pseudocode for Maximum Cardinality Search
[27] (a) and Chordal Color Assignment [11] (b)

Algorithm: Maximum Cardinality Search
Input: Chordal Graph G = (V, E)
Output: PEO σ : V → {1… |V|}

1∀ v∈V: Let T(v) ← 0; σ(v) ←φ
2. For Integer : k ← 1 to |V|
3. Select v∈V∋ T(v) is maximum
4. σ(v) ← k
5. ∀ u∈N(v)∋ σ(v) =φ : T(u) ← T(u) + 1
6. EndFor

(a)

(b)

A
B C

D E

I

F
G

H

L
K J

M

Interference Edge ϕ-Edge

ϕ-Edge

(B, G)
(C, I)
(C, L)
(D, M)
(E, I)
(F, L)
(F, M)
(G, M)
(K, M)

Weight

3
2
5
7
3
4
5
3
2

Figure 3. A sample problem instance: an interference
graph with weighted ϕ-edges

211

The optimal color assignment, f*, is the legal color assignment
that uses at most k colors such that F(G, f*) > F(G, f) for every
legal color assignment f. The decision analogue of this problem is
NP-Complete, even for chordal interference graphs [3, 24].

This interference graph is chordal, and its chromatic number is 4.
If application consists of one procedure, then 4 registers are
allocated. Any legal 4-coloring of the interference graph suffices;
however, there are many 4-colorings, each of which will cause a
different number of copies to execute dynamically. Table 1 shows
two legal 4-colorings. The first executes 20 copies dynamically;
the second executes 14, and is a better solution.

3. RELATED WORK
This paper was motivated, in part, by a recent theoretical study of
the complexity of register assignment via coalescing due to
Bouchez et al. [3]. In particular, Bouchez et al. identified 4
categories of coalescing, as discussed in subsections 3.1-3.4.

It is important to note that to coalesce a copy y ← x, the nodes in
the interference graph corresponding to x and y are merged into a
new node, xy. The OCC heuristic, contrast, does not employ node
merging, but retains the benefits of coalescing.

3.1 Aggressive Coalescing
Aggressive coalescing recklessly eliminates copy instructions
without regard for the effect on the chromatic number of the
interference graph. The first graph coloring register allocator by
Chaitin [8] employed aggressive coalescing; Briggs et al. [5] later
showed that this approach can cause additional spilling, and
introduced conservative coalescing, which is discussed in
subsection 3.2. Today, aggressive coalescing is most often studied
under the context of translating out of SSA Form while
minimizing the number of copies inserted while doing so [7, 24,
26]; it is also used as a phase of optimistic coalescing, which is
discussed in Section 3.3. Bouchez et al. [3] showed that
aggressive coalescing is NP-Complete, even for graphs containing
at most 3 interference edges.

3.2 Conservative Coalescing
Conservative coalescing recognizes that load and store
instructions, which are required for spilling, are generally more
costly than copy instructions. Eliminating a copy is generally a

good idea, but the effectiveness of doing so will cause further
spills. Conservative coalescing criteria only allow copies to be
coalesced if it can be proven that doing so will not cause
additional variables to be spilled. Conservative coalescing criteria
have been proposed by Briggs et al. [5], George and Appel [12],
and Kaluskar [18]. The theoretical power of different versions of
the Briggs et al. and George and Appel criteria has been studied in
greater detail by Hailperin [17]. Bouchez et al. [3] have shown
that conservative coalescing is NP-Complete for chordal graphs.

The limitations of conservative coalescing were well-known to
Briggs et al. [5], who introduced the concept. In many cases, a
copy y ← x could not be coalesced due to a large number of
neighbors of high degree; however, depending on the assignment
of colors to their neighbors, it still may be possible to assign the
same color to x and y during simplification, without node
merging. This approach is called biased coloring.

3.3 Optimistic Coalescing
Park and Moon [22] and Vegdahl [28] observed that coalescing
can have positive effects at well. Park and Moon introduced
optimistic coalescing, which performs aggressive coalescing until
no further coalescing is possible due to interferences. Some of the
copies are then decoalesced when doing so can reduce spilling.

3.4 Incremental Coalescing
Both the aggressive and conservative approaches consider one
copy instruction at a time for coalescing; this is called
incremental coalescing. Bouchez et al. [3] identified situations
where incremental coalescing yields sub-optimal results. Using
conservative coalescing as an example, Bouchez et al. found an
interference graph, where there are 2 copies, neither of which
satisfies the criteria for conservative coalescing; however, if both
copies are coalesced together, the criteria would be satisfied.
Coalescing one copy at a time, unfortunately, can not achieve the
best result. Unfortunately, if an interference graph contains k
copies, then there are 2k different subsets of copies that can
coalesced in conjunction. Unless it is proven that P = NP, the
optimal solution can only be found by coalescing every possible
combination of copies and testing whether or not the resulting
interference graph is k-colorable. Clearly, doing so would be
prohibitively expensive. An analogous situation occurs in the
context of decoalescing in the optimistic strategy.

4. OPTIMISTIC CHORDAL COLORING
The Optimistic Chordal Coloring (OCC) heuristic is influenced
by previous coalescing techniques, but does not explicitly merge
nodes. This ensures that the interference graph remains chordal
and k-colorable, which satisfies the criteria for conservative
coalescing. At the same time, OCC attempts to mimic the use of
aggressive coalescing in the optimistic strategy. OCC identifies
independent sets of nodes to which it would like to assign the
same color; however, OCC does not coalesce these nodes. During
color assignment, which processes nodes in PEO order, OCC
makes every effort to ensure that all nodes in the same
independent set receive the same color. It is not always possible
to do so, however; when this occurs, the situation is analogous to
decoalescing, as discussed in Section 3.3.

The identification of independent sets of nodes that would be
coalesced in the context of aggressive coalescing, but not

Node

A
B
C
D
E
F
G
H
I
J
K
L
M

Color (1)

1
2
3
1
2
3
1
2
3
4
1
2
1

Color (2)

1
3
2
4
1
3
4
2
1
3
4
2
4

20 copies

Table 1.
Two color assignments for the graph in Figure 1.

14 copies

212

coalesced by OCC, is called pseudo-coalescing. Pseudo-
coalescing is the key feature that sets the OCC heuristic apart
from other heuristics based on coalescing.

Subsections 4.1-4.5 describe the different phases of our
implementation of the OCC heuristic in detail.

4.1 Simplification
Let G = (V, E) be a K-colorable graph and v∈V. If |N(v)| < K,
then G’ = (V’, E’) is K-colorable, where V’ = V – {x} and E’ is the
subgraph of G induced by V’. In short, even if every neighbor of v
is assigned a unique color, there is still at least one free color
available for v [19]. Consequently, v can be removed from G, the
resulting graph G’ can then be colored, and a color can then be
assigned to G after the fact. Many graph coloring register
allocators [5, 8, 12, 22, 28] employ some type of simplification,

This is the use of simplification in the context of register
allocation that was alluded to at the end of Section 2.2. The
difference is that in Section 2.2, simplification was used as a
heuristic to find the optimal coloring of a chordal graph (it can
also act as a heuristic to find colorings of general graphs, with no
guarantees of optimality).

Simplification is not necessary to compute a minimum coloring of
a chordal graph; however, simplification is still useful for register
assignment on chordal graphs as long as it is restricted to vertices
having no incident ϕ-edges. Suppose that vertex v is incident on
several ϕ-edges. If vertices that interfere with v occur prior to v in
the PEO, then the colors assigned to these vertices constrain the
color that can be assigned to v. By removing these vertices by
simplification, fewer constraints are placed upon v at the time its
color is assigned, and it is therefore more likely that color
assignment can eliminate more copies involving v.

In the context of coloring chordal graphs for register assignment,
Grund and Hack [13] used simplification to reduce the number of
vertices that must be colored using their ILP. After coloring the
remaining subgraph, colors are assigned to all vertices that were
removed earlier by simplification. We essentially do the same
thing here, but employ the OCC heuristic for coloring rather than
the optimal ILP.

4.2 Biased MCS
In general, any technique that assigns colors to vertices incident
on ϕ-edges earlier rather than later during the coloring process
will lead to fewer dynamic copies than an alternative that assigns
colors to them later. Although simplification is effective, it is not
the only method that can achieve this. A chordal graph may have
many different PEOs, an the PEO produced by MCS [27] in Fig.
2(a) is not particularly favorable in this respect.

We make the following modification to the MCS algorithm.
During each iteration, let S be the set of vertices v such that T(v) is
maximum (line 3 of Fig. 2(a)). For vertex s∈S, let W*(s) be the
sum of the weights of the φ-edges incident on s. When there is a
choice between multiple vertices with maximum T-values, W* is
used as a tiebreaker, and the vertex with the maximal W* value is
chosen. This approach generally places vertices with high W*
values as early as possible in the PEO. This allows these vertices
to be assigned colors before many of their neighbors, which
means fewer constraints on the number of available colors. This
approach is called Biased Maximum Cardinality Search (BMCS).

4.3 Aggressive Pseudo-Coalescing
Pseudo-coalescing is similar in principle to coalescing: both
identify an independent set of nodes in the interference graph that
“should” be assigned the same color. Coalescing merges these
nodes into a single node, therefore enforcing the decision
regarding coloring; pseudo-coalescing, in contrast, simply retains
the independent sets. The color assignment heuristic, discussed in
subsection 4.4, then attempts to assign each node in the same
independent set the same color. This approach is conservative for
chordal graphs, because the decision not to merge nodes ensures
that the chromatic number of the interference graph does not
exceed k.

Let S(v) be the independent set to which node v belongs. Initially,
S(v) = {v} for every vertex. Let N(S(v)) = {N(x)|x∈S(v)}. In other
words, N(S(v)) is the set of nodes that are adjacent to at least one
vertex in S(v). Two distinct vertices u and v can be pseudo-
coalesced if N(S(u))∩ S(v) and S(u)∩ N(S(v)) are both empty; if
so, then the two sets are merged.

Pseudo-coalescing is effectively the same as coalescing, but
without the node merging. If u is coalesced into some node c1 and
v is coalesced into c2, then N(S(u))∩ S(v) and S(u)∩ N(S(v)) are
both empty in the context of pseudo-coalescing if and only if c1
and c2 are not adjacent in the interference graph under coalescing.

The aggressive pseudo-coalescing phase in OCC is incremental
[3], meaning that one ϕ-edge is pseudo-coalesced at a time. We
sort the ϕ-edges by weight, and consider them for pseudo-
coalescing in Decreasing Sorted Order (DSO). Except for node
merging, aggressive pseudo-coalescing is exactly the same
problem as aggressive coalescing: the goal is to maximize the sum
of the weights of the ϕ-edges that have been (pseudo-)coalesced.
Since this problem is NP-Complete [3], considering ϕ-edges in
DSO order is a heuristic, and does not guarantee optimality.

4.3.1 Paths and Clique Rays
Grund and Hack [13] identified two commonly occurring
subgraphs in register assignment problems, shown in Fig. 4 (a)
and (b),, and tailored their ILP formulation to exploit these types
of subgraphs, when found. Specifically, they used the existence of
such subgraphs to impose extra constraints (cuts) on the ILP
which increase its rate of convergence. Here, we show that the
DSO order can solve the aggressive coalescing problem optimally
for these specific subgraphs.

Fig. 4(a) shows a clique ray: a subgraph that consists of a clique
C = {v1, …, vn} in the interference graph, and a node a∉C, such
that there is a ϕ-edge (a, vi) for 1 < i < n. Clearly, S(a) can only
contain one node in C. If there are no other ϕ-edges incident on
any vertices in a clique ray, then DSO will process the maximum
weighted ϕ-edge, emax = (a, vmax), first. (Pseudo-)coalescing a and
vmax is optimal for the clique ray.

Fig. 4(b) shows a path, two interfering nodes u and v, and a
distinct path between them connected only by ϕ-edges. Here, we
assume that there are no interference edges between nodes on the
path, other than u and v, and that there is only one path between u
and v via ϕ-edges. Clearly, the sets S(u) and S(v) must be distinct,
so exactly one ϕ-edge on this path cannot be coalesced. The
optimal edge, in this case, will be the edge of minimum weight,
the edges visited last by the DSO heuristic.

213

In practice, clique rays and paths will be connected to other nodes
via ϕ-edges. In this case, processing ϕ-edges in DSO order may
not yield an optimal solution to aggressive (pseudo-)coalescing.
It is also important to note that in the context of OCC or
optimistic coalescing, optimal to the (pseudo-)coalescing does not
guarantee that the overall register assignment will be optimal.

4.4 Optimistic Chordal Color Assignment
Similar to chordal coloring, vertices are processed in PEO order.
Now, suppose that vertex v is the first vertex in S(v) to be
assigned a color, c. Optimistically, we assign color c to every
other vertex in S(v) as well. This may lead to a temporarily illegal
coloring, but a legal color for some other vertex u∈S(v) can
always be found when u is processed later in the PEO. Different
techniques for color assignment are applied to each subsequent
vertex in the PEO, depending on whether or not it is incident on
any ϕ-edges.

Suppose that vi is not incident on any ϕ-edges. Since G is a
chordal graph, we know that there will be at least one color
available for vi that is not assigned to a vertex in Ni(vi); however,
we may have optimistically assigned color c to some vertex
u∈N(vi) – Ni(vi). If possible, we should attempt to respect this
optimistic color assignment; if the same color is assigned to vi,
then u will have to change its color when u is processed later in
the PEO. First, we look for an available color that has not been
assigned to any vertex in N(vi). If one such color is available, it is
assigned to vi. If one such color is not available, then we resort to
traditional chordal color assignment for vi, and a color not
assigned to a vertex in Ni(vi) is assigned to vi. In short, the
heuristic makes the effort to respect the optimistic assignment of
colors to vertices later in the PEO, but will sacrifice the optimistic
assignment in order to find a legal color for vi.

Now, suppose that vi is not the first vertex in S(vi) to be assigned a
color. Thus, vi has already been assigned some color c
optimistically. If no vertex in Ni(vi) has been assigned color c,
then vi retains the color—e.g. optimistic color assignment was
successful. On the other hand, if c is not available, then some
other color must be assigned to vi. In this case, vi is removed from
S(vi), and a new color is selected. This process is rather complex.

First and foremost, vi considers incident ϕ-edges (vi, x), where
x∉S(vi). If possible, vi can be added to S(x), which will eliminate
some different copies involving vi. Clearly, vi cannot interfere
with any vertex in S(x). Second, if color c has been optimistically
assigned to vertices in S(x), then no vertex in Ni(vi) can be
assigned color c. If both of these criteria are satisfied, then vi can
be added to S(x).

If no color has yet been optimistically assigned to S(x), then the
color assigned to v will be optimistically propagated to the

vertices in S(x). Ideally, one would look for a color not assigned
to any vertices in either Ni(vi) or N(S(x)); however, if no such
color is found, the color that does the least amount of damage to
S(x) should be chosen. It may be possible that the best choice is
not to add vi to S(x). There may be multiple sets S(x) to which vi
can be added. For each set, the best color is chosen to assign to vi,
and the number of dynamically executed copies that would be
eliminated by adding vi to each set is estimated. Among all sets,
the best one is then chosen for vi.

In conclusion, the optimistic chordal coloring heuristic may
assign a color to a vertex before it is processed in the PEO. The
heuristic makes every attempt to respect the optimistic
assignment, but will undo the assignment in order to avoid an
illegal coloring. The final decision regarding the color to assign to
each vertex is still made in PEO order. The final assignment of
colors to vertices is never undone.

4.5 Refinement
OCC is a heuristic. The sets of pseudo-coalesced vertices that are
formed early in the color assignment may be broken up early due
to colors assigned to interfering vertices. After color assignment,
we make one last past over the set of φ-edges. Let e = (u, v) be
one such φ-edge, and assume that f(u) ≠ f(v). Without loss of
generality, if f(v) is not assigned to any neighbor of u, and
swapping u’s color to f(v) will reduce the number of dynamically
executed copies, then there is no reason not to make the swap.
Likewise, an analogous decision can be made for v. If both colors
are available for both vertices, the choice that leads to a greater
reduction in the number of dynamically executed copies is
chosen. The effectiveness of this refinement step is marginal;
however, there is no reason not to apply it when useful.

5. EXPERIMENTAL RESULTS
Here, we compare the results of optimistic chordal coloring to
iterated register coalescing (IRC) [12] and the optimal ILP
formulation of the register coalescing problem by Grund and
Hack [13]. We found that both OCC and IRC produce optimal or
near-optimal solutions in many cases, and that optimal chordal
coloring runs faster than iterated coalescing in most cases. The
two heuristics were implemented in C++, while the ILP was
solved using CPLEX. The code that generates the ILP from the
input graph description was written in Java, and is thus interpreted
rather than compiled.
17 applications were selected from the Mediabench [20] and
MiBench [14] suites and compiled and profiled using Machine
SUIF [25]. Following profiling, each procedure in each
application was converted to SSA Form and its interference graph
was constructed. The reported runtimes are for the color
assignment heuristics only, and do not reflect the costs of liveness
analysis and interference graph construction.
Table 2 lists each of the benchmarks and the number of registers
used in the respective experiment. For each benchmark, the
number of registers allocated was the maximum chromatic
number among the interference graphs of each procedure. Since
SSA Form was used and the interference graphs are chordal, the
chromatic number can be computed optimally in polynomial time.
The number of registers used for each procedure is thus the
smallest number of registers that can ensure that no variables are
spilled during register assignment.

(a)
C

Figure 4. A 4-node clique ray (a) and a path (b).

a

(b)

u v

214

Tables 3 and 4 list the experimental results. Table 3 lists the
number of copies dynamically executed for each register
assignment heuristic/algorithm; data is not listed for IRC/OCC
when the result is the same as the optimal solution. Table 4 lists
the runtime (normalized to OCC).
From Table 3, we can see that IRC and OCC found solutions that
were optimal in all but three benchmarks. For gsm and
jpeg_djpeg, both IRC and OCC found the same solution; for
pegwit, OCC found a better solution than IRC, and it is only 1
copy away from the optimal. The difference in solution quality
between the heuristics and optimal was 2990 dynamic copies for
gsm and 6283 for jpeg_djpeg. The averages are dominated by the
4 largest benchmarks.
In all of these experiments, the translation out of SSA Form was
performed using swap instructions. The number of dynamically
executed copies may increase (along with possibly requiring 1
additional register) if only copies are used due to the swap
problem. On the other hand, if k-wide parallel copies are
supported, the number of dynamic copies may be reduced as well,
depending on how many can be issued in parallel.

Table 4 shows the runtimes of optimal and IRC normalized to
OCC. The optimal heuristic was run on a Dell Latitude D420
laptop with an Intel Core Duo U2500 processor running at 1.2
GHz and with 2.0 GB of RAM; the operating system was Ubuntu
Feisty, and CPLEX 7.0 was used to solve the ILP. Although
CPLEX 7.0 supports multi-core processing, a license supporting
this feature was unavailable at the time the experiments were
performed. Thus only one of the two available cores was utilized.
The IRC and OCC heuristics were run on a Dell Latitude D810
laptop with an Intel Pentium M processor running at 2.0 GHz with
1.0 GB of RAM; the operating system used was Fedora Core.
From Table 4, it is easy to see that the runtime of the optimal
solution runs is at least one order of magnitude greater than that
of OCC. In all but 3 benchmarks, IRC ran slower than OCC;
however, for crc32, dijkstra, and fft, IRC was faster. These
benchmarks contained only a few relatively simple graphs that
were among the fastest to color for all 3 heuristics. IRC, whose
color assignment phase is based on simplification, colored these
graphs quickly. OCC suffered runtime overhead due to the cost of
computing a PEO in addition to simplification, as well as the
refinement phase, which did not change the solution.

5.1 The Effectiveness of Simplification
We re-ran the experiments for OCC with the simplification phase
disabled. The solutions produced for three benchmarks changed
as a result. For gsm, the number of dynamically executed copies
increased from 1912177 to 1938818, an increase of 1.01x; for
pegwit, the number of dynamically executed copies increased
from 49 to 50; and for susan, the number of dynamically executed
copies increased from 2 to 138.
Proportionally, the increase in dynamically executed copies was
significant for susan, but in reality, a few hundred clock cycles is
not particularly troubling. Nonetheless, the impact of disabling
simplification may potentially be much greater for different and
larger benchmarks.

Dynamically Executed Copies

Benchmark Optimal IRC OCC
adpcm_rawcaudio
adpcm_rawdaudio
blowfish
crc32
dijkstra
fft
g721_decode
g721_encode
gsm
jpeg_cjpeg
jpeg_djpeg
mpeg2dec
mpeg2enc
patricia
pegwit
sha
susan

6995016
6995016

0
53322406

0
8209

0
0

1909187
541326
272636

2115
95197
1820

48
442

2

-
-
-
-
-
-
-
-

1912177
-

278919
-
-
-

72
-
-

-
-
-
-
-
-
-
-

1912177
-

278919
-
-
-

49
-
-

Average 4126084 4126630 4126629

Table 3. Number of dynamically executed copy
instructions for each benchmark

Runtime (Normalized to OCC)

Benchmark Optimal IRC
adpcm_rawcaudio
adpcm_rawdaudio
blowfish
crc32
dijkstra
fft
g721_decode
g721_encode
gsm
jpeg_cjpeg
jpeg_djpeg
mpeg2dec
mpeg2enc
patricia
pegwit
sha
susan

64.15
158.32
96.97
1.50
8.24
6.84

85.35
113.20
56.82
84.96

684.51
91.97
97.52
20.84

7851.58
24.75

11415.79

2.13
1.98
1.28
0.18
0.84
0.83
1.50
1.52
1.81
1.65
2.17
1.61
1.75
3.27
2.14
3.13
2.47

Average 2339.33 1.89

Table 4. Runtime of the optimal and IRC heuristics,
normalized to the runtime of OCC

Table 2. Number of registers allocated to an ASIP for
each benchmark

Benchmark

Registers

Benchmark

Registers

adpcm_coder
adpcm_decoder
blowfish
crc32
dijkstra
FFT
g721_decoder
g721_encoder
gsm

14
14
14
8
6

13
16
16
16

jpeg_cjpeg
jpeg_djpeg
mpeg2dec
mpeg2enc
patricia
pegwit
sha
susan

18
39
21
45
9

13
10
20

215

5.2 The Effectiveness of BMCS
Next, we replaced the BMCS with the traditional MCS and
computed the PEO. A minor speedup was observed due to the fact
that BMCS entails a small amount of sorting of the lists required
to implement PEO construction.
The quality of the solution was degraded for three benchmarks.
For gsm, the number of dynamically executed copies increased
from 1912177 to 2739189, an increase of 1.43x; for mpeg2enc,
the number of dynamically executed copies increased from the
optimal value of 95197 to 116669, an increase of 1.23x. For
pegwit, the number of copies increased from 49 to 71.
When simplification was disabled in conjunction with using an
MCS, the results were considerably worse for many of the
benchmarks. In practice, there is hardly any reason why a BMCS
should not be used instead of an MCS; the runtimes of the other
phases of allocation dominate the difference.
Overall, the effect of simplification is greatest when many
vertices incident on high-weight ϕ-edges are placed toward the
end of the PEO. Removing interfering neighbors that occur earlier
in the PEO significantly reduces the constraints on these vertices
when their colors are assigned. At the same time, BMCS makes
an extra effort to ensure that the very same vertices would be
placed as early as possible in the PEO; and thus, simplification
tends to remove vertices that are not incident on high-weight ϕ-
edges that occur later in the PEO. Thus, the overall effect and
effectiveness of these optimizations appear to be quite similar.

5.3 The Effectiveness of Refinement
Lastly, we re-ran the experiments for OCC with only refinement
disabled. The number of dynamically executed copies increased
for 4 benchmarks: for gsm it increased from 1912177 to 1938818,
the same result as when simplification was disabled in Section
6.1; for jpeg_djpeg and pegwit, 1 additional copy was executed
dynamically; and for mpeg2enc, the number increased from
95197 to 96150, an increase of 1.01x. With the exception of gsm,
refinement proved to be relatively ineffective on its own, and if
simplification is used, it becomes even less effective.
Nonetheless, only a handful of ϕ-edges appear to lead to the
introduction of copies, so the overhead of refinement is limited.
If the other phases of the algorithm do a good job with respect to
color assignment, a post-processing phase, such as refinement,
will have minimal opportunity to improve the quality of the
solution. On the other hand, unless compile-time is of primary
concern, there is practically no harm in running refinement
following an initial color assignment.

6. CONCLUSION
A novel register allocation technique for chordal graphs that is
both optimistic and conservative has been proposed in this paper.
This technique, called optimistic chordal coloring (OCC), does
not employ coalescing; doing so would destroy the chordal
property of interference graphs for SSA Form programs. By
ensuring that the interference graph remains chordal, and that
colors are assigned to vertices in PEO order, OCC ensures that the
chromatic number of the interference graph is never increased.
Similar in principle to the optimistic coalescing heuristic of Park
and Moon [22], OCC employs an aggressive pseudo-coalescing
phase to identify independent sets of variables that should receive

the same color under ideal circumstances. OCC makes every
effort to assign these vertices the same color, and only deviates
from this scheme when the desired color is not available.
In practice, both OCC and iterated register coalescing produce
similar—often optimal—results on a set of chordal interference
graphs generated from a set of embedded applications. At present,
it is not clear whether these graphs represent coincidentally easy
problem instances, or whether copy folding during SSA Form
effectively eliminates so many copies that the resulting
interference graph is pragmatically easier to color well.
In the future, we intend to test the OCC heuristic on chordal
interference graphs generated from a larger set of applications,
including those from outside of the embedded domain.

ACKNOWLEDGMENT
We wish to thank Sebastian Hack for providing the optimal
solutions reported in Section 5. Florent Bouchez helped to
identify a bug in our implementation of iterated register
coalescing, which significantly skewed the results in the initial
draft of this paper; his contribution led us to completely redesign
the algorithms to become competitive with iterated register
coalescing. Florent Bouchez, Alain Darte, Sebastian Hack, and
Fabrice Rastello provided insightful comments on the final
version of this paper, and participated in numerous discussions
that helped improve its overall quality.

REFERENCES
[1] Bouchez, F., Darte, A., Guillon, C., and Rastello, F. Register

Allocation and Spill Complexity Under SSA, Technical
Report 2005-33, ENS-Lyon, Lyon France, 2005.

[2] Bouchez, F., Darte, A., Guillon, C., and Rastello, F. Register
allocation : what does the NP-Completeness proof of Chaitin
et al. really prove? Or revisting register allocation: why and
how. In Proc. of the 19th International Workshop on
Languages and Compilers for Parallel Computing (LCPC
’06), (New Orleans, LA, USA, November 2-4, 2006)

[3] Bouchez, F., Darte, A., and Rastello, F. On the complexity of
register coalescing. In Proc. of the International Symposium
on Code Generation and Optimization (CGO ’07) (San Jose,
CA, USA, March 11-14, 2007) 102-114

[4] Briggs, P., Cooper, K. D., Harvey, T. J., and Simpson, L. T.
Practical improvements to the construction and destruction
of static single assignment form. Software—Practice and
Experience vol. 28, no. 8, July, 1998, 859-881.

[5] Briggs, P. Cooper, K. D., and Torczon, L. Improvements to
graph coloring register allocation. ACM Trans. Programming
Languages and Systems, vol. 16, no. 3, May, 1994, 428-455.

[6] Brisk, P., Dabiri, F., Jafari, R., and Sarrafzadeh, M. Optimal
register sharing for high-level synthesis of SSA form
programs. IEEE Trans. Computer Aided Design, vol. 25, no.
25, May, 2006, 772-779.

[7] Budimlić, Z., Cooper, K. D., Harvey, T. J., Kennedy, K.,
Oberg, T. S., and Reeves, S. W. Fast copy coalescing and
live range identification. In Proc. of the International Conf.
on Programming Language Design and Implementation
(PDLI ’02), (Berlin, Germany, June 17-19, 1992) 25-32.

[8] Chaitin, G. J. Register allocation and spilling via graph
coloring. In Proc. of the 1982 SIGPLAN Symp. on
Compiler Construction, (Boston, MA, USA, June 23-25,
1982), pp. 98-101.

216

[9] Choi, J-D., Cytron, R., and Ferrante, J. Automatic
construction of sparse data flow evaluation graphs. In Proc.
of 18th ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (POPL ’91) (Orlando, FL, USA,
Jan. 21-23, 1991) 55-66.

[10] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and
Zadeck, F. K. Efficiently computing static single assignment
form and the control dependence graph. ACM Trans.
Programming Languages and Systems, vol. 13, no. 4,
October, 1991, 451-490.

[11] Gavril, F. Algorithms for minimum coloring, maximum
clique, minimum coloring by cliques, and maximum
independent set of a chordal graph. SIAM J. Comput., vol. 1,
no. 2, June, 1972, 180-187.

[12] George, L., and Appel, A. Iterated register coalescing. ACM
Trans. Programming Languages and Systems, vol. 18, no. 3,
May, 1996, 300-324.

[13] Grund, D., and Hack, S. A fast cutting-plane algorithm for
optimal coalescing. In Proc. of the 16th International
Conference on Compiler Construction (CC ’07) (Lisbon,
Portugal, March 26-27, 2007) 111-125.

[14] Guthaus, M. R., et. al. . MiBench: a free commercially
representative embedded benchmark suite. In Proc. of the 4th
Annual IEEE Workshop on Workload Characterization
(WWC ’01) (Austin, TX, USA, December 2, 2001) 3-14.

[15] Hack, S., and Goos, G. Optimal register allocation for SSA-
form programs in polynomial time. Information Processing
Letters vol. 98, nol 4, May, 2006, 150-155.

[16] Hack, S., Grund, D., and Goos, G. Register allocation for
programs in SSA Form, In Proc. of the 15th International
Conference on Compiler Construction (CC ’06) (Vienna,
Austria, March 30-31, 2006) 247-262.

[17] Hailperin, M. Comparing conservative coalescing criteria.
ACM Trans. Programming Languages and Systems, vol. 27,
no. 3, May, 2005, 571-582.

[18] Kaluskar, V. P. An Aggressive Live Range Splitting and
Coalescing Framework for Efficient Register Allocation.
M.S. Thesis, Georgia Institute of Technology, November,
2003.

[19] Kempe, A. B. On the geographical problem of the four
colors. American Journal of Mathematics, vol. 2, 1879, 193-
200.

[20] Lee, C., Potkonjak, M., and Mangione-Smith, W. H.
MediaBench: a tool for evaluating and synthesizing
multimedia and communications systems. In Proc. of the 30th
International Symposium on Microarchitecture (MICRO-30,
’97) (Research Triangle Park, NC, USA, December 1-3,
1997) 330-335.

[21] Matula, D. W., and Beck, L. L. Smallest-last ordering and
clustering and graph coloring algorithms. Journal of the
ACM, vol. 3, no. 3, July, 1983, 417-427.

[22] Park, J., and Moon, S-M. Optimistic register coalescing,
ACM Trans. Programming Languages and Systems, vol. 26,
no. 4, July, 2004, 735-765.

[23] Poletto, M., and Sarkar, V. Linear scan register allocation.
ACM Transactions on Programming Languages and
Systems, vol. 21, no. 5, September, 1999, 895-913.

[24] Rastello, F., de Ferriere, F., and Guillon, C. Optimizing
translation out of SSA using renaming constraints. In Proc.
of the 2nd International Symp. on Code Generation and
Optimization (CGO ’04) (Palo Alto, CA, USA, March 21-24,
2004) 265-278

[25] Smith, M. D., and Holloway, G. An introduction to Machine
SUIF and its portable libraries for analysis and optimization.
Technical Report. Harvard University. July 15, 2002.

[26] Sreedhar, V. C., Ju, R. D-C., Gillies, D. M., and Santhanam,
V. Translating out of static single assignment form. In Proc.
of the 6th International Symposium on Static Analysis (SAS
’99), (September 22-24, Venezia, Italy, 1999) 194-210

[27] Tarjan, R. E., and Yannakakis, M. Simple linear-time
algorithms to test chordality of graphs, test acyclicity of
hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. vol. 13, no. 3, August, 1984, 566-579.

[28] Vegdahl, S. R. Using node merging to enhance graph
coloring. In Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI
’99) (Atlanta, GA, USA, May 1-4, 1999) 150-154.

217

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

