
Lightweight Barrier-Based Parallelization Support for
Non-Cache-Coherent MPSoC Platforms

Andrea Marongiu
DEIS – University of Bologna

Viale Risorgimento 2
40133 Bologna

amarongiu@deis.unibo.it

Luca Benini
DEIS – University of Bologna

Viale Risorgimento 2
40133 Bologna

lbenini@deis.unibo.it

Mahmut Kandemir
Dept. of Comp. Sc. and Eng.

Penn State University
University Park, PA 16802

kandemir@cse.psu.edu

ABSTRACT
Many MPSoC applications are loop-intensive and amenable
to automatic parallelization with suitable compiler support.
One of the key components of any compiler-parallelized code
is barrier instructions which are used to perform global syn-
chronization across parallel processors. This scenario calls
for a lightweight synchronization infrastructure.

In this work we describe a lightweight barrier support li-
brary for a non-cache-coherent MPSoC architecture. The
library is coupled with a parallelizing compiler front-end to
set up a complete automated flow which, starting from a
sequential code, produces the parallelized binary code that
can be directly executed onto an MPSoC target (a multi-
core non-cache-coherent ARM7 platform). This tool-flow
has been characterized in terms of system performance and
energy.

Categories and Subject Descriptors
D.3.4 [Software]: Programming Languages—Run-time En-
vironments

General Terms
Performance

Keywords
Barrier synchronization, code parallelization, MPSoCs

1. INTRODUCTION
MPSoCs can execute multiple instruction streams in par-

allel, thereby achieving coarse grain parallelism (thread level
parallelism). In addition, many embedded applications have
multiple distinct components (modules) that could be best
optimized if mapped to customized heterogeneous cores.

One of the key problems to be addressed in order to har-
ness potential computational power of these parallel systems
is code parallelization, which can be described as decompos-
ing the application code into parallel threads and assigning
these threads to parallel cores for execution. While a serial
application can be parallelized by a knowledgeable program-
mer, this is in general not a trivial task. Therefore, compiler

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-826-8/07/0009 ...$5.00.

support for automated code parallelization can be very use-
ful in practice.

Many data-intensive embedded applications are loop in-
tensive and are amenable to automatic parallelization with
suitable compiler support. One of the key components of
any compiler-parallelized code is barrier instructions which
are used to perform global synchronization across parallel
processors. As compared to programmer-parallelized codes,
compiler-parallelized codes can contain larger number of bar-
riers, mainly because a compiler has to be conservative in
parallelizing an application (to preserve the original sequen-
tial semantics of the program), and this means, in most
cases, inserting extra barrier instructions in the code. Also,
apart from the performance overheads they bring, barriers
cause significant power consumption as well (as evidenced
by recent research [8]), and this power cost increases as the
number of cores is increased.

Motivated by these observations, this paper makes the fol-
lowing contributions:
1) It describes an MPSoC-suitable lightweight implemen-
tation of the runtime synchronization facilities used by a
parallelizing compiler frontend, with particular emphasis on
barrier implementation. In order to avoid overheads due to
multiple software layers the approach does not require OS
support. This runtime library was coupled with the opti-
mizing compiler to obtain a fully automated tool flow.
2) It presents experimental results which give a detailed cost
analysis of loop parallelization, when using the proposed
barrier implementation.
3) It discusses uses of this barrier construct and explains how
they may affect parallelization decisions taken by a compiler.

2. RELATED WORK
Different schemes have been proposed for loop paralleliza-

tion within different domains. In the context of high-end
computing, fundamental relevant studies include [1, 2, 3, 4].

Xue et al [5] explore a resource partitioning scheme for
parallel applications in an MPSoC. Ozturk et al [6] propose
a constraint network based approach to code parallelization
for embedded MPSoCs, and Lee et al [7] present a core map-
ping algorithm that addresses the problem of placing and
routing the operations of a loop body.

On the side of barrier synchronization many related work
propose hybrid hardware-software approaches to achieve both
fast synchronization and power savings. Liu et al [8] discuss
an integrated hw/sw barrier mechanism that tracks the idle
times spent by a processor waiting for other processors to
get to the same point in the program. Using this knowledge
they scale the frequency of the cores thus achieving power
savings without compromising the performances. Sampson
et al [9, 10] present a mechanism for barrier synchronization
on CMPs based on cache-lines invalidation. They ensure
that all threads arriving at a barrier require an unavailable
cache line to proceed, and, by placing additional hardware in
the shared portions of the memory subsystem, they starve

145



their requests until they all have arrived. Li and al [11]
present a mixed hw/sw barrier mechanism to saving energy
in parallel applications that exhibit barrier synchronization
imbalance. Their approach transitions the processors arriv-
ing early at the barrier to a low power state, and wake them
back up when the last processor gets there. Useful surveys
on synchronization algorithms for Shared Memory Multi-
processors were the works of Kumar et al [12] and Mellor-
Crummey [13].

3. TARGET ARCHITECTURE
Our target MPSoC architectural template (depicted in

Figure 1) consists of a configurable number of RISC cores,
each of which has its own cache. Moreover, all cores can ac-
cess a shared memory device to which the shared addressing
space is mapped, and a special hardware device dedicated to
synchronization. This device provides the test-and-set fea-
ture – needed to ensure the atomicity of a lock-acquiring
operation – on which we model our implementation of syn-
chronization facilities. This synchronization hardware can
be viewed as a special memory, mapped within the address
space of cores. Reading from one location in this memory
has however a different semantic: if the content of a location
is zero, a read operation returns the zero value and atomi-
cally stores a one into it.

Figure 1: Shared memory architec-
ture.

Figure 2: Code transfor-
mation and execution.

In this architectural template, cache coherency is not hard-
ware supported. To guarantee data coherence from concur-
rent multiprocessor accesses shared memory can be config-
ured to be non-cacheable but in this case it can only be inef-
ficiently accessed by means of single transfers. Cacheability
of the shared memory can be toggled, but in this case ex-
plicit software-controlled cache flush operations are needed.

4. SOFTWARE INFRASTRUCTURE
Figure 2 depicts our software framework. The applica-

tion input code is a sequential C program. As a first step
it is transformed into a parallelized code by the compiler
frontend. This implementation relies on the synchronization
features provided by our runtime library which is compiled
together with the application code and fed to our simulator.
Figure 3 describes how a serial code is transformed by the
optimization pass into a parallel routine inside the parallel
output code and how this interacts with the runtime library.

4.1 Parallelizing Compiler Front-End
Most of data-intensive embedded applications are loop

based, i.e., they are structured as a series of loop nests, each
operating on large datasets. Consequently, the most natural
way of parallelizing such an application is to distribute loop
iterations across parallel processors. This process is carried
out by taking into account data dependencies. To paral-
lelize a loop nest, our compiler front-end first extracts data

Figure 3: Original serial code and transformed parallel code. Inter-
action between parallel code and runtime library.

dependencies; each data dependence can be represented us-
ing a vector, called the data dependence vector. When all
data dependence vectors are considered together, the com-
piler figures out (conservatively) which loops in the nest can
be executed in parallel. Specifically, a loop can be run par-
allel if it does not carry any data dependency.

An important point in loop parallelization in shared mem-
ory systems is that, after each parallel loop, the compiler au-
tomatically inserts a global synchronization call (typically in
form of a barrier instruction) in the code. The purpose of
this instruction is to prevent any processor to get ahead of
the other processors and start executing the next piece of
code in execution. Note that if processors do not synchro-
nize with each other and start executing the next piece of
code together this may violate data dependences and ulti-
mately change the original semantics of the application.

In our compiler, once available parallelism in a loop nest
is identified (based on dependences), the body of the parallel
loops are extracted into a separate procedure, and replaced
by a call to the ”doall” function (from the runtime library).
The runtime library calls the procedure on each processor,
and executes a barrier before returning.

4.2 Runtime Library
The support library orchestrates parallel execution syn-

chronizing code execution on the different cores. One of our
main goals was that of keeping our implementation layer as
thin as possible, so the approach proposed is OS-less. We
used a static task mapping, where each task is mapped on
one processor identified by a unique ID.

The library also provides a set of synchronization facilities
– namely locks and barriers – which implementation relies
on the hardware semaphore device described in section 3.
At init time all locks and barrier lock fields will be explicitly
instantiated in semaphore region. This will allow atomic
reading/writing from/to these variables. Counter fields of
barriers will be instantiated in shared memory so that each
processor can have a coherent view of their values. Since our
focus in on a NCC architecture the region in which these
synchronization variables are stored is never cached1.

The parallel code implements a start routine which is
called by the runtime library after initializations have been
done. This routine contains the sequential code to be per-
formed by the master core only, then parallel execution is
initiated calling the library’s doall method. The parallel
routines – which are implemented in the parallelized code
as well– are linked to the library by means of a global func-
tion pointer.

1This in order to preserve coherency (data consistency)

146



4.3 Barrier Implementation
A typical barrier implementation includes a shared counter

– increased each time a task enters the barrier – and a re-
lease flag on which each worker spins. The last one which
enters the barrier sets this flag and releases everybody. This
implementation relies on hardware/ISA feature that grants
an atomic write for lock acquisition.

Since our lock implementation relies on a special hardware
accessible by the cores via the interconnect fabric, every op-
eration on a shared variable that requires exclusive access
to that resource introduces extra traffic on the bus.

As already discussed a compiler-generated parallel code
includes a big number of barriers, so is beneficial to elimi-
nate the overhead due to this additional traffic. To achieve
this goal we devise a special Master-Slave form of barrier,
in which the master is responsible for gathering slaves at
the barrier. The release phase has been implemented in a
separate function, so that the master can do some further
operations before releasing the slaves. We define a barrier
structure like the following:

typedef struct Bar r i e r {
int entered [NSLAVES ] ;
int usecount ;

} Bar r i e r ;

The int vector entered is the array of flags, one per each
slave, that are polled by the master to check the presence
of the slaves on the barrier2. The field usecount keeps the
usage count of the barrier, so it is incremented every time
the master releases the barrier. It also and mostly serves
as a waiting condition for the slaves, as they keep spinning
until this value is increased by the master when releasing
the barrier. Before entering the parallel region each slave
core has to enter the barrier through a call to the following
function:

void Slave Enter ( Bar r i e r ∗b , int id ) {
int ent = b−>usecount ;
b−>entered [ id ] = 1 ;
while ( ent == b−>usecount ) ;

}

When a slave enters the barrier notifies its presence by
storing a 1 in the entered vector at the location correspond-
ing to its id. It reads the value of the variable usecount at
entering time and busy waits until this value is changed by
the master. To start a synchronization operation the mas-
ter has first to call a wait function, whose implementation
is shown below:

void Master Wait ( Bar r i e r ∗b , int nprocs ) {
int i ;
for ( i = 1 ; i < nprocs ; i++)

while ( ! b−>entered [ i ] ) ;
// Reset f l a g s to 0

}

The master scans the entered vector, stopping at each
slave flag until it detects its presence. When all slaves reach
the barrier the flags are reset to 0. At this point to release
the slaves the master has to call a release function shown
below:

void Master Release ( Bar r i e r ∗b) {
b−>usecount++;

}

Figure 4 compares the cost3 of a barrier invocation when
using our implementation and a typical shared counters-
based one. Eliminating bus traffic due to accesses to the
2Note that using a different flag for each slave does not requires a
lock acquiring operation
3On the Y-axis is plotted the number of cycles taken by barrier oper-
ations normalized to a single bus transaction cost (1 read + 1 write)

Figure 4: Comparison between our version of the barrier and a typical
shared counters implementation

semaphore device results in a much fewer number of cycles
taken by our version. Even if in absolute terms the cost of
both is not very high our version would make the difference
in benchmarks with few computation and containing a large
number of barrier invocations.

5. EXPERIMENTAL EVALUATION
Our automatic parallelization framework has been ana-

lyzed in detail by means of a cycle-accurate virtual plat-
form[15] that models all essential system components. It
is important to point out that our emphasis in this work
is not on the effectiveness of the parallelizing compiler in
discovering parallelization opportunities on benchmark pro-
grams4. Our main focus here is on evaluating the efficiency
and scalability of our parallelization support library. Conse-
quently, instead of conventional applications, we used syn-
thetic benchmarks. All the simulations we made sweep both
in the number of processors and in the size of data. Data
are collected in two kind of plots: performance and energy.

Performance plots show the overall execution time of the
parallel code (on different processor counts) compared to
that of the sequential code. Execution time is partitioned
into three main contributions: (i) init time, (ii) synchro-
nization time, and (iii) parallel execution time. Init time is
the time required for initialization library routines to run5.
Synchronization time is the sum of the time spent by the
cores waiting on each barrier. Effective execution time is
the actual time spent over parallel computation. Each of
these contributions was measured in an ideal case:

a) Synchronization time grows unpredictably with the num-
ber of cores because of the increased bus traffic, but we only
want to measure the time increase due to the greater number
of polled slave flags in the for loop. To achieve this goal, we
wrote a separate small benchmark in which the master core
issues the barrier only after all slave have already entered it.
In this way, we can be sure the master is the only processor
accessing the bus to check the shared flags, and we are sure
it will only check once for each of them.

b) Ideal execution time is estimated simulating on a sin-
gle processor the computational load it would have if it was
running in parallel with other n cores6. The difference be-
tween actual timings collected from the benchmark and the
ideal values described above is referred to as an overhead in
the plots.

4The reader interested in code parallelization is referred to [6] and
the references therein
5These routines essentially instantiate most of the synchronization
structures in shared memory and link their lock field to some register
of the hardware semaphores device
6So, for example, if eight processors are working on a vector of 32
elements, each core would process 4 data elements. The ideal execu-
tion time is that a single CPU would take to process a vector of 4
elements.

147



The fundamental parameters for our system are shown in
table 1.

processor ARM7, 200Mhz
data cache 4KByte, 4 way set associative

latency 1 cycle
instruction cache 8KByte, direct mapped

latency 1 cycle
private memory latency 2 cycles
shared memory latency 2 cycles
AMBA AHB 32 bit, 200Mhz, arbitration 2 cycles

Table 1: Architectural components details

5.1 Communication-Dominated Benchmark
The first set of experiments we wrote consists in square

matrix filling (see below) and its purpose is that of investi-
gating how concurrent accesses to shared regions limit the
speedup of parallelization with the increasing number of
cores. The number of rows, equal to the number of columns,
has been parameterized with SIZE. Since each matrix ele-
ment is written once and then never accessed again, we can
expect that communication costs prevails on the benefits in-
troduced by the parallelization.

for ( i=SIZE∗ id / nprocs ; i<SIZE∗( id+1)/nprocs ; i++)
for ( j =0; j<SIZE ; j++)

A[ i ] [ j ] = 1 . 0 ;

The plot in figure 5 shows the results gathered for SIZE
= 32. It shows the performance cost of the different con-
tributions, intended as the overall number of cycles taken
by each operation normalized by the number of cycles of
an ideal bus transaction (1 read + 1 write). Initialization
represents the number of normalized cost cycles needed for
the library initialization routines to complete. This time
grows with the number of cores because of the increasing
bus contention. However, as initialization routines only oc-
cur at startup this cost is fixed and soon becomes negligible
as overall execution time grows7.

Synchronization time is split into two contributions: ideal
synchronization time and relative overhead (the difference
between measured and ideal time). The picture shows how
the overhead grows with the number of cores. This is due
to the additional bus traffic generated by the cores polling
over shared synchronization structures. The amount of this
overhead is very application-dependent, as the time the mas-
ter will wait before all slaves enter the barrier is related to
the synchronization pattern that the application shows at
runtime.

Ideal parallel execution time (solid gray bars) follows the
intuitive trend of almost halving with the doubling of the
number of processors, but measurements show an overhead
that severely limit the potential speedup.

The plot in figure 6 shows the results of the same bench-
mark but with a matrix of 1024x1024 elements. The cost
relative to initialization completely disappears when com-
pared to that relative to parallel execution, and so does
synchronization. Parallel execution time overhead, on the
other hand, has not disappeared. This is explained with
the communication-dominated nature of the benchmark. A
greater number of cores results in a greater number of con-
current shared memory access requests, that implies a length-
ening of the the time needed to service all these serial-
ized requests. Up to 4 cores the communication cost fol-
lows an almost-linear trend with a very small slope. With
8 cores or more this slope abruptly increases as bus con-
tention produces very significant overheads. The scenario
should change if we inserted more computation among bus
accesses, and if we reduced these accesses to the minimum8.

7Should this contribution still remain significant, a possible way to
reduce bus contention would be that of serializing accesses. Limiting
concurrent accesses to 2-4 cores per time would still take less time
than the overhead.
8For instance declaring as cacheable the portion of the shared memory
in which data resides.

Figure 5: Performance results for communication dominated parallel
execution (32x32 matrix filling).

Figure 6: Performance results for communication dominated parallel
execution (1024x1024 matrix filling).

5.2 Computation-Dominated Benchmark
The second set of experiments aims at investigating the

convenience of parallelization in computation-dominated sit-
uations with very few accesses to shared resources. A vector
is read in parts from shared memory, which is now declared
cacheable, and a cycle of a variable number of iterations
performs several sums on this data. Reducing the accesses
to shared memory and performing a lot of computation on
cached data we expect speedup to increase noticeably, as
the cost for the sporadic bus accesses should go unnoticed if
compared to that of elaboration. We made several different
experiments, modifying both the number of elements of the
shared vector and the number of iterations (i.e. the number
of sums on data). We present here results for the configura-
tion of 1024 elements vector and 1000 iterations.

for ( i =0; i<ITERATIONS; i++)
for ( j=SIZE∗ id / nprocs ; j<SIZE∗( id+1)/nprocs ; j++)

tmp += A[ j ] ;

return tmp

Figure 7 shows the results for the execution of this bench-
mark. As expected, reducing accesses to shared memory the
overhead measured in parallel computation completely dis-
appears, thus confirming the hypothesis it was only due to
data access-induced bus activity.

Figure 8 collects energy and performance results for 1000
iterations on a 1024 elements vector. Notice that speedup
and additional energy follow curves with very different slopes.
As speedup grows much more than consumed energy we can
expect a big benefit in energy saving if voltage and frequency
of cores is scaled9.
9To give a quantitative estimation of the expected saving we can apply
a simple, well known frequency scaling formula [14]

f = K
(V −Vt)

2

V

where K is some constant of proportionality and Vt = 0, 7V is the

148



Figure 7: Performance results for computation dominated parallel
execution (1024 elements vector x 1000 iterations).

Figure 8: Comparison between energy and speedup results for the
computation-dominated benchmark (1024 vector elements x 1000 it-
erations).

5.3 JPEG Decoding
In this section we present the results of a real multime-

dia benchmark: a parallelized version of the JPEG decod-
ing algorithm. After the initialization, performed by every
core, the master core starts computing the sequential part of
the algorithm (Huffman DC and AC) while the slaves wait
on a barrier. Then the computation is split between cores.
Specifically each CPU applies on a slice of the reconstructed
image a luminance dequantization and a reverse DCT filter.
After each of these two parallel routines a barrier instruc-
tion is called, then the master can (optionally) compute a
checksum on the decoded image. Data collected in figure 9
depict – as before – init, synchronization and parallel exe-
cution time with respective overheads. In addition the time
taken by the master to execute the non-parallelized parts of
the application is plotted as well. Due to the small number of
barrier invocations synchronization time is negligible (as init
time is). The behavior of the parallel portion of code follows
the one we already discussed for the computation-dominated
benchmark. During this section of the benchmark the cores
access concurrently to shared data10, and this limits the po-
tential benefits of parallelization to the use of 4 cores. A
larger number of CPUs would perform worse on this shared
bus-based architecture. Another thing to point out is that
the execution time of the sequential part increases drasti-
cally for more than 4 cores. This extra time is due to the
slaves polling on shared variables while the master runs the
sequential code. Since most modern MPSoCs are equipped
with a tightly coupled memory (i.e. a scratchpad) a possible

threshold voltage. If we substitute in this formula f1 = 200MHz
(maximum speed) and V1 = 1, 2V (unscaled CPU voltage) we can
calculate K = 960. As from figure 8 we see speedup is 5,5x we can
consider f2 = f1/5, 5 as the speed at which we must run parallel
code in order to complete in the same time taken by serial code.
In this way from the formula is possible to determine the minimum
voltage V2 = 0, 89V allowed. We can conclude that

E2
E1

≡
(

V2
V1

)2
=

(
0,89
1,2

)2
= 0, 55

which confirms our hypothesis of a big potential energy saving.
10As already discussed allowing these data to be cached would reduce
this overhead

Figure 9: Performance results for parallel JPEG decoding

solution to eliminate this overhead would be that of instan-
tiating in this local memory the synchronization structures.
This will eliminate the extra overhead due to remote polling.

6. CONCLUSIONS
In this paper we presented a support library for the execu-

tion of compiler-generated parallel code on a MPSoC. Global
synchronization is achieved by means of Master-Slave bar-
riers, which implementation has been extensively evaluated
using communication intensive and computation intensive
benchmarks. Results are also given for a realistic appli-
cation such as JPEG decoding. Our results indicate good
scalability for up to 8 processors in computation-dominated
situations, whereas in presence of high communication scal-
ability is reduced to 4 processors. A detailed performance
analysis shows that the main performance blocker is the bus
contention. Hence our library never becomes the bottleneck
in parallelization. This is a very promising results, and em-
phasizes the importance of low cost barriers with increased
number of processors.

7. REFERENCES
[1] Jennifer M. Anderson and Saman P. Amarasinghe and Monica S. Lam,

“Data and computation transformations for multiprocessors”, In
Proceedings of the 5th ACM SIGPLAN symposium on Principles and
practice of parallel programming, 1995

[2] Jennifer M. Anderson and Monica S. Lam, “Global optimizations for
parallelism and locality on scalable parallel machines”, In PLDI ’93:
Proceedings of the ACM SIGPLAN 1993 conference on Programming
language design and implementation, 1993

[3] Mary H. Hall and Saman P. Amarasinghe and Brian R. Murphy and
Shih-Wei Liao and Monica S. Lam, “Detecting coarse-grain parallelism
using an interprocedural parallelizing compiler”, In Supercomputing ’95:
Proceedings of the 1995 ACM IEEE conference on Supercomputing
(CDROM), 1995

[4] Michael E. Wolf and Monica S. Lam, “A data locality optimizing
algorithm”, In Proceedings of the Conference on Programming Language
Design and Implementation, 1991

[5] L. Xue and O. Ozturk and F. Li and and I. Kolcu, “Dynamic Partitioning
of Processing and Memory Resources in Embedded MPSoC Architectures”,
In Design Automation and Test in Europe (DATE’06), Munich, Germany,
2006

[6] O. Ozturk and G. Chen and M. Kandemir, “A Constraint Network Based
Solution to Code Parallelization”, In Proc. Design Automation Conference
(DAC)[Nominated for Best Paper Award], 2006

[7] Jong-eun Lee and Kiyoung Choi and Nikil D. Dutt, “An algorithm for
mapping loops onto coarse-grained reconfigurable architectures”, In
LCTES ’03: Proceedings of the 2003 ACM SIGPLAN conference on
Language compiler and tool for embedded systems, 2003, pages 183–188

[8] C. Liu, A. Sivasubramaniam, M. Kandemir, M. J. Irwin, “Exploiting
Barriers to Optimize Power Consumption of CMPs”, In Proceedings of
IPDPS, 2005.

[9] J. Sampson, R. Gonzàlez, J.F. Collard, N.P. Jouppi, M. Schlansker, “Fast
Synchronization for Chip Multiprocessors”, In ACM SIGARCH Computer
Architecture News, 2005.

[10] J. Sampson, R. Gonzàlez, J.F. Collard, N.P. Jouppi, M. Schlansker, B.
Calder, “Exploiting Fine-Grained Data Parallelism with Chip
Multiprocessors and Fast Barriers”, In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture MICRO 39,
2006.

[11] J. Li, J.F.Mart̀ınez, M.C. Huang, “The Thrifty Barrier: Energy-Aware
Synchronization in Shared-Memory Multiprocessors”, In Proceedings of
the 10th International Symposium on High Performance Computer
Architecture HPCA ’04 , 2004.

[12] S.Kumar, D.Jiang, R.Chandra, J.P.Singh, “Evaluating Synchronization on
Shared Address Space Multiprocessors: Methodology and Performance”, In
Proceedings of the 1999 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, 1999

[13] J.M.Mellor-Crummey, M.L.Scott, “Algorithms for Scalable Synchronization
on Shared Memory Multiprocessors”, In ACM Trans. on Comp. Sys., 1991

[14] A.P.Chandrakasan, S.Sheng, R.W.Brodersen, “Low-Power CMOS digital
design”, IEEE Journal of Solid State Circuits, 1992

[15] MPARM Home Page, www-micrel.deis.unibo.it/sitonew/mparm.html.

149



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


