
Defining a Strategy to Introduce a Software Product Line
Using Existing Embedded Systems

Kentaro Yoshimura
Hitachi Europe

Automotive R&D Lab
18 rue Grange Dame Rose

78140 Velizy, France
+33 1 34 63 05 00

kentaro.yoshimura@hitachi-eu.com

Dharmalingam Ganesan
Fraunhofer Institute for Experimental

Software Engineering (IESE)
Fraunhofer-Platz 1

67663 Kaiserslautern, Germany
+49 (0) 631 / 68 00 - 2232

ganesan@iese.fraunhofer.de

Dirk Muthig
Fraunhofer Institute for Experimental

Software Engineering (IESE)
Fraunhofer-Platz 1

67663 Kaiserslautern, Germany
+ 49 (0) 631 / 68 00 – 1302
muthig@iese.fraunhofer.de

ABSTRACT
Engine Control Systems (ECS) for automobiles have numerous
variants for many manufactures and different markets. To
improve development efficiency, exploiting ECS commonalities
and predicting their variability are mandatory. The concept of
software product line engineering meets the business background
of ECS. However, we should carefully investigate the expected
technical, economical, and organizational effects of introducing
this strategy into existing products.

This paper explains an approach for assessing the potential of
merging existing embedded software into a product line approach.
The definition of an economically useful product line approach
requires two things: analyzing return on investment (ROI)
expectations of a product line and understanding the effort required
for building reusable assets. We did a clone analysis to provide the
basis for effort estimation for merge potential assessment of existing
variants. We also report on a case study with ECS. We package the
lessons learned and open issues that arose during the case study.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific
architectures

General Terms
Design, Measurement

Keywords
Software Product Line, Engine Control Systems, Software
Economics, Reverse Engineering, Clone Detection and
Classification.

1. INTRODUCTION
1.1 Background

Figure 1 shows an overview of an ECS. The ECS is one of
the core components for engine management systems. The ECS

monitors engine status and driver requests, and controls the
engine by regulating the amount of fuel injection, ignition
timing, quantities of intake air, and so on. From a domain point
of view, ECS share a significant portion of common properties;
also, many future variations for different customers and market
segments can be predicted in advance. However, embedded
software in ECS was optimized to reduce hardware costs (i.e.,
microprocessor and memory chips). This optimization turned
out to be not favor of component reuse in new products.
Therefore, new ECS software was developed by “clone-and-
own” from similar existing ECS.

Figure 1: An overview of ECS.
With the increase of ECS business, the number of ECS

variations (see Figure 2) has exploded and software
development costs are increasing at an alarming rate. This
situation and the business goals of ECS match scenarios for
introducing product line engineering, which is a reuse- and
architecture-centric paradigm that systematically takes
advantage of commonalities and predicted variability [2] [4] [5]
[8]. The core theme of product line engineering is to achieve
systematic reuse by developing assets (e.g., common
architecture, software components) that can be reused for a
family of similar products.

XXXXXXJapanMarket

XXXXXU.S.

Engine Size

Engine Type

Customer

2.01.03.02.01.61.02.01.6

X

Direct
Injection

A

X

Multi Port
Injection

XXXEurope

Multi Port
Injection

Direct
Injection

B

XXXXXXJapanMarket

XXXXXU.S.

Engine Size

Engine Type

Customer

2.01.03.02.01.61.02.01.6

X

Direct
Injection

A

X

Multi Port
Injection

XXXEurope

Multi Port
Injection

Direct
Injection

B

Figure 2: ECS variants - An example.

Throttle

Engine
Revolution

Accelerator Pedal
Sensor

ECS (Engine Control System)

Throttle

Engine
Revolution

Accelerator Pedal
Sensor

ECS (Engine Control System)

Accelerator Pedal
Sensor

ECS (Engine Control System)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EMSOFT'06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-542-8/06/0010...$5.00.

63

To that end, research in product line engineering has mostly
focused on the construction of new product line infrastructures
and activities: scoping, domain analysis, architecture creation, and
variability management. On the other hand, existing products
contain a lot of domain expertise and actual reliability. From an
industry point of view, one of the most important issues is how to
define future product lines from existing variants. This implies
that introducing product line engineering often means merging the
existing software from several similar systems into a common
product line infrastructure. Unfortunately, there is limited or no
support in the existing literature for assessing the merge potential
of large industrial systems. The other important point issue is how
to analyze the risk of introducing product line engineering into
existing products. Identifying ROI in advance is mandatory from
a management point of view.

We have developed the starting method [17], software
clone analysis [18] and ROI estimation [8], for introducing
software product line engineering. In this paper, we combine
the results from the technical clone analysis and the ROI
estimations to outline an economically useful product line
approach for an existing domain of embedded software.
Moreover, we apply the proposed method to the existing ECS
embedded software.
1.2 Outline of This Paper

This paper is structured as follows: Section 2 describes an
overview of the migration to a product line. Section 3 describes
the ROI calculation for the investment in a product line. Section 4
describes our method for the merge potential assessment. The
application of the proposed method to existing ECS is the topic of
Section 5. Section 6 packages some important lessons learned
and open issues we experienced. Section 7 describes our work in
progress, which covers variability management at the
implementation level. Section 8 provides related work followed
by a conclusion.

2. Migration to a Software Product Line
In many organizations, similar systems are developed by

separate groups. Usually, these systems have the same origin, but
in order to satisfy the different requirements and schedules of
individual customers, different projects develop the systems in
parallel. As a consequence, reuse across systems is ad-hoc. In
other words, the same copy of code is maintained by different
groups, resulting in increased development costs. To solve this
problem, we introduce a migration strategy.

Basically, the current development style will be improved by
becoming a reuse-oriented style. In the future style, there are two
activities, namely family or domain engineering and application
engineering. In domain engineering, the requirements of the
current and future products are analyzed and the common and
variable parts are identified. Then a product line infrastructure
containing reusable components is constructed. In application
engineering, the individual products are constructed from the
reusable components together with product-specific requirements.

Although the future style of software development looks
simple and logical, a migration from the current process to the
future process is very challenging. We consider the following to
be the important challenges, faced by many organizations, in
migrating from single system development to product lines: (1)
Estimating economic benefits resulting from migration is difficult,
and (2) addressing the immediate needs of customers is the main
priority for managers, architects, and developers. Reasoning about

long-term benefits from reuse and developing software with reuse
are not given a priority. (3) It is not obvious in advance which
components should be developed for reuse, and which ones
should not. (4) Adapting existing systems for future reuse is yet
another challenge. (5) How the quality of the resulting end
products will be affected by reuse-oriented software development
is an important question. (6) Organizational issues like funding
and management structure of domain and application engineering
groups should be solved as well. (7) How to shorten the overhead
of the migration step is another issue.

Despite the above practical challenges, organizations are
willing to migrate to product line engineering in order to reduce
the development costs and time-to-market. Hence, a systematic
migration strategy, which takes into account the above mentioned
difficulties, should be developed first to ensure smooth and
successful migration.

Figure 3 shows a merge strategy. The strategy includes
answers to the following questions: From an organizational point
of view: (a) what is the economic benefit for target products, (b)
how to re-define the development process, and (c) how to
restructure the organization for successfully merging the existing
implementations into a product line. From a technical point of
view: (d) how to assess the merge potential of the existing
software variants, and (e) how to perform merging the existing
implementation. Questions (a) and (d) are the topics addressed in
this paper.

(a) Estimate
Economic Benefits

(b) Re-define the
development

process

(c) Re-structure
the organization

(d) Assess the
merge potential

(e) Perform
Merging

Maintain Software
Product Line

Management Aspect

Technical Aspect

Figure 3: An overview of a migration process.

3. Predicting ROI for Introducing Software
Product Line Engineering

First of all, managers have to decide whether they should
introduce software product line engineering into their
development process. Software product line engineering is often
an economical development method for software series. However,
the method is not “the silver bullet”. For example, when only one
software product is developed, nothing can be gained from
software product line engineering. It is worth estimating ROI
using a software economics model before introducing the product
line development method.

We have developed a method for predicting ROI with
uncertainty of software development [8] based on Monte-Carlo
simulation. The simulation model was carried out using the
economic model introduced in [4]. To practically perform the
Monte-Carlo simulation, we used Crystal Ball, a commercial
tool. The following steps apply Monte-Carlo simulation with the
product line economic model with uncertainty:

Step 1 – All input variables for which experts cannot provide
sufficiently accurate predictions are identified as uncertain
variables.

Step 2 – Each of the uncertain variables identified is then
mapped to a suitable probability distribution, which defines the
range of accepted values for each variable and a function
specifying how likely a particular value is to occur.

64

Step 3 – Random input numbers for uncertain variables
based on the selected probability distribution are generated. The
ROI is calculated for each set of random input values. That is,
many ROI estimations may be computed.

Step 4 – The computed ROI predictions are put together and
a frequency distribution is constructed, which tells how likely it is
to achieve certain ROI values or ranges through product line
engineering.

Regarding step 2, the commonality level among the
products, for example, is mapped to a Normal distribution with a
mean of 60% (i.e., on average, products have 60% in common).
The probability distribution thus defines that it is equally likely to
experience a commonality level below as above the average
within defined lower and upper boundaries. Normal distribution
is, however, only one of many possible probability distributions,
which thus does not hold in general for all uncertain variables.
The number of products in a product line, for example, is mapped
to a Uniform distribution. Note that the most suitable mappings
may be different in different contexts. We refer the readers to [8]
for more detailed discussions on the economic model and the
simulation of ROI.

4. Merge Potential Assessment Method
We propose a process for merging existing products as

shown in Figure 4. The first step in that process is to analyze ROI
of a software product line for an existing product family. We can
get benefits from product line engineering if the software systems
have certain kinds of characteristics, such as commonality,
number of products, size of software, and so on. In this step, we
analyze whether we should introduce a software product line or
not. The next step is to assess the merge potential of existing
products. Since all products are assumed to have the same
conceptual software architecture, this is used as the reference
point for comparison. Hence, we assess the merge potential of
every component in each existing product by using software
architecture decomposition. Once the component is assessed for
its merge potential, the next step in our process model is to
perform the actual merging of the component in different
products. That is, the component is transformed into a generic
reusable component together with current and predicted future
variants. After transforming a component into a reusable entity,
existing individual products should be adapted to use it. Adapting
existing products involves many technical activities like
restructuring the build process, directory structure, configuration
management, testing.

The main target of our research is on proposing an automatic
assessment method for existing systems. Since today’s embedded
control software encompasses huge systems, automatic analysis of
commonalities and variabilities is mandatory. To assess the
commonality between the systems, we can check 3 layers, namely
the Requirement Level, the Executable Model Level, and the
Source Code Level. We focus into source code level, because the
existing systems were not developed by Model-Driven
Development. (Some part of system is developed by MDD.)
Requirement level commonality analysis might be good idea, but
the current requirements of an embedded control system are not
formally specified. This means we are not able to compare the
requirements automatically.

In the next section, we explain how the merging process
shown in Figure 4 is applied to target existing software
products.

Assess Merge Potential

For each potential
Component K

from each product
Perform Merging

Reusable
Component K

Adapt Individual
Products to use K

Test Individual
Products

Product A Product B …

Data flow
Control flow

Current product space

Assess Merge Potential

For each potential
Component K

from each product
Perform Merging

Reusable
Component K

Adapt Individual
Products to use K

Test Individual
Products

Product A Product B …

Data flow
Control flow
Data flow
Control flow

Current product space

Figure 4: Process for iterative technical merging.

4.1 Implementation level Commonality
Analysis

The main topic of this section is the analysis of clone data
from product A to product B. In order to interpret the collected
clone data for assessing the merge potential, we propose a
hierarchical clone analysis approach. Figure 5 shows an overview
of our approach.

Figure 5: Clone analysis using decomposition hierarchy.

First, we assume that both products A and B have one

monolithic component, and analyze the clone classification. Next,
we analyze the clone classification of each component from
product A to product B, based on a reference. Then, we continue
to analyze the sub-components within a component. In short, our
clone analysis for merge potential assessment is carried out at
different levels of abstraction using the decomposition hierarchy
shown in Figure 5.

4.2 Commonality Analysis Method
4.2.1 Definition

First, we define clone and clone coverage before explaining
the details behind clone analysis to assess the merge potential of
software product variants.

Clone: Figure 6 shows an inter-system clone pair. Two code
fragments form a clone pair if their program text is similar. In our
approach, we restrict this to clones between functions, that is,
clones from a function in product A to a function in product B.
The main reason for this restriction is that in the latter phase, in

System

Component

Sub-Component

Commonality AnalysisReference ArchitectureHierarchy

System

Component

Sub-Component

Commonality AnalysisReference ArchitectureHierarchy

Engine
Management

System

Control
ApplicationI/O Driver

Cruise
Control

Idle Speed
Control

Analyze
inter-systems

Analyze
I/O Driver

inter-Systems

Analyze
Cruise Control
inter-Systems

Analyze
Idle Speed Cont.

inter-Systems

Analyze
Control Appl.
inter-Systems

65

order to resolve clones, we can replace existing cloned functions
with generic functions that can be instantiated for each product.
We used a commercial tool called CloneFinder for finding cloned
code functions. Clonefinder can find clones that are either exact
copy from one product to another or a copy with some
modifications (e.g., renamed function). However, this tool does
not classify clones into the different types defined below. We
wrote some wrappers around the tool and extracted the different
types of clones. It is worth clarifying that the level of granularity
for reuse is not at the function level, but at the component level.
Using the clone coverage metric, we measured the commonality
level among components of existing products.

Clone Coverage: Let J and K be two components. Then the
clone coverage in K from J is defined as follows:

100*
 #

 #)(
KinLinesof

JfromClonedLinesofKageCloneCover =

Interpretation of Clone Coverage: If CloneCoverage(K) is near
100%, it means that nearly all the lines in K are cloned from J,
and if it is near 0%, that means there is hardly any text similarity
with J. This clone coverage metric can be applied at any level of
abstraction. That is, we can compute clone coverage from one
product to another product, and then to the next level of the
product decomposition hierarchy. From now onwards, the number
of lines in a component refers to the sum of the numbers of non-
commented lines in each function within the component.

Figure 6: Inter-system clone pair.

4.2.2 Clone classification
To facilitate the merge potential assessment, we propose

classifying clones from product A to B into different types as
follows. Please note that we will not discuss clones within
product A or B; all discussions about clone analysis are from
product A to B.

Type 1: Exact interface and implementation copy from
product A to product B. Figure 7 is an example of a type 1 clone.

int foo(int j) {
if (j < 0)
return j;

else
return j++;

}

Product A

int foo(int j) {
if (j < 0)

return j;
else

return j++;
}

Product B
Figure 7: An example of a clone of type 1.

Type 2: Interface copy, but the implementation is modified
to satisfy product-specific requirements. Figure 8 is an example of
a type 2 clone.

int foo(int j) {
if (j < 0)
return j;

else
return j++;

}

Product A

int foo(int j) {
if (j <= 0 && j >= -5)

return j;
else

return j++;
}

Product B
Figure 8: An example of a clone of type 2.

Type 3: Only the interface is copied, but implementation
differs too much, so that our common sense will consider it as
different code (see Figure 9).

int foo(int j) {
if (j < 0)
return j;

else
return j++;

}

Product A

int foo(int j) {
return j--;

}

Product B
Figure 9: An example of a clone of type 3.

The difference between type 2 and type 3 clones lies in the
choice of the threshold for the clone coverage rate. Type 3 clone
is introduced especially to identify variable parts in the
implementations.

Type 4: Interface is renamed, but the implementation is
cloned (see Figure 10).

int foo(int j) {
if (j < 0)

return j;
else

return j++;
}

Product A

int goo(int j) {
if (j < 0)
return j;

else
return j+2;

}

Product B

int foo(int j) {
if (j < 0)

return j;
else

return j++;
}

Product A

int goo(int j) {
if (j < 0)
return j;

else
return j+2;

}

Product B
Figure 10: An example of a clone of type 4.

Note that with the above four types, we have considered all
possible function clones, and not ignored any other type of
function clones. The motivation for classifying clones into Type
1, Type 2, and Type 3 was to understand and identify the common
and variable parts in the implementations of products A and B
quickly. Type 4 was defined in case programmers renamed the
interfaces but cloned the implementation from one product to
another.

To merge the existing systems, we need to increase type 1
clones, reduce type 2 clones, and keep type 3 clones only if the
product needs the same interface but a different
implementation, and move type 4 clones into type 1. Since
existing clone detection tools can not provide us with clone
classification into the above four types, we developed our own
tools for classifying clones. Due to space limitations, we skip
our algorithm for classifying clones. In short, given two
systems, our algorithm can classify function clones into the
above four types.

Component J

System X

Component K

System Y

Length of
code in
system Y

Length of
clone code
between
system X, Y

Inter-system
clone pair

66

5. Case Study: Engine Control Systems
5.1 Overview of Case Study

In this section, we apply the proposed process with a case
study to assess the merging potential of two ECS products for
customers A and B. The current products were taken from an
initial version, and different groups were formed to address the
needs of the global market. Although these products share a
common conceptual architecture, their implementation and
maintenance are controlled by different groups. Hence, deriving
a merging strategy was a wise decision before introducing a
product line.

To assess the merge potential of ECS products, we used
the software architecture as a reference point. We assumed that
target ECS products share the architecture shown in Figure 13.
We compare and assess the merge potential of a component in
product A with the same component in product B. To support
this assessment, we analyze the product level. Next, we analyze
the component level and the sub-component level commonality.
After that, we plan a merge strategy for each sub-component.
Finally, we discuss the result of the clone analysis from the
domain point of view, using the proposed method.

5.2 Predicting ROI
As the first step of introducing a software product line, we

estimate the ROI of ECS case. We selected uncertain input
variables as follows:

• Number of products

• Commonality level of core asset base

• Fraction of core asset base difficulty

• Fraction of core asset base that changes with each
new version of the product line

• Rate of building each product’s unique part
For example, the commonality level of core asset base is
mapped to normal distribution with a mean of 70%. The type of
distribution is selected by domain experts using metric data of
existing products. The specific number of input variables can
not be disclosed due to company confidentiality reasons.
Figure 11 and We can observe that it is 70% certain that we will
take more than 64.0% ROI. This result means that characteristic
of ECS meets software product line engineering and the
organization will take benefit by introducing product line
engineering.

In the following subsections, we analyze the merge
potential of ECS product variants.

Figure 12 show the result of Monte-Carlo simulation after
3 ECS products in software product line strategy. To estimate
the distribution of ROI, we have simulated 20,000 times. In
Figure 11, the horizontal axis shows ROI and the left vertical
axis means probability.

Figure 11: Distribution of estimated ROI of ECS (after 3

generations).

We can observe that it is 70% certain that we will take more than
64.0% ROI. This result means that characteristic of ECS meets
software product line engineering and the organization will take
benefit by introducing product line engineering.

In the following subsections, we analyze the merge potential
of ECS product variants.

Figure 12 shows the result of the clone coverage analysis of
the product view. In this case study, if the clone coverage rate of
function f of product B from product A is less than 20%, we
consider function f to be type 3.

Figure 12: Clone coverage from product A to B.
In the case of the analyzed ECS products, lines of code of

type 1 clones in product B from A cover around 9% of all
function code in B. We noticed that type 2 clones in product B
from A cover around 19% of all function code in B. Ultimately,
we would like to reduce type 2 clones by separating common and
variable parts, thereby reducing code duplication and introducing
systematic reuse. Type 3 clones also exist in our current products.
The existence of type 3 clones, in our case, has two reasons: a)
some portions of ECS are implemented by different groups, but
the interface was reused from the initial root version, and b)
product-specific functionality implementation was needed, but
with the same interface for both products. For product line
migration, in order to avoid code duplication, type 3 clones
should be kept only if products require different implementations
but with the same interface. We had very little type 4 clones
,which means that programmers have not changed function names
from product A to B. 55% of function code in product B is not a
clone at all. That is, 55% of function code in product B has a
different implementation than in product A.

We can observe from Figure 12 that type 1 and type 2 clone
coverage from product A to B is around 28%. This result shows
that a part of ECS can be merged and another part cannot be
merged. To understand this issue more clearly, we used the
hierarchical clone coverage view introduced earlier. In the next
subsection, we analyze which components of the architecture are

0% 20% 40% 60% 80% 100%

Type 1
Type 2
Type 3
Type 4
Non Clone

67

implemented in a different style, and which components have
high clone coverage from product A to B.

5.3 Clone Coverage: Component View
In the previous subsection, we have shown the clone

coverage view from product A to product B. This view is at a
high level of abstraction, and is only useful for understanding the
merge potential from the system level. That is, Figure 12 does not
contain any information about the architectural components of
ECS. Ideally, we would like to know the clone coverage per
component so that the component merging potential can be
assessed. But the difficulty lies in the abstraction level:
Architectural components are not directly visible in the source
code, but the clone detection results are always at the code level
and not at the component level.

To solve this problem, we employ mappings as done in the
reflexion model [12]. That is, we map the abstract components to
source code for both products from the domain point of view.
Figure 13 shows the reference architecture of this case study. For
example, every file under the IO_Driver directory belongs to the
IO_Driver component. Using this mapping, we lifted the collected
clone data to the component level. This reference architecture is
based on the AUTOSAR (AUTomotive Open System
ARchitecture) software architecture [13]

Application
C

om
plex_IO

_D
river

Sensor_Actuator

System_Service

Memory_Service Communication_Driver

Processor_Driver IO_Driver

Layer

Component

Dependency

Figure 13: Software architecture of ECS products.

Figure 14: Component level clone coverage.

Figure 14 shows the clone coverage per component from
product A to product B. Using this view and the domain
knowledge of the architect, we reasoned about the clone
coverage for each ECS component. In this subsection, we
present the analysis of clone coverage at the component level
for the components of ECS.

The Memory_Service, Sensor_Actuator, and
Communication_Driver components implement product-
specific functionalities, and hence low type 1 clone coverage
(below 15%) reflected this scenario.

The Memory_Service component has around 5% type 1
clone coverage, because it implements a functionality related to
flash memory operations, which is mainly supplier dependent.
As a result, the implementation of Memory_Service in product

A is significantly different from product B. Also, around 50%
of the Memory_Service component code is type 3 clone. This is
because for both products, the external interfaces of
Memory_Service are the same, and hence interfaces are reused
from the initial root version of ECS.

For the Complex_IO_Driver component, type 1 clone
coverage is around 25%. This matches our estimation because
this component is “complex” and the developers tried to
maintain commonality. However, we can notice that the type 2
clone coverage is around 35% for this component. We plan to
resolve type 2 clones in future.

The System_Service component implements system level
service routines, and hence it is mostly product-specific. We
can see from the clone coverage view that around 80% of
System_Service code is not a clone.

There were also some unexpected surprises in the clone
coverage results. For example, the Application component of
ECS has only 5% type 1 clone, but our expectation was around
30% to 40%. From the domain point of view, the Application
component in both products contains common domain concepts,
but the clone coverage metric does not show a high
commonality. To understand the reason for the differences, we
analyzed the clone coverage per sub-component within the
Application component.

5.4 Clone Coverage: Sub-Component View
 Figure 15 shows the clone coverage of sub-components in

the Application component. The Application component
consists of 9 sub-components. From Figure 15, we can tell the
clone distribution for the sub-components in the application
component.

We discuss a merge strategy of software components based
on this assessment result in the next subsection.

Figure 15: Clone coverage for Application sub-components.

5.5 A Merge Strategy of Sub-Components
Engine_Gas_Injection_Control is a traditional component

with stable requirements for the engine control systems. But
there are also some differences or variations from one car
model to another model. Nevertheless, this component should
be merged and transformed into a generic component with
variation points. In Figure 15 we can notice that type1 and type
2 clone coverage for the Engine_Gas_Injection_Control
component is low: our expectation was at least 50% from the
domain point of view. In this case, our merge plan is to
transform the Engine_Gas_Injection_Control component from
the latest version, which is product A, into a generic component
with variation points, which can be instantiated for product B
and other future products.

0% 20% 40% 60% 80% 100%

System Service

Comm. Driver

Sensor/Actuator

Control Application

Memory Driver

Complex I/O

Type 1
Type 2
Type 3
Type 4
Non Clone

0% 20% 40% 60% 80% 100%

Learning

Correction Algorithm

Lambda_Control

Torque_Control

Gas_Ignition_Control

Cruise_Control

Misfire_Detection

Idle_Speed_Control

Catalyst_Diagnosis

Type 1
Type 2
Type 3
Type 4
Non Clone

68

Similarly, the requirements of the Idle_Speed_Control
component are stable for engine control systems. The type 1
and type 2 clone coverage for this component from product A to
product B is around 50%, which already gives us an indication
that this component can be transformed into a generic
component. In this case, our merge strategy is to merge this
component from product A and product B by first separating
common and variable parts from both implementations.

The functionality of Torque_Base_Control shares
significant commonalities among products A and B. However,
clone coverage was low (around 80% are non-cloned code)
because the root version of ECS did not contain this component,
and in the latter stage it was implemented in different styles by
developers belonging to different groups. To merge this
component, it is not rational to compare its code because there
are much more code differences than functionality differences.
Therefore, we will follow the same merge strategy as for the
Engine_Gas_Injection_Control component.

The Cruise_Control component has 0% type 1 clone, and
around 60% are non-cloned lines. Cruise_Control is an unstable
component and not traditional with respect to engine control
software; rather, it belongs to the vehicle control domain.
Therefore, we will not give priority to merging the
implementations of this component into a generic component.

For the component Misfire_Detection, type 3 clone
coverage is around 35%. This means that the same application
framework is used in both product A and B; however, the
implementations are different for specific customers. In this
case, we will integrate only the application framework. We will
not try to merge the implementations of these components into
generic reusable components.

The Learning component does not have any clones from
product A to B, because the learning behavior is different from
one car model to another. Hence, these components are also no
candidates for merging into generic reusable components. In
this case, we will keep variability at the component level (i.e.,
we will select different learning components for different car
models).

Our merge strategy is to transform the components,
namely, Idle_Speed_Control, Torque_Base_Control, and
Engine_Gas Injection_Control into generic reusable
components for the ECS products.

5.6 Discussion of Case Study Result
We have shown that for two ECS products, type 1 and type

2 clone coverage from product A to product B was only 28%.
Although these products have a significant amount of
commonalities, the clone coverage does not reflect the domain
view. As mentioned earlier, products A and B have a common
origin, but started evolving separately to address different
market segments (see Figure 16). In addition, these products are
controlled by developers who belong to different groups.

Root version

Product A1 Product B1

Product A2

Product A3

Product A3

Product B2

Derived &
Improved

Derived & Improved

Derived &
Improved

Derived & Improved

Derived & Improved

Derived & Improved

Clon
e A

na
lys

is

Figure 16: Evolution tree of ECS products A and B.

The clone analysis was performed on the two latest versions
of product A and product B, and analyzing the evolution history
was not in the scope of the project due to organizational issues.
We did some additional analysis to understand the reasons for low
clone coverage, and found two activities with respect to product
A: a) around 30% of product A’s code was generated
automatically using model-driven development, b) some portion
of the existing assembly code in product A was migrated to the C
language. These two activities were not performed in product B.
As a result, the code in product A and product B is textually
different and hence, low clone coverage occurred.

Another reason for low clone coverage from product A to B
is due to the ECS domain itself. ECS is a mixture of multiple
hardware parts, mechanics, and software. Also, there are market-
specific regulations, too, for example, emission rules are different
in Japan, Europe, and the United States. To handle all these
issues, developers in different groups tend to change existing code
in various ways, and when more and more requirements have to
be handled in a sequence of releases, the code commonality
among similar products of the same origin tends to shrink.

6. Lessons Learned and Open Issues
6.1 Lessons

In this subsection, we share a few lessons, that we believe
will be of interest to other practitioners and researchers.

Software cloning may not be a good way to realize product
line engineering: Software clones might be good to quickly
realize a first few variants. Later, due to organization and
technical reasons, clones will disappear, and organizations will
have more or less independent products. So, it is our position that
software cloning is not an economically sound solution from a
long-term point of view.

ROI predictions can strongly motivate the management to
invest in product line engineering: In practice, without strong
support of the management, it may not be possible to introduce
product line engineering to an organization. Hence, it is wise to
first motivate the management by showing the economic benefits.
ROI figures support the management in the decision-making
process.

Architecture-centric clone analysis is a useful and practical
approach to assess the merge potential of the existing systems:
Software cloning occurs at the implementation level. Hence, the
measurement of cloning also occurs at the implementation level.
However, industrial software contains thousands of files, making
it almost impossible to reason about software clone distribution.
Therefore, clone measurement and analysis should be raised to
the architecture level. Moreover, the architecture-centric clone

69

analysis supports the understanding of clones from a semantic
point of view, because architecture is nothing but a domain
abstraction.

Clone coverage is a sound toolkit to motivate the technical
audience to do product line engineering: Before introducing a
product line, it is often necessary to convince the developers why
traditional development is not good. And moreover, the reasons
why software cloning is not a sound way to implement product
line engineering should be clarified. In our case, we have shown
the clone distribution of the existing variants to the developers
and conveyed the key message that the products, which were
basically clone-and-own from a root version, tend to lose the
clones quickly. As a consequence, the clones disappear and the
products become more or less completely stand-alone, although
the products have so much in common with respect to the domain.
To avoid this problem, a more disciplined approach to reuse has
to be introduced.

Domain experts and reverse engineering experts need to work
together: We have shown that, by employing reverse engineering
techniques, industrial-strength software variants can be analyzed
for commonalities and variabilities. However, on the one hand,
reverse engineers alone cannot solve the challenge of merging the
existing software variants. They lack the domain knowledge. On
the other hand, domain experts may not be aware of reverse
engineering. So it is important that both the domain experts and
the reverse engineers work together to successfully merge the
existing variants into a product line.

6.2 Open Issues:
In this subsection, we share a few important open issues,

which need further research to support the merging of existing
variants into a product line.

Clone visualization: It is commonly accepted that visualization
supports humans in understanding large data sets. However, most
visualization research is concerned with visualizing software
clones that are present in a single system. How to visualize clones
across systems is not well-addressed. It would be useful for
practitioners to visually assess the merge potential of the existing
variants, based on the clone distribution.

Clone refactoring: How to remove clones is not an easy
question. Some of the existing clone detection tools replace the
clones with macros or preprocessing statements. However, the
scope of such refactoring is restricted to a single system. Also,
macros are not always the best implementation technology for
implementing the variants, given that it is not type checked. If
more than one variant exists, how to refactor the detected clones
is not trivial.

Clone error reduction: Clone detecting tools usually compare
the source code for syntactically similar patterns. However, the
problem is that syntactically similar patterns are not always the
same semantically. As a result, not all clones are really clones.
That means, there might be false positives in the detected clones.
How to reduce false positives in clone detection is an open
problem, whose solution is of interest to practitioners.

Refactoring effort estimation: This is rather a business issue.
Once the clones are detected, we should remove them. This task
requires effort. How much effort is needed to remove clones is of

interest to managers. Currently, there is no support to answer such
questions.

7. WORK IN PROGRESS
7.1 Classification of Variability

Once the merge potential is assessed using the clones and the
domain concepts, we need to plan for resolving the clones so that
code duplication is reduced and systematic reuse is in place.

Type 1 clones need not be reviewed because the code is
textually the same in both products. But to resolve type 2 clones,
we first need to understand the nature of the difference between
clone pairs. The difficulty is that from the implementation-level
differences, we can not conclude that the component contains
some variability. To solve this problem, at least partially, we used
the knowledge of our architect to reason about differences. But
the challenge is the effort required to analyze each clone pair for
the component. Therefore, for now, we focused on clone pairs
with high clone coverage (more than 75%).

Figure 17 shows the distribution of clone review results for
the sub-components of the Application component of ECS.
Around 21% of the reviewed clone pairs contain variants. That is,
some portion of code was modified to support product-specific
requirements. An example of a variant: In the case of product A,
the number of cylinders is fixed, but in product B, there can be a
variable number of cylinders. To resolve such kinds of variants,
we may use configuration files that specify the number of
cylinders.

21%

43%

25%

11%

functions with Variation
Points
functions with only impl.
differences
function with unclear
differences
Clone Noise

Figure 17: Classification of reviewed type 2 clones.

We can notice that around 40% of the reviewed type 2 clones
contain implementation-level differences that are not related to
variants. The differences fall into different categories: a) Change
of data types, for example, int type to short int type; these kinds
of changes were performed because one programmer thinks int is
enough, but another programmer in a different group later realizes
short int is better; b) Change of variable or array names or library
routines, and c) Change of programming style; for example, some
programmers like to have “{“ in the same line with the if
statement, others like to put “{“ in a new line. Currently, we are
developing approaches for classifying the implementation-level
differences into different categories to support architects and to
reduce the effort for clone pair review.

We also noticed during the clone review that the architect
cannot find the reason for differences in the clone pair from the
domain point of view. We mark this situation as unclear, and plan
for discussion with the developers in future. The noises produced
by clone detection tools are marked as “Clone Noise” in Figure
17. Noises refer to those pairs of clone that are reported as clones
by tools, but where the architect disagrees with this detection
because it is not actually code duplication.

70

7.2 Selection of Variability Implementation
Techniques

Once the clone pairs are identified and reviewed, we should
resolve them systematically by employing appropriate variability
implementation techniques. In our case, ECS is implemented
mainly in the C language, and there are many ways one can
realize variants, for example, using macros, conditional
compilations, dynamic linking, etc. The obvious question is which
variability implementation technique one should choose from the
collection of existing ones. For example, in some cases, we can
use macros, and in other cases we can use conditional
compilations.

Variability Impl.
Techniques

Clone pair 1

Clone pair 2
Clone pair 3

…

Clone pair n

Code Differences

Macros
Conditional
Compilation
Frames
Call-back…

Optimizations in one version

Programming-style changed

Product-specific Variants

Type 2 Clones

classify associate

…

Variability Impl.
Techniques

Clone pair 1

Clone pair 2
Clone pair 3

…

Clone pair n

Code Differences

Macros
Conditional
Compilation
Frames
Call-back…

Optimizations in one version

Programming-style changed

Product-specific Variants

Type 2 Clones

classify associate

…

Figure 18: Process for resolving clone of type 2.

In [3], the authors replace clones with macros to reduce the
quantity of source code and facilitate maintenance. We consider
macros as being one of the variability implementation techniques
because they are type-checked and hence might behave
unexpectedly, which is not desirable for a safety-critical system
like ECS. The choice of variability implementation technique is
not just a technical strategy. That is, we have to choose a
technique that is suitable for the application domain, as well as
being known or familiar to developers. Therefore, we believe it is
an interesting problem to resolve clones of type 2 into appropriate
variability implementation techniques. Figure 18 depicts this
problem.

8. RELATED WORK
There are many works about product line engineering for

automotive software (e.g., [14] [15]). Researchers have focused
mainly on requirements, variability management, and architecture
design for product lines. In contrast, our approach is a mixture of
bottom-up reverse engineering with top-down software
architecture to migrate to a product line.

SIMPLE (The Structured Intuitive Model for Product Line
Economics) [6] is an economics model for software product line
engineering. However, its focus was mainly on discussing several
scenarios of introducing software product line into a software
development organization. We estimated the economic benefit of
a software product line with uncertainty of input valuables.
Simulating ROI predictions for different scenarios is not in the
scope of SIMPLE, but is already addressed by our approach.

AUTOSAR [13] is a consortium to establish open standard
software architecture for vehicles. The AUTOSAR goals include
reusability of software modules in vehicles. However, the
standard is a kind of application framework. In the future, we will
explore the connection between AUTOSAR and a product line for
our ECS.

In [1], an assessment of reengineering opportunities (e.g.,
parameterization, delegation) based on clone information has
been investigated by classifying clones into different types.
However, their focus was on resolving clones within a version to

facilitate software maintenance. We also classified clones into
different types to assess the merge potential of existing products.

In [7], the authors located the common and variable parts
within a product using clones. We used clone detection tools to
derive the merge strategy by analyzing clones across products
using software architecture decomposition. Another important
difference is that in our case, we also captured interface cloning,
which is particularly effective in the context of product line
migration to identify the variable parts in the implementation.

In [10], the authors described the refactoring activities
performed to migrate the Image Memory Handler (IMH) of
current products of office appliances into a reusable product line
component. Their major focus was on improving reusability and
handling the variants by introducing modularity by resolving
clones. Our objective is also to improve reusability. Their clone
analysis is done only on the exact implementation copy within a
version, but our clone analysis includes copy-and-paste-modified
from one variant to another variant.

In [9][16], an approach for comparing programs was
proposed. These research results are, in fact, complementary to
our approach. In principal, a program P from product A can be
compared to a program Q in product B by using program
comparison approaches to identify common and variable parts.
However, the problem of merging two programs is comparatively
easier than merging two systems, which are made up of many
programs.

9. CONCLUSION
In this paper, we proposed an approach to assess the

potential to merge existing systems into a product line. First, we
proposed an approach to estimate the economical benefit of
software product line engineering with uncertainty of software
development in the future. Next, we proposed a method to
identify the commonality of current implementations across the
“future” software product line variants.

In the case study of Engine Control Systems (ECS), we
observed an alarming lesson from the investigation reported
above: products derived from the same origin by different teams
lose identical parts much quicker than necessary and thus also
than expected. That is, many conceptually identical requirements
are implemented in different, often inconsistent ways, which
practically prevents merging them later to share and save
maintenance effort in the future. In our ECS case, the portion of
functional commonality among two products is about 60-75%;
their implementations, however, share as little as around 30% of
code. From our point of view, the following requests in the engine
control domain are responsible for the low implementation level
commonality: continuous demand for new features, integration of
diverse configurations of varying hardware, software and
mechanical parts, and uncoordinated concurrent development of
similar features by different teams.

We will extend our work by addressing organizational-
aspects to better support the practical execution of migration
strategies based on identified technical merge strategies. In any
case, before “blindly” applying product line engineering in real
teams and projects, organizations must carefully investigate the
expected technical, economical, and organizational effects.

Acknowledgement
It is our pleasure to thank the Hitachi Research Laboratory

and Engine Management Systems business unit for fruitful

71

discussions on product line engineering. Thanks to Sonnhild
Namingha of Fraunhofer IESE for editing the final version of this
paper. Last, but not least, the insightful comments from the
anonymous reviewers helped us to improve the paper.

10. REFERENCES
[1] M. Balazinska et al. Measuring clone based reengineering

opportunities. Proc. of Sixth Intl. Soft. Metrics Symposium,
292 – 303, 1999.

[2] J.Bayer et.al. PuLSE: A Methodology to Develop Software
Product Lines. Proc. of the Fifth ACM SIGSOFT Symposium
on Software Reusability (SSR'99), 122–131, Los Angeles,
CA, May 1999.

[3] I.D. Baxter et al. Clone detection using abstract syntax trees.
Proc. of the 2nd Working Conf. on Reverse Eng (WCRE).
IEEE Computer Society Press, July 1995.

[4] G. Böckle, P. Clements, J.D. McGregor, D. Muthig, and K.
Schmid. Calculating ROI for Software Product Lines. IEEE
Software, 21(3), 23-31, June 2004.

[5] A. Childs, J. Greenwald, G. Jung, M. Hoosier and J. Hatcliff.
CALM and Cadena: Metamodeling for Component-Based
Product-Line Development. IEEE Computer, 39(2), 42-50,
Feb 2006.

[6] P. C. Clements, J. D. McGregor, S. G. Cohen. The
Structured Intuitive Model for Product Line Economics
(SIMPLE). Technical Report CMU/SEI-2005-TR-003, 2005.

[7] P. C. Clements and L. M. Northrop. Salion, Inc. A Software
Product Line Case Study. Technical Report CMU/SEI-2002-
TR-038, 2002.

[8] D. Ganesan, D. Muthig and K. Yoshimura. Predicting
Return-on-Investment for Product Line Generations. In Proc.
of the Int. Conf. Soft. Prod. Lines (SPLC), 2006.

[9] S. Horwitz. Identifying the semantic and textual differences
between two versions of a program. ACM SIGPLAN Notices,
25(6), 234-245, 1990.

[10] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. A Case
Study in Refactoring a Legacy Component for Reuse in a
Product Line, In Proc. of Int. Conf. on Soft. Main. (ICSM),
2005.

[11] C. W. Krueger and D. Churchett. Eliciting Abstractions from
a Software Product Line. In Int. Work. on Product Line
Engineering The Early Steps (PLEES): Planning, Modeling,
and Managing, 2002.

[12] G. Murphy, D. Notkin, and K. Sullivan. Software Reflexion
Models: Bridging the Gap between Source and High-Level
Models. In Proc. of Third ACM SIGSOFT Symp. on Foun. of
Soft. Eng., 18-28, 1995.

[13] Th. Scharnhorst et al. AUTOSAR – Challenges and
Achievements 2005. Proc. of the Int. Conf. Electronics
Systems for Vehicles, 395-408, Baden-Baden, Germany, Oct.
2005.

[14] M. Steger et al. Introducing PLA at Bosch Gasoline Systems:
Experiences and Practices. In Proc. of the Int. Conf. Soft.
Prod. Lines (SPLC), 2004.

[15] S. Thiel et al. A Case Study in Applying a Product Line
Approach for Car Periphery Supervision Systems. SAE
World Congress 2001: In-Vehicle Software, SAE Technical
Paper 2001-01-0025, March 2001.

[16] W. Yang. Identifying Syntactic Differences Between Two
Programs. In Soft. Practice and Exp., 21(7), 739-755, 1991.

[17] K. Yoshimura, J. Bayer, D. Ganesan, D. Muthig. Starting a
Software Product Line by Reengineering a Set of Existing
Product Variants. Proceedings of Society of Automobile
Engineers World Congress (SAE 2006). In In-Vehicle
Software Session, 2006.

[18] K. Yoshimura, D. Ganesan and D. Muthig. Assessing Merge
Potential of Existing Engine Control Systems into a Product
Line. ICSE Workshop on Software Engineering for
Automotive Systems (SEAS). Shanghai, China, May 2006.

72

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

