
Real-Time Interfaces for Composing Real-Time Systems

Lothar Thiele, Ernesto Wandeler, Nikolay Stoimenov
Computer Engineering and Networks Laboratory, ETH Zurich

8092 Zurich, Switzerland

thiele@tik.ee.ethz.ch, wandeler@tik.ee.ethz.ch, stoimenov@tik.ee.ethz.ch

ABSTRACT
Recently, a number of frameworks were proposed to extend
interface theory to the domains of single-processor and dis-
tributed real-time systems. This paper unifies some of these
approaches and proves properties like refinement and inde-
pendent implementability. We also explicitly state the re-
quirements to a framework for these properties to be ful-
filled. Further, a new notion of adaptive interfaces is intro-
duced that supports the design by providing mechanisms for
propagating system constraints, such as (end-to-end) delays,
available computing and communication resources, buffer
spaces, and energy. Guarantees and assumptions on inter-
faces are not any longer static but adapt according to the
system environment. This can be used to answer synthesis
questions at design time or to adapt system parameters to
changing environment requirements at run-time. The appli-
cability of the presented framework is proven by adapting it
to a number of different real-time analysis models.

Categories and Subject Descriptors: C.3 [Computer
Systems Organization]: Special-Purpose and Application-
Based Systems — real-time and embedded systems

General Terms: Design, Performance, Theory

Keywords: Performance Analysis, Real-time Interfaces,
Adaptive Interfaces, Interface-based Design

1. INTRODUCTION
One of the major challenges in the design process of com-

plex real-time embedded systems remains to analyze essen-
tial characteristics of a system architecture at an early de-
sign stage, to support the choice of important design de-
cisions before much time is invested in detailed implemen-
tations. Essential characteristics are thereby for example
whether maximum delay and throughput constraints are
met, what the on-chip memory requirements are, or how
different architectural elements must be dimensioned.

The analytical framework for system level performance
analysis that was proposed in [12] uses a number of well-
known abstractions to capture the timing behavior of event

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-542-8/06/0010 ...$5.00.

streams and provides additional interfaces between them.
Traditional schedulability analysis results are then used to
analyze a component-based real-time system design. The
framework presented in [19] on the other hand, uses the
notion of traditional software component standards such as
CORBA and proposes extensions for the support of real-
time services, while the approach proposed in [13], com-
poses real-time components by making use of hierarchical
scheduling. Finally, the approach to modular performance
analysis proposed in [3] relies on Network Calculus [10] and
its extension to the domain of real-time embedded systems,
Real-Time Calculus [15]. It is based on a general event and
resource model, allows to analyze complex systems with hi-
erarchical scheduling and arbitration, and can take compu-
tation as well as communication resources into account.

Common to all of these performance analysis methods is
that they are applied to analyze a component-based real-
time system design a posteriori. That is, while a real-time
system gets designed and dimensioned in a first step, it is
only after completion of this first step that performance
analysis is applied to the system design in a second step.
The analysis result will then give an answer to the binary
question whether the system design that was developed in
the first step will meet all real-time requirements, or not.
A designer must then iterate on these two steps until an
appropriate system design is found.

Unlike this two-step approach is the idea of interface-
based design [6, 7] that proposes a holistic one-step approach
to design and analysis of systems. In interface-based design
components are described by component interfaces, and in
contrast to an abstract component that models what a com-
ponent does, a component interface models how a compo-
nent can be used. Through input assumptions, a compo-
nent interface models the expectations that a component has
about the other components in the system and the environ-
ment, and through output guarantees, a component interface
tells the other components in the system and the environ-
ment what they can expect from this component. The major
goal of a good component interface is then to provide enough
information to decide whether two or more components can
work together properly, where in the case of component in-
terfaces for real-time system performance analysis the term
’properly’ refers to questions like: Does the composed sys-
tem satisfy all requested real-time properties such as delay
and throughput constraints?

Additionally, an interface-based real-time system design
approach also benefits from the properties of incremental
design and independent implementability that are elemen-

34

tary features of interface-based design. The support of in-
cremental design ensures that component interfaces can be
composed one-by-one into subsystems in any order. And if
any of the subsystems cannot be composed successfully, this
already forecloses that the complete system also can not be
composed successfully, and therefore can not work properly.
Refinement on the other hand is very similar to subtyping
of classes in OO programming, and a component interface
can be refined by another component interface that accepts
all inputs of the original interface and that produces only
a subset of the original outputs. Fulfilling these constraints
ensures that components with compatible interfaces can be
refined independently and still remain compatible, thus sup-
porting independent implementability.

Besides these properties, some recently proposed inter-
faces [17, 18] also support dynamic adaptability. These inter-
faces not only expose enough information to resolve the com-
posability with other component interfaces, but also they
change their assumptions and guarantees following princi-
ples of constraints propagation.

Compared to most other interface theory research that
focuses on stateful interfaces [5, 8, 2], the work presented in
this paper is based on stateless assume / guarantee (A/G)
interfaces. While other recent approaches in the area of real-
time systems also rely on stateless A/G interfaces [9], the
theory presented in this paper not only generalizes the work
presented in [9], but it is also able to empower a large class
of real-time systems analysis methods with the principles of
interface-based design. The presented theory is thereby an
analysis, extension and generalization of the basic real-time
interfaces that were first presented in [17].

Contributions of this work:

• The paper presents the framework of real-time inter-
faces that unifies a large set of modular and interface-
based approaches to real-time system design known so
far, see Section 5.

• Important aspects like independent implementability,
refinement and incremental design are discussed and
corresponding conditions are derived, see Sections 2
and 3.

• The new notion of adaptive interfaces supports the
design by providing mechanisms to propagate con-
straints, see Section 3.

• The use of real-time interfaces is discussed using a set
of different examples, analysis methods and abstrac-
tions, see Section 5.

In the following description of real-time interfaces, we will
make a distinction between abstract components and their
adaptive interfaces. Both terms are widely used and there
are many interpretations available. Before specifying for-
mally the meaning of both terms in the context of real-time
interfaces, let us introduce them informally.

Abstract components describe building blocks for a system-
wide analysis. They can represent various composable en-
tities, such as tasks, resources, and scheduling disciplines.
Instances of inputs and outputs abstract relevant proper-
ties of all first class citizens of the analysis method, such
as resource capabilities and event streams. In summary,
an abstract component provides a mathematical model of a
component.

An interface on the other hand should expose enough in-
formation about a component as to make it possible to pre-
dict if two or more components can work properly together

by looking only at their interfaces [7]. Adaptive interfaces as
used in the context of real-time systems [17, 18] not only al-
low for such an analysis of a given real-time system, but also
support the design by providing mechanisms to propagate
constraints, for example (end-to-end) delays, computing and
communication resources, buffer spaces, and energy. Guar-
antees and assumptions are not any longer static but adapt
according to the changing system constraints.

The fact that many well known analysis methods can be
represented makes the described framework widely applica-
ble. Therefore, the examples used in the paper should be
understood only as illustrations of the main principles.

2. ABSTRACT COMPONENTS
As has been described above, abstract components in the

context of real-time interfaces represent building blocks of
an analysis method. At first, single abstract components
will be described.

2.1 Single Abstract Component

Definition 2.1. An abstract component (X, Y, T, Ψ) has
input variables X and output variables Y , respectively, a
function T and a predicate Ψ over the input variables X.
An abstract component can work properly iff Ψ holds for
some valuation of input variables.

The transfer function T (X)1 represents the transforma-
tion of input values X to output values Y in the analysis,
i.e. Y = T (X). The predicate Ψ(X) restricts the scope in
which the underlying component can be used. It formalizes
the notion that a component can work properly.

Example 2.2. The running example is not directly re-
lated to real-time analysis and serves to explain basic con-
cepts only. We suppose that packet streams share a com-
munication unit. The analysis simply adds the data rates
of the streams and requires that the accumulated rates do
not exceed the available bandwidth. Fig. 1 represents a cor-

G

x2

x1

y1

y2ψG

XG = (x1, x2)
YG = (y1, y2)
(y1, y2) = TG(x1, x2) = (x1, x2-x1)
ψG(x1, x2) = (x2 ≥ x1)

Figure 1: A simple abstract component G represent-
ing the analysis of a shared bus.

responding abstract component G where x2 represents the
available bandwidth and x1 the bandwidth used by a single
packet stream. Note that the outgoing packet stream y1 may
trigger a computation demand on a computing unit that is
attached to the communication unit. y2 denotes the remain-
ing bandwidth available to other streams. ΨG notes that the
component works only if the available bandwidth is larger
than the requested one. In this example, the input and out-
put variables are simple numbers only. In general, they could

1Unless there are ambiguities, we will not distinguish be-
tween a set of variables and their valuation, e.g. depending
on the context, X can represent a set of input variables or
their values.

35

however be of any type. In particular, for real-time analysis,
we will often use functions over independent variables (ar-
rival and service curves, demand bound functions). More-
over, the predicate may also be used to describe other kinds
of constraints such as memory, buffer sizes, energy, and de-
lays.

2.2 Network of Abstract Components
Outputs of abstract components can be connected to in-

puts which leads to a network of abstract components.2 The
inputs (outputs) of such a network are those inputs (out-
puts) of its abstract components that are not connected to
some output (input).

Definition 2.3. A network of abstract components F

consists of connected abstract components F ∈ F that form
a connection graph. If an output is connected to an input,
then the variables are identical; un-connected variables are
assumed to be different. Connections are point-to-point, i.e.
an output is connected to at most one input and vica versa.3

The following quantities are defined:

• Inputs of F: XF = (
S

F∈F XF)\(S
F∈F YF)

• Outputs of F: YF = (
S

F∈F YF)\(S
F∈F XF)

• Predicate of F: ΨF =
V

F∈F ΨF

• The transfer function TF of F is determined by concate-
nating TF , F ∈ F according to the connection graph,
i.e. YF = TF(XF) ⇒ V

F∈F(YF = TF (XF)) is satisfi-
able for all valuations of XF.

A network of abstract components can work properly iff ΨF

is satisfiable for some input XF.

In this section, we will only look at networks of abstract
components whose connection graph does not contain di-
rected cycles. Extensions are described in Section 4. More-
over, it should be noted that a network of abstract compo-
nents as defined in Section 2.3 is in the form of an abstract
component again, i.e. it is defined by sets of input and out-
put variables, a transfer function and a predicate over the
input variables.

Definition 2.4. A sub-network G of a network F is de-
noted as G ⊆ F and consists of abstract components in
G ⊆ F that form a subgraph of the connection graph, i.e.
deleting abstract components F\G and incident connections.
Connecting two networks G and H to form a network F is de-
noted as G ‖ H = F. We call G and H compatible (G ∼ H)
if the network G ‖ H can work properly.

Example 2.5. Fig. 2 represents a simple network of two
abstract components of the form defined in Example 2.2.
Here, two packet streams with bandwidth x1 and x3 share
a common bus with bandwidth x2. x4 and y2 ought to
be just one single variable (to match the previous defini-
tions), but the original names from G and H are used
to simplify the presentation. We have XF = (x1, x2, x3),
YF = (y1, y3, y4), ΨF(x1, x2, x3) = (x2 ≥ x1)∧(x2−x1 ≥ x3)
and (y1, y3, y4) = TF(x1, x2, x3) = (x1, x3, x2 − x1 − x3). Of
course, ΨF is satisfiable for some input XF and therefore,
the abstract components can work properly.

2For the sake of simplicity, the above component model does
not define types that would restrict possible compositions.
It will be straightforward to extend it.
3This is without any restriction in generality. If an output
needs to be connected to several inputs, then an additional
one-to-many component will do.

G
x2,≤

x1,≥

y1 ,≥

y2
ψG

H

y2 ,≤

y3 ,≥

ψH
x4 ,≤

y4 ,≤

x3 ,≥

G H

Figure 2: A network of components F consisting of
two abstract components G and H. Associated par-
tial orders and the connection graph are also shown.

2.3 Incremental Design

Theorem 2.6. Given a network F. If F can work properly
then any sub-network G ⊆ F can work properly.

Proof. If F can work properly, then ΨF =
V

F∈F ΨF is
satisfied for some input valuation XF, see Def. 2.3. Following
the definition of the transfer function TF, we can determine
for such an input the values of all internal variables by con-
catenation of functions TF , F ∈ F. For any subnetwork
G ⊆ F, we can set the input variables to the same values
as in F. As

V
F∈F ΨF was satisfied,

V
G∈G⊆F ΨG is satisfied

too and G can work properly.

Following [7], the above theorem ensures the property of
incremental design, i.e. if a network of abstract components
can work properly, then it can be composed in any order
from sub-networks and these sub-networks can work prop-
erly also. In other words, if a subnetwork can not work
properly, then the whole network can not. Obviously, the
reverse direction can not be expected: If two networks can
work properly, their composition may not.

2.4 Refinement
In a design process, there is often the demand for indepen-

dent implementability. One can replace the implementation
of a sub-network by another one as long as the new abstract
component representing this sub-network refines the origi-
nal one. If the original network could work properly, then
this design step should not change this property. This way,
the implementation of subsystems can be performed inde-
pendently.

Definition 2.7. To each input and output variable of an
abstract component, we associate an individual partial order
denoted as ≥, i.e. a binary relation which is reflexive, an-
tisymmetric, and transitive.4 An abstract component F is
called monotone, if for all XF , X̃F

XF ≥ X̃F ⇒ TF (XF) ≥ TF (X̃F)

XF ≥ X̃F ∧ ΨF (XF) ⇒ ΨF (X̃F)

If monotone abstract components are connected, then the
partial orders assigned to connected input/output pairs must
be identical.

It can simply be seen that the composition of monotone
abstract components is monotone again as we just compose
monotone functions and conjunct monotone predicates. For

4If we write X ≥ X̃ for sets of variables X and X̃, then the
comparison is done using the binary relation that is specific
for each variable.

36

the rest of the paper, we will assume that all abstract compo-
nents are monotone. Based on the notion of monotonicity,
we can now define the refinement of an abstract component.

Definition 2.8. Given a monotone abstract component
G that can work properly. Then G′ refines G (G 	 G′) if

• The sets of input and output variables of G and G′ are
equal.5

• (ΨG(X) ⇒ ΨG′(X)) ∧ (TG(X) ≥ TG′(X)) for all val-
uations of input variables X.

Note that the abstract component in Def. 2.8 may also
describe a whole network, see Def. 2.3. Therefore, the notion
of refinement holds for both single abstract components and
networks of abstract components.

Theorem 2.9. Given a network of monotone abstract
components F that can work properly and an arbitrary par-
tition F = G ‖ H. If we refine G to G

′ (G 	 G
′) then

F
′ = G

′ ‖ H can work properly, i.e. G
′ ∼ H.

Proof. As F can work properly,
V

F∈F ΨF can be sat-
isfied for some valuation of input variables XF. The vari-
ables in the network with G replaced by G′ according to
Def. 2.8 are denoted as X̃G′ , ỸG′ , X̃H , ỸH . In the origi-
nal network they are denoted as XG, YG, XH , YH . As all
transfer functions are monotone and because of Def. 2.8, we
have X̃G′ ≤ XG, ỸG′ ≤ YG, X̃H ≤ XH , ỸH ≤ YH . Because
(ΨG(XG) ⇒ ΨG′(XG)), X̃G′ ≤ XG and the monotonicity of
Ψ (see Def. 2.7), the predicates of all abstract components
in the new system are satisfied.

The concepts of refinement and independent imple-
mentability will be shown again in the running example.

Example 2.10. Given the small network F in Fig. 2, we
now add partial orders to the different variables. As all vari-
ables are simple real numbers and not complex data types
such as tuples (e.g. representations of event streams in the
form of ’period and jitter’ or ’burst size and average rate’)
or curves (e.g. arrival and service curves), we only use the
conventional ’greater or equal’ ≥ for variables x1, x3, y1, y3

and ’less or equal’ ≤ for variables x2, x4, y2, y4. The par-
tial orders of connected inputs and outputs obviously match.
The transfer function TF and predicate ΨF are monotone,
see Def. 2.7. For example, as ΨF(x1, x2, x3) = (x2 ≥
x1) ∧ (x2 − x1 ≥ x3) we have x1 ≥ x̃1 ∧ x2 ≤ x̃2 ∧ x3 ≥
x̃3∧[(x2 ≥ x1)∧(x2−x1 ≥ x3)] ⇒ (x̃2 ≥ x̃1)∧(x̃2−x̃1 ≥ x̃3),
see also Def. 2.7.

A refined component G′, i.e. G 	 G′, could be character-
ized by (y1, y2) = TG′(x1, x2) = (x1 − 1, x2 − x1 + 1) and
ΨG′ = (x2 + 1 ≥ x1). Looking at TG′ , one can see that
the component delivers a packet stream with a smaller band-
width (y1 < x1) and provides more communication band-
width to other packet streams via y2 (y2 > x2 − x1 + 1).
If we would replace G in Fig. 2 by G′, we would obtain a
new network called F

′ according to Theorem 2.9. We can
now compute the new predicate ΨF′(x1, x2, x3) = (x2 + 1 ≥
x1) ∧ (x2 − x1 + 1 ≥ x3). It can easily be verified, that The-
orem 2.9 holds. In other words, if predicate ΨF holds for a
certain valuation of inputs then also ΨF′ holds and therefore,
F
′ can work properly.

5In order to reduce the notational overhead, we restrict the
refinement of an abstract component to changes of its pred-
icate and transfer function only. In a similar way to [7], the
number of inputs and outputs could also be changed.

3. ADAPTIVE REAL-TIME INTERFACES
An adaptive interface of an abstract component not only

exposes enough information to predict whether it can be
composed and work properly. In addition, (a) it is adaptive
as it changes assumptions and guarantees depending on the
system environment and constraints and (b) it distributes
constraints globally through the whole network. At first, we
will describe the main concept informally.

The following Fig. 3 shows an abstract component and
the corresponding adaptive interface representation. The

x2
G

x2
A

x1
G x1

A

y1
G y1

A

y2
G

y2
Ax2

x1

y1

y2ψF

Figure 3: A simple abstract component F and its
adaptive interface representation.

abstract component variables represent some abstraction of
the actual component behavior, where XF = (x1, x2), YF =
(y1, y2) represent abstractions of its inputs and outputs, re-
spectively. The component works properly if ΨF (XF) is
satisfied and it can work properly, if ΨF (XF) is satisfiable.

If we make the transition from an abstract component to
its real-time adaptive interface (see Fig. 3), then we still
have input and output variables, now called guaranteed val-
ues XG

F ≥ XF , Y G
F ≥ YF . In other words, the network of

abstract components works properly whenever the variables
are smaller than the guaranteed values in the correspond-
ing network of interfaces. The predicate ΨF has been con-
verted into the new assume variables XA

F : Whenever we have
XA

F ≥ XG
F , then ΨF is satisfied6. The adaptive interface

makes the predicate ΨF explicit in form of additional in-
put assume variables. They appear now at outputs of other
adaptive interfaces as output assume variables. Therefore,
the following interpretation can be given:

• Input assume variables: If we have XA
F ≥ XG

F , then (a)
the corresponding component works properly and (b)
the requests of all connected components (indicated by
Y A

F) are satisfied, i.e. Y A
F ≥ Y G

F .

• Output assume variables: The output assume variables
Y A

F describe the assumption of the environment (e.g.
other components) towards F , i.e. they request that
Y A

F ≥ Y G
F .

Therefore, depending on system inputs, constraints and
requirements, a particular combination of assumptions and
guarantees is determined for each component. This way,
it is possible to represent adaptive behavior of a compo-
nent, e.g. if it changes its behavior depending on local re-
quirements (captured by the input guarantees and output
assumes). Moreover, one can decide whether the whole sys-
tem is able to meet constraints and under what assumptions
on its inputs, thereby solving important synthesis questions.
Examples are given in Example 3.14 and Section 5.

6One may extend the framework and consider predicates in
the abstract interface also, see Section 4.

37

3.1 Single Adaptive Interface

Definition 3.1. An adaptive interface (XA, XG, Y A,
Y G, T f , T b) corresponds to a monotone abstract component
(X, Y, T, Ψ)with at least one input and is characterized as
follows:

• A set of input guarantee and input assume variables
XG and XA, one for each variable in the inputs X of
the abstract component.

• A set of output guarantee and output assume variables
Y G and Y A, one for each variable in the outputs Y of
the abstract component.

• A monotone forward transfer function with Y G =
T f (XG).

• A backward transfer function with XA = T b(XG, Y A).

In addition, we require that

XA ≥ XG ≥ X ⇒ Y A ≥ Y G ≥ Y ∧ Ψ(X)

If the input values of the abstract component as well as the
corresponding assumptions and guarantees match (using the
partial order assigned to each single input), then the same
holds for the output values and the predicate of the abstract
component is satisfied. Later on, we will determine T f and
T b such that this requirement is satisfied. But at first, the
connection of two interfaces G and H will be defined.

Example 3.2. Fig. 4 shows on the left hand side an
adaptive interface that corresponds to the abstract com-
ponent shown in Fig. 1. We have XG

G = (xG
1 , xG

2),

x2
G

y2x2
A

y4
G

y4
A

x1
G x1

A x3
G x3

A

y1
G y1

A y3
G y3

A

y2
G

y2
A

x4
G

x4
A

x2
G

x2
A

x1
G x1

A

y1
G y1

A

y2
G

y2
A

Figure 4: Adaptive interfaces that corresponds to
the abstract component and network of abstract
components shown in Fig. 1 and Fig. 2, respectively.

XA
G = (xA

1 , xA
2), Y G

G = (yG
1 , yG

2) and Y A
G = (yA

1 , yA
2).

Let us use the forward and backward transfer functions
(yG

1 , yG
2) = T f

G (xG
1 , xG

2) = (xG
1 , xG

2 − xG
1) and (xA

1 , xA
2) =

T b
G(xG

1 , xG
2 , yA

1 , yA
2) = (min{xG

2 , yA
1 }, max{xG

1 , yA
2 + xG

1 }).
Then we can easily check that XA

G ≥ XG
G ≥ XG ⇒ Y A

G ≥
Y G
G ≥ YG ∧ ΨG(XG), i.e. if the assumptions and guarantees

of the inputs match (xA
1 ≥ xG

1 ,xA
2 ≤ xG

2), then those of the
outputs do the same (yA

1 ≥ yG
1 ,yA

2 ≤ yG
2) and the predicate of

the abstract component is satisfied (ΨG(XG
G) = (xG

2 ≥ xG
1)).

3.2 Connecting Adaptive Interfaces

Definition 3.3. The connection of two interfaces G ‖ H
follows the connection of the corresponding monotone ab-
stract components, i.e. G ‖ H. The forward and backward

transfer functions T f
F and T b

F are determined by composing

T f
G with T f

H, and T b
G with T b

H, respectively, following the con-
nections of the interface inputs and outputs, see Def. 2.3.

The above definition can easily be extended to the case of
a network of adaptive interfaces as in the case of abstract
components, see Def. 2.3. The construction of the forward
and backward transfer functions T f and T b according to
Def. 3.3 by a simple concatenation of functions requires that
there are no dependency cycles.

Theorem 3.4. Given a network of monotone abstract
components F whose connection graph is free of directed cy-
cles and a partitioning F = G ‖ H. Interfaces G and H
correspond to the subnetworks G and H, respectively. Then
T f
F and T b

F can be determined without dependency cycles,
i.e. by simple concatenation.

Proof. The theorem can be derived from properties of
the connection graph.

From Def. 3.3, we know how to combine a set of adaptive
interfaces to a new adaptive interface. In addition, Def. 3.1
states the condition, that an adaptive interface actually rep-
resents an abstract component, i.e. that it can work prop-
erly. The above concepts are useful only, if we are able to
show that the combined adaptive interface contains enough
information to decide whether all abstract components it
represents can work properly together.

Theorem 3.5. The composition of two interfaces F =
G ‖ H is called compatible (G ∼ H), iff XA

F ≥ XG
F is sat-

isfiable. Then we have (G ∼ H) ⇒ (G ∼ H), i.e. the
corresponding abstract components also can work properly
together. In particular, we have

XA
F ≥ XG

F ≥ XF ⇒ Y A
F ≥ Y G

F ≥ YF ∧ ΨF(XF)

Proof. Let us first consider two connected abstract com-
ponents M and N , i.e. K = M ‖ N . As the connection
graph does not contain any directed cycles, we can sup-
pose that only outputs of M are connected to inputs of N .
The corresponding adaptive interfaces are connected corre-
spondingly. For M we have XA

M ≥ XG
M ≥ XM ⇒ Y A

M ≥
Y G
M ≥ YM ∧ ΨM (XM). As some of the outputs of M are

connected to some inputs of N and the other inputs of N
are inputs of K, we also have XA

K ≥ XG
K ≥ XK ⇒ XA

N ≥
XG

N ≥ XN ∧ΨM (XM). If we apply similar arguments to N ,
we obtain XA

K ≥ XG
K ≥ XK ⇒ Y A

K ≥ Y G
K ≥ YK ∧ ΨK(XK).

The same argument can be now recursively applied to the
case of interfaces that represent sub-networks of abstract
components.

Example 3.6. We are continuing Example 3.2 by con-
necting the adaptive interfaces G, H of the abstract com-
ponents G, H according to the network F shown in Fig. 2.
The resulting interface F and its composition F = G ‖ H
are shown in Fig. 4 on the right hand side. As stated in
Theorem 3.4, the resulting forward and backward transfer
functions can be computed by simple composition. We ob-
tain (yG

1 , yG
3 , yG

4) = T f (XG
F) = (xG

1 , xG
3 , xG

2 − xG
1 − xG

3) and
(xA

1 , xA
2 , xA

3) = T b(XG
F , Y A

F) = (min{xG
2 , yA

1 }, max{xG
1 , xG

1 +
xG

3 , xG
1 +xG

3 +yA
4 }, min{xG

2 −xG
1 , yA

3 }). One can easily check
that XA

F ≥ XG
F is satisfiable and the abstract components can

work together properly.

3.3 Transfer Functions
So far, we did not determine the forward and backward

functions T f and T b such that the relation XA ≥ XG ≥
X ⇒ Y A ≥ Y G ≥ Y ∧ Ψ(X) in Def. 3.1 holds.

38

Theorem 3.7. If for all X, Y we have T f (X) ≥ T (X)
and X ≤ T b(X, Y) ⇒ Y ≥ T (X) ∧ Ψ(X) then XA ≥ XG ≥
X ⇒ Y A ≥ Y G ≥ Y ∧ Ψ(X).

Proof. We have XA ≥ XG ≥ X ⇒ T b(XG, Y A) ≥ XG∧
T f (XG) ≥ T f (X) ⇒ Y A ≥ T (XG) ∧ Y G ≥ Y ∧ Ψ(XG) ⇒
Y A ≥ Y G ≥ Y ∧ Ψ(X). Here we make use of the mono-
tonicity of T and Ψ.

The above theorem leads to a simple constructive method
to determine T f , namely T f = T . In case of T b, we will de-
termine one possibility next. The input and output variables
of the abstract component are denoted as X = (x1, ..., xN).
Then the construction of a large but feasible T b(X, Y) in-
volves three steps:

1. Determine a set of N functions eΨi(X) such thateΨi(X) = max{z |Ψ(x1, ..., xi, z, xi+1, ..., xN)} for all
X.

2. Determine a set of N functions eTi(X, Y) such thateTi(X, Y) = max{z | Y ≥ T f (x1, ..., xi, z, xi+1, ..., xN)}
for all X, Y .

3. Finally, we have for all i: T b
i (X, Y) = inf{eΨi(X), eTi(X,

Y)} for all X, Y .

In step 1 and 2, max denotes a maximal element of a set
where the partial order relation of xi is used. Let us choose
some X, Y such that X ≤ T b(X, Y) holds, then Step 3

yields xi ≤ eΨi(X) and xi ≤ eTi(X, Y). Because of 1 we find

that Ψ(X) holds because Ψ(x1, ..., xi−1, Ψ̃i(X), xi+1, ..., xN)

is satisfied for all 1 ≤ i ≤ N , xi ≤ eΨi(X) and Ψ is monotone.
Because of 2 we find that Y ≥ T (X) for all i holds because

Y ≥ T (x1, ..., xi−1, eTi(X, Y), xi+1, ..., xN), xi ≤ eTi(X, Y)
and T is monotone.

Example 3.8. The forward and backward transfer func-
tions for G as used in Example 3.2 have been determined
by the above method. Obviously, we had T f

G = TG, see also

Fig. 1. Let us now construct the xA
2 = T b

2 (XG
G , Y A

G). For

step 2 we obtain T̃21 = min{z | yA
1 ≥ xG

1 } = −∞ and

T̃22 = min{z | yA
2 ≤ z − xG

1 } = yA
2 + xG

1 . For step 1

we obtain Ψ̃2 = min{z | z ≥ xG
1 } = xG

1 . Note that we
have to consider the correct partial orders everywhere. Fi-
nally, we obtain xA

2 = T b
2 (XG

G , Y A
G) = sup{Ψ̃2, T̃21, T̃22} =

max{xG
1 , yA

2 + xG
1 }. This is the same expression as used in

Example 3.2.

3.4 Refinement
In a similar way to the refinement of abstract components,

we can define the refinement of adaptive interfaces. Let us
suppose that a component is implemented together with an
implementation of its adaptive interface. This way, at a sys-
tem house (that combines the independently implemented
components) one can connect the interfaces during design
time in order to check whether the components work prop-
erly for the specific environment and set of constraints. One
may even adapt the assumptions and guarantees at run-time
in order to perform a system-wide admittance test in case
the environment changes (adaptive behavior). In this case,
the interfaces are actually implemented on the run-time sys-
tem. In both cases it would be useful if the implementation
of such a combined component/interface can be performed
independently, i.e. involving also a possible change in the
interface.

The following arguments follow closely those in Section
2.4.

Definition 3.9. Given an adaptive interface G. Then G′

refines G (G 	 G′) if

• The sets of input and output variables of G and G′ are
equal.

• T f
G (X) is monotone in X and T b

G(X, Y) is monotone
in Y , antitone in X.

• T f
G (X) ≥ T f

G′(X) and T b
G(X, Y) ≤ T b

G′(X, Y) for all
valuations of variables X, Y .

From Def. 3.9 it follows that a refined adaptive interface
has a weaker forward and a stronger backward transfer func-
tion. Now we can state the main refinement theorem.

Theorem 3.10. Given adaptive interfaces and a compat-
ible connection, i.e. F = G ‖ H and G ∼ H. If we refine G
to G′ (G 	 G′) then F ′ = G′ ‖ H is a compatible connection,
i.e. G′ ∼ H.

Proof. The proof follows the principles used in that of
Theorem 3.5.

3.5 Incremental Design
We would ideally expect, that a similar (positive) result,

as for networks of abstract components, holds in the case
of adaptive interfaces. But the property of incremental de-
sign does not hold for adaptive interfaces as defined so far.
Composition of adaptive interfaces is not associative and
therefore, the success of a design (in terms of compatibility
of interfaces) depends on the ordering of composition.

On the other hand, if we would have a one-to-one cor-
respondence between the compatibility of adaptive compo-
nents and interfaces, then the property stated in Theorem
2.6 would carry over to adaptive interfaces.

Definition 3.11. A strict adaptive interface is an adap-
tive interface according to Def. 3.1 that satisfies in addition

Y A ≥ Y G ∧ Ψ(XG) ⇒ XA ≥ XG

Now, we can state the necessary strong relation between
abstract components and strict adaptive interfaces.

Theorem 3.12. Given is a composition of two strict in-
terfaces F = G ‖ H where the corresponding network of
components F does not have any output7. Then we have
(G ∼ H) ⇔ (G ∼ H).

Proof. The proof follows the arguments given in the
proof of Theorem 3.5.

As a result of Theorem 3.12, there is a one-to-one corre-
spondence between the compatibility relations between in-
terfaces and the corresponding underlying network of ab-
stract components. Therefore, if adaptive interfaces are
strict, then they allow for incremental design as defined in
[7].

It remains to show, how we can construct the transfer
functions of a strict adaptive interface, and when they exist.
7This technical condition ensures that we do not impose
additional assume/guarantee constraints from the environ-
ment that are not present in the corresponding network of
abstract components. This is no restriction of generality as
one could close open outputs with additional abstract com-
ponents.

39

Theorem 3.13. We call T f and T b strict if they satisfy
the conditions of Theorem 3.7 and in addition Ψ(X) ⇒
T b(X, T (X)) ≥ X for all X. In this case we have XA ≥
XG ⇔ Y A ≥ Y G ∧ Ψ(XG).

Proof. The forward direction has already been proven in
Theorem 3.7. Here we show: Y A ≥ Y G ∧ Ψ(XG) ⇒ XA ≥
T b(XG, Y G)∧Ψ(XG) ⇒ XA ≥ T b(XG, T (XG))∧Ψ(XG) ⇒
XA ≥ T b(XG, T (XG)) ≥ XG.

Finally, we will give a constructive method to determine
strict forward and backward transfer functions from T and
Ψ. It follows directly the approach taken in Section 3.3 but
replaces ’a maximal’ element by ’the greatest’ element:

T f (X) = T (X)eΨi(X) = grt{z | Ψ(x1, ..., xi−1, z, xi+1, ..., xN)}eTi(X, Y) = grt{z | Y ≥ T (x1, ..., xi−1, z, xi+1, ..., xN)}
T b

i (X, Y) = inf{eΨi(X), eTi(X, Y)}
where grt yields the greatest element of a set (if it exists)
and inf denotes the infimum of a set. Note that the sets are
partially ordered using the partial order associated to each
input and output, see Def. 2.7. For example, inf and grt
in the above equations use the partial order associated with
xi. It also appears, that T b can only be computed if the
greatest elements of the partially ordered sets exist.

One direction of a proof of correctness is given in Sec-
tion 3.3 already. Here, we show the following implications

for some X: T b(X, T (X)) = inf{eΨ(X), eT (X, T (X))}
≥
X ⇒ eT (X, T (X))
≥ X ∨ eΨ(X)
≥ X ⇒ false ∨ Ψ(X).

Example 3.14. As the forward and backward transfer
functions of G have been already determined in the way de-
scribed here, they are strict and therefore, the adaptive in-
terface shown in Fig. 4 and Example 3.2 is strict too. As a
result from Theorem 3.12 we can also conclude that the in-
terface F as shown on the right hand side of Fig. 4 is strict
and we have the compatibility relation (G ∼ H) ⇔ (G ∼ H),
see Theorem 3.12. The corresponding transfer functions are
given in Example 3.6.

Finally, we show how one can use adaptive interfaces for
solving design problems off-line or for adapting to changes in
the environment that are either caused by changed require-
ments (assumptions) or changed properties. Fig. 5 shows the
adaptive interface F again, but now with some (assumed)
valuations of outputs. Now, we can summarize some uses

x2
G

x1
G+ max{ 0, x3

G}

y4
G

x1
G x2

G x3
G x2

G-x1
G

y1
G y3

G ∞

0

∞

Figure 5: Adaptive interface as in Fig. 4, but with
valuations for output assumptions and computed
values for input assumptions.

of this adaptive interfaces at design time and at run-time (if
implemented on the target system).

Design Time: Let us suppose, that there are two packet
streams with bandwidth requirements xG

1 and xG
3 to be pro-

cessed, then we can directly compute the requirement towards
the bus bandwidth xA

2 . As in the above example, xA
2 does not

depend on xG
2 , see Section 4, we can also set the bus band-

width to its minimal feasible value xG
2 = xG

1 + max{0, xG
3 },

given input demands xG
1 and xG

3 of the traffic streams. After
any single change of one of the input guarantees or output
assumptions, we need to recalculate all the other assump-
tions and guarantees.
Run-Time: If the adaptive interface is implemented in the
run-time system, the above described process can be used to
adapt to new requirements and guarantees of the environ-
ment:

1. Change one input guarantee according to a new envi-
ronment, e.g. adapt the available bus bandwidth or the
bandwidth of packet streams while respecting the corre-
sponding assume.

2. Recalculate the resulting assumptions in the whole sys-
tem in order to adapt to the new environment.

This method can be applied, if the underlying network of
abstract components is free of undirected cycles, see Section
4.

Finally, Fig. 6 shows a more complex scenario that shows
the modularity of the framework described in the paper.
Here, we have two independent resources such as a commu-

x2
G

y2x2
A

y4
G

y4
A

x1
G x1

A x3
G x3

A

x6
G

y2x6
A

y8
G

y8
A

y5
G y5

A y7
G y7

A

Figure 6: Adaptive interface for a more complex
system with two resources.

nication unit with bandwidth x2 and a computing resource
with service x6. Both packet streams pass the communica-
tion unit and the computing device. Note that the interfaces
could be combined in any order (incremental design prop-
erty) because of the strict forward and backward transfer
functions. As indicated in Fig. 6, we could construct in-
terfaces K and L that abstract each packet stream (instead
of abstracting the resources as in Fig. 5).

4. EXTENSIONS
The above framework for interface-based analysis, design

and adaptation of real-time systems can be extended in sev-
eral ways. Because of lack of space, the following discussion
is done in an informal manner and only the major ideas and
concepts are presented.

Multiple Assume-Guarantee Pairs. In the adaptive inter-
faces defined so far, there has been exactly one assume-
guarantee pair for each input and output of the correspond-
ing abstract component. One could extend the framework
by allowing several of this pairs. This way, it is possible to

40

consider for example upper and lower constraints for a given
value. This has been extensively used in the interface-based
design of hierarchical scheduling, see [18].

Additional Predicates in Adaptive Interfaces. Clearly, not
all constraints imposed by an environment or by abstract
components can be simply phrased into the restricted class
of adaptive interfaces we defined. It is possible to add to
each interface additional predicates (like the ones defined
for abstract components).

Cycles in Networks of Abstract Components. We have been
restricting the paper to the case where there are no directed
cycles in the network of components. If we even have no
undirected cycles, then the network of adaptive interfaces
has a very interesting and practically important property:
For any input, the assume value does not change if the cor-
responding guarantee is changed and for any output, the
guarantee value does not change if the corresponding as-
sume is changed. In such a network (no undirected cycles)
of interfaces where forward and backward transfer functions
are calculated according to Section 3.5, we can select an in-
put guarantee xG and change it while respecting xG ≤ xA.
This can be used during design time in order to determine
e.g. the maximally allowed input rates or the minimal pro-
cessor capabilities. And when used on-line, the change of
the environment at a single input can be accepted as long
as xG ≤ xA. After re-calculation of the interface equations,
new assumptions towards the environment are calculated.
The same principle does hold for output assumptions too.

If we consider directed cycles, the computation of the
transfer function of connected components may require fixed
point calculations. The same holds for the forward and back-
ward transfer functions of the corresponding interfaces. The
present framework provides the necessary algebraic back-
ground to formally argue about the existence of these fixed
points. Note that fixed point calculations in the context of
real-time analysis have been in use for some time [12].

5. APPLICATIONS

5.1 A Comprehensive EDF Example
In this subsection, we will describe the application of the

real-time interface framework to a single processor real-time
scheduling scenario using earliest deadline first principles. It
is supposed that the reader is familiar with the basic analysis
methods based on demand and resource bound functions
as described for example in [1] and using bounded delay
models, e.g. [11]. The scenario we are looking at is identical
to that described in [9]:

• Given a single processor characterized by a service
curve β(Δ) (also denoted as supply bound function)
which denotes the minimal computation time avail-
able in any time interval of length Δ. For example, a
processor is characterized by β(Δ) = Δ.

• A set of tasks τi with computation time ei and deadline
di.

• The tasks are activated using event streams Sj that
are described using arrival curves αj(Δ) (also denoted
as resource bound function). Here, αj(Δ) denotes
the maximal number of events in any time interval of
length Δ. For example, a periodic event stream with
period pj has αj(Δ) = � Δ

pj
�.

• An event stream triggers a chain of tasks, i.e each event
in a stream directly triggers the first task. When an
event has been processed by a task, it triggers the next
task in the chain.

As an example, we will first describe the use of abstract
components and adaptive interfaces in this scenario, based
on the modular performance analysis method described in
[3],[17] and [18]. Let us suppose that a task ti is activated by
the events of several event streams, each one characterized
by an arrival curve αk(Δ), k ∈ Ki. Then it is activated by
the accumulated arrival curve αi(Δ) =

P
k∈Ki

αk(Δ) which
is the sum of the arrival curves of all activating streams.
A set of tasks τi, i ∈ I is schedulable by EDF, iff β(Δ) ≥P

i∈I ei · αi(Δ − di) for all Δ > 08. The output stream of a
task τi that contains processed events from the stream with
arrival curve αk(Δ), k ∈ Ki is bounded by the arrival curve
α′

k(Δ) = αk(Δ + (di − ei)) for any k ∈ Ki.
Using these well known facts, we can now build networks

of abstract components that correspond to any particular
scenario. To this end, we define two basic abstract compo-
nents as shown in Fig. 7 on the left hand side.

rG

rA

aA

cG

cA

aG

iG

iA

fA

oG

oA

fG

gA gG

r c

a

i o

f

g

abstract components adaptive interfaces

task
composition

stream
composition

d, e d, e

d, e d, e

Figure 7: Basic abstract components and interfaces
for EDF scheduling.

The top component describes the use of the available ser-
vice r to process a task characterized by deadline d and
computation time e. Therefore, variable r carries a ser-
vice curves β(Δ), a carries the accumulated arrival curves
of the task α(Δ). According to the above analysis, the out-
put c carries β(Δ) − e · α(Δ − d) which now is the transfer
function of the abstract task component. The predicate of
the abstract task component is β(Δ) ≥ e · α(Δ − d). Note
that the above transfer function and predicate are monotone
with respect to the partial order ≤ for r, c where a ≤ b iff
a(Δ) ≤ b(Δ) for all Δ and ≥ for a (defined in a similar way).
Defining the operator � as

(a � d)(Δ) =

j
a(Δ − d) Δ > max(d, 0)
0 0 ≤ Δ ≤ max(d, 0)

we can also write c = r − e · (a � d) and Ψ = (r ≥ e · (a � d)).
The bottom abstract component denotes the processing of

a stream with arrival curve α(Δ) which is associated to input
i. Using the above shorthand notation, we find o = i�(e−d)
(which is the output arrival curve α(Δ+(d−e))) and g = i+
f (which is the accumulation of arrival curves of activating
streams, i.e. from the new input i and from other inputs

8We suppose that α(Δ) = 0 for all Δ ≤ 0. The right hand
side is also denoted as demand bound function.

41

f). Besides these (monotone) transfer functions, there is no
predicate associated to a stream component.

By combining the above two classes of components ac-
cording to a given scenario, we get a network of abstract
components that can be used as described in the previous
section. An example is given in Fig. 8 on the left hand side.

r1

abstract components

c2

i1

i3

o2

o4i4
o3

f3 f4

r1
G

adaptive interfaces

c2
G

i1G o2
G

f3G f4G

r1
A c2

A

i1A o2
A

o4
G

o4
A

i3G

i3A

d1, e1

d1, e1

d1, e1

d1, e1

d1, e1

d1, e1

d2, e2

d2, e2

d2, e2

d2, e2

d2, e2

d2, e2

f4Af3A

g3 g4

Figure 8: Example of a network of abstract compo-
nents and interfaces for EDF scheduling.

The scenario consists of two tasks τ1 and τ2 (there are
two task components). There are 3 event streams, namely
i1, i3 and i4 where i1 at first passes τ1 and then τ2. τ1

is triggered by i1 and i3, and τ2 is triggered by i1 (after
passing τ1) and by i4. Because of the independent imple-
mentability property, see Theorem 2.6, any partitioning in
sub-networks is possible (commutativity and associativity
of composition). For example, F denotes an abstract com-
ponent that describes the resource usage by the two tasks
including the processing of stream i1. The corresponding
transfer function and predicate is obtained by a (trivial)
composition of the individual transfer functions of the used
abstract components G1, G2, H1 and H2.

In order to allow for solving synthesis problems and propa-
gating constraints, we can also construct the adaptive inter-
faces corresponding to the abstract components, see Fig. 7
on the right hand side. According to Theorem 3.13 and
the subsequent method, we can construct strict forward and
backward transfer functions. To this end, we need to define
the ’inverse’ operator to �, i.e.

(a � d)(Δ) =

8<
:

a(Δ − d) Δ > d
a(0+) 0 < Δ ≤ d
0 Δ = 0

Then we find for the adaptive task interface cG = rG − e ·
(aG �d), aA = ((rG−cA)�(−d))/e and rA = cA +e ·(aG �d).
For the adaptive stream interface we find gG = iG + fG,
oG = iG � (e − d), fA = gA − iG and finally, iA =
min{gA − fG, oA � (d − e)}. The above forward and back-
ward transfer functions are strict and therefore, the com-
position of the adaptive interfaces is associative and com-
mutative (independent implementability). Note that the
method described in [9] does not guarantee this property.
Fig. 8 presents the same scenario, but now with a differ-
ent hierarchical component, namely F which abstracts all
activations of task τ1 and its influence on the system behav-
ior. Note that the combined interface can simply be con-
structed by composing the forward and backward transfer
functions. The system environment can be closed by setting

fG
3 = fG

4 = 0, oA
2 = oA

3 = oA
4 = ∞ and cA

2 = 0 for ex-
ample. Because of the adaptivity of the representation, the
suitability of any other environment with other guarantees
and assumptions can simply be checked.

Finally, one should note, that the same example could
also be handled with a different abstraction of resources and
event streams, based on the well known bounded delay model,
see e.g. [11]. In this case, the structure as shown in Figs. 7
and 8 remains the same, only the data types associated to
the variables (i.e. the abstraction used in the analysis) as
well as the partial orders, transfer functions and predicates
change. The bounded delay model is a much coarser ab-
straction and therefore, the bounds obtained are worse. On
the other hand, the analysis and synthesis is computation-
ally much simpler. The transfer functions and predicates
can now be determined simply by combining the results de-
scribed in this paper and [9].

5.2 Hierarchical Scheduling
In [14], Shin et al. propose a compositional scheduling

framework to determine the schedulability of real-time sys-
tems with a set of applications that are scheduled hierar-
chically. In this framework, the resource demand of a sin-
gle task is represented as a demand bound function dbf [1]
w ∈ W , and a scheduling component has as input the set
of demand bound functions of all tasks that are scheduled
by this component. Depending on the associated schedul-
ing strategy, a scheduling component then determines the
total demand to schedule all tasks and expresses this again
as a demand bound function on its output. Scheduling com-
ponents can then be composed hierarchically, and the com-
plete system is schedulable if the demand of the scheduling
component at the top of the hierarchy can be fulfilled by a
dedicated resource. In the context of real-time interfaces,
the scheduling components of this framework can be inter-
preted as abstract components (X, Y, T, Ψ), with a set of
inputs X : x ∈ W and outputs Y : y ∈ W . The trans-
fer function T (X) is applied to compute the outgoing de-
mand bound function, and the predicate Ψ(X) expresses
the constraint that a component must be schedulable by
a dedicated resource. It can be shown that these abstract
components are monotone under the partial order defined
as w ≥ w̃ ⇔ w(t) ≥ w̃(t),∀t ≥ 0. Based on these abstract
components, adaptive real-time interfaces can then be de-
termined for this scheduling framework following the steps
described in this paper.

5.3 Symta/S
In [12], Richter et al. propose a compositional approach to

extend the concepts of classical scheduling theory to hetero-
geneous distributed systems. In this approach, every single
processor or communication link is represented as a compo-
nent that is analyzed locally. To interconnect the various
components, the method relies on a set of standard event
arrival patterns that are described as a tuple consisting of
a period p ∈ P , a jitter j ∈ J and a minimum event inter-
arrival distance d ∈ D. Based on the arrival patterns of
the incoming event streams and on the scheduling policy of
the component, the appropriate analysis technique is chosen
to compute the worst-case response time of every incoming
event stream, and to compute the arrival patterns of the
outgoing event streams that will trigger succeeding compo-
nents. In the context of real-time interfaces, the components

42

of this framework can be interpreted as abstract components
(X, Y, T, Ψ), with a set of inputs X : x = (p, j, d) ∈ P×J×D
and outputs Y : y = (p, j, d) ∈ P × J × D. The transfer
function T (X) is applied to compute the outgoing arrival
patterns of event streams, and the predicate Ψ(X) expresses
the constraints on the maximum allowable response time for
every event stream as well as the schedulability of the total
component. It can be shown that these abstract components
are monotone under the partial order defined as

(p, j, d) ≥ (p̃, j̃, d̃) ⇔

min

j‰
Δ + j

p

ı
,

‰
Δ

d

ıff
≥ min

j‰
Δ + j̃

p̃

ı
,

‰
Δ

d̃

ıff
,∀Δ ≥ 0

Based on these abstract components, adaptive real-time
interfaces can then be determined for this compositional
framework following the steps described in this paper.

5.4 Modular Performance Analysis
In [3], an alternative approach for modular performance

analysis of real-time embedded system is proposed. In this
approach, every task of a system is represented as a compo-
nent that is analyzed locally. The method is based on arrival
curves α(Δ) ∈ A as a generic event stream model [4] and on
service curves β(Δ) ∈ B as a generic resource model. Based
on the task processing semantics, a task component relates
incoming arrival and service curves that model the input
event stream and the available resources to outgoing arrival
and service curves that model the output event stream as
well as the remaining resources, and analysis methods allow
to compute delay bounds and buffer requirements at the task
component. Task components are interconnected via their
arrival curve inputs and outputs to reflect the flow of data in
a system and via their service curve inputs and outputs to
reflect the chosen scheduling policy in a system. In the con-
text of real-time interfaces, task components can also be in-
terpreted as abstract components (X, Y, T, Ψ), with a set of
inputs X : x ∈ A∪B and outputs Y : y ∈ A∪B. The transfer
function T (X) equals the internal component relations that
are determined according to the processing semantics, and
the predicate Ψ(X) expresses the constraints on the maxi-
mum allowable delay or buffer requirements. It can again be
shown that these abstract components are monotone under
the partial order defined as α ≥ α̃ ⇔ α(Δ) ≥ α̃(Δ),∀Δ ≥ 0

and β ≥ β̃ ⇔ β(Δ) ≥ β̃(Δ),∀Δ ≥ 0. Based on these ab-
stract components, adaptive real-time interfaces can again
be determined following the steps described in this paper.
Initial adaptive real-time interfaces for a subset of the mod-
ular performance analysis framework are already presented
in [17] and [18].

6. CONCLUDING REMARKS
The paper presents real-time interfaces that enable com-

positional analysis of hierarchical and distributed real-time
systems. In addition, the concept of adaptive interfaces is
formally defined. It allows us to solve design and synthesis
problems as the requirements and constraints can be dy-
namically propagated through the system. In addition, the
adaptivity leads to tighter performance results as the prop-
erties of the components adapt to the current needs. More-
over, the adaptive interfaces could be implemented in the
run-time system which leads to adaptive system behavior
that depends on the current requests from the environment.

It should be mentioned that we use a transformational
approach to real-time interfaces. On the other hand, this
does not prevent us from modeling complex internal behav-
ior of components or non-determinism in streams or compo-
nents. For example, it has been shown in [16] that stateful
and non-deterministic behavior of components can be dealt
with. In addition, the abstraction used in Section 5.1 de-
scribes non-deterministic event streams and one could even
use statistical stream models.

7. REFERENCES
[1] S. K. Baruah, Dynamic- and static-priority scheduling of

recurring real-time tasks, Real-Time Systems 24 (2003), no. 1,
93–128.

[2] A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and
M. Stoelinga, Resource interfaces, EMSOFT 03: Embedded
Software, Lecture Notes in Computer Science 2855,
Springer-Verlag, 2003, pp. 117–133.

[3] S. Chakraborty, S. Künzli, and L. Thiele, A general
framework for analysing system properties in platform-based
embedded system designs, Proc. 6th Design, Automation and
Test in Europe (DATE), March 2003, pp. 190–195.

[4] R.L. Cruz, A calculus for network delay, IEEE Trans.
Information Theory 37 (1991), no. 1, 114–141.

[5] L. de Alfaro and T. A. Henzinger, Interface automata, Proc.
Foundations of Software Engineering, ACM Press, 2001,
pp. 109–120.

[6] , Interface theories for component-based design,
EMSOFT 01: Embedded Software, Lecture Notes in Computer
Science 2211, Springer-Verlag, 2001, pp. 148–165.

[7] , Interface-based design, To appear in the Proceedings
of the 2004 Marktoberdorf Summer School, Kluwer, 2005.

[8] L. de Alfaro, T.A. Henzinger, and M. Stoelinga, Timed
interfaces, EMSOFT 02: Embedded Software, Lecture Notes
in Computer Science 2491, Springer-Verlag, 2002, pp. 108–122.

[9] T. A. Henzinger and S. Matic, An interface algebra for
real-time components, Proceedings of the 12th Annual
Real-Time and Embedded Technology and Applications
Symposium (RTAS), IEEE Computer Society Pres, 2006.

[10] J.Y. Le Boudec and P. Thiran, Network calculus - a theory of
deterministic queuing systems for the internet, LNCS 2050,
Springer Verlag, 2001.

[11] A.K. Mok and Z.X. Feng, Towards compositionality in
real-time resource partitioning based on regularity bounds,
Proceedings of RTSS 2001, IEEE Computer Society Pres,
2001, pp. 129–138.

[12] K. Richter, M. Jersak, and R. Ernst, A formal approach to
mpsoc performance verification, IEEE Computer 36 (2003),
60–67.

[13] I. Shin and I. Lee, Periodic resource model for compositional
real-time guarantees, Proceedings of the Real-Time Systems
Symposium (RTSS), IEEE Press, 2003, pp. 2–13.

[14] , Compositional Real-Time Scheduling Framework,
Proceedings of the Real-Time Systems Symposium (RTSS),
IEEE Press, 2004, pp. 57–67.

[15] L. Thiele, S. Chakraborty, and M. Naedele, Real-time calculus
for scheduling hard real-time systems, Proc. IEEE
International Symposium on Circuits and Systems (ISCAS),
vol. 4, 2000, pp. 101–104.

[16] E. Wandeler and L. Thiele, Abstracting functionality for
modular performance analysis of hard real-time systems, Asia
South Pacific Design Automation Conference (ASP-DAC),
2005, pp. 697–702.

[17] , Real-Time Interfaces for Interface-Based Design of
Real-Time Systems with Fixed Priority Scheduling,
Proceedings of the 5th ACM International Conference on
Embedded Software (EMSOFT’05), IEEE Press, 2005,
pp. 80–89.

[18] , Interface-based design of real-time systems with
hierarchical scheduling, Proceedings of the 12th Annual
Real-Time and Embedded Technology and Applications
Symposium (RTAS), IEEE Computer Society Pres, 2006.

[19] S. Wang, S. Rho, Z. Mai, R. Bettati, and W. Zhao, Real-time
component-based systems, Proceedings of the 11th Real-Time
and Embedded Technology and Applications Symposium
(RTAS), IEEE Press, 2005, pp. 428–437.

43

