
New Approach to Architectural Synthesis:
Incorporating QoS Constraint

Harsh Dhand
Philips Research

Bangalore

harsh.dhand@philips.com

Basant Dwivedi
Calypto Design Systems (l)

Pvt. Ltd.,
Noida

basant@calypto.com

M Balakrishnan
IIT Delhi

New Delhi

mbala@cse.iitd.ernet.in

ABSTRACT
Embedded applications like video decoding, video streaming and
those in the network domain, typically have a Quality of Service
(QoS) requirement which needs to be met. Apart from being a de-
sign constraint, it can also be considered as a flexibility that the
design does not have to work under worst case data condition. For
example, in the case of video decoding with variable decoding time
for individual frames, it may be adequate that only a fraction of
frames (say 90%) needs to be decoded. In this work, we propose
a novel method of exploiting this flexibility for efficient partition-
ing and mapping in the architectural synthesis of the application at
hand. We translate QoS specification of the overall application to
the time constraint on the individual components constituting the
application and use this knowledge in an optimum synthesis tech-
nique based on Mixed Integer Linear Programming (MILP). We
study this in the context of MPEG2 Decoder and show that the ap-
proach can be used to obtain optimal time of execution as well as
energy reduction while meeting the QoS requirements.

Categories and Subject Descriptors
C C.3 [Computer Systems Organization]: Special Purpose and
Application-Based System—Real-time and embedded systems

General Terms
Design, Measurement, Performance

Keywords
Quality of Service, Soft Real Time Constraints, Mapping, Parti-
tioning, Process Network

1. INTRODUCTION
Using quality of service in video decoding applications has been

a key area of research in Networks [1] and advanced media appli-
cations [4]. Steinmetz et al. [5] have given both qualitative and
quantitative description of QoS for Multimedia systems. They have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-542-8/06/0010 ...$5.00.

enumerated various parameters which can be used for QoS descrip-
tion like Perception QoS(tolerable synchronization drift, visual per-
ception), System QoS(CPU rate, memory usage), Communication
QoS(Packet size, bandwidth) etc.

The importance of considering QoS requirements in the archi-
tectural synthesis, is also illustrated by Marculescu et al. [6, 7].
In these works, authors have shown that incorporation of QoS con-
straints allows one to achieve performance which is sometimes as
much as an order of magnitude better in relation to considering
worst case behavior. The ability to explore several design alterna-
tives while trying to satisfy QoS requirements is of crucial impor-
tance, and their work attempts the same. Work on incorporating
QoS in synthesis is described in detail in section 2.

Multiprocessor System-on-Chip(MpSoC) Synthesis for embed-
ded media applications can be done in a variety of ways such as
scheduling [8], process network mapping [9] etc. For this synthe-
sis, the end-to-end deadline on the complete application, be it hard
or soft, must be distributed over component tasks [10]. Further,
partitioning and mapping of the application onto multiprocessor
architecture during MpSoC synthesis, requires the knowledge of
how the various components of the application perform on proces-
sors and what are their memory requirements. Details about the
architectural synthesis methodology that we have chosen are given
in section 6. Instead of using the worst case computation times of
processes on various processors being explored, QoS specifications
allow us to allocate much smaller times. This is because it is not re-
quired to successfully complete 100% of the process in time. This
results in a more relaxed mapping constraints and thus a smaller
and less power consuming hardware.

The objective of our work is to integrate the task of design-
ing multiprocessor architectures with meeting QoS requirements
in mapping. This is achieved by computing a suitable requirement
of QoS for the constituent processes of the application. However
while the mapping is to be done for individual processes, the QoS
is specified for the overall application. Hence, there is a need for
finding QoS constraints that can be used for the individual pro-
cesses. In this work, we address the problem of distribution of QoS
constraints over individual application components(processes) and
propose a methodology for the same. We further show the applica-
tion of our approach with the help of MPEG2 video decoder appli-
cation. In this case study, we take the system QoS, the processor
speed required, as the primary parameter which would influence
the perception QoS, represented by frames decoded per second.

The rest of the paper is organized as follows. Section 2 describes
in detail the importance of QoS in architectural synthesis, with il-
lustrating examples from literature. Section 3 gives the statisti-
cal interpretation of incorporating QoS, including the qualitative

301

results from application of statistical techniques for incorporating
QoS in synthesis. Section 4 describes the mapping and partitioning
phases of architectural synthesis for an application. Section 5 de-
scribes the application and using cumulative distribution functions
in analysis. The algorithm developed for optimal QoS distribution
is described in Section 6. The experimental setup is described in
detail in section 7. Results obtained are enumerated in Section 8.
Discussion on using QoS distribution for energy minimization is
also in the same section. Section 9 concludes and identifies some
of the interesting applications of using QoS in synthesis.

2. QOS FLEXIBILITY IN SYNTHESIS
Designing based on the worst-case execution time model guar-

antees that no timing requirement is broken. However, for large
classes of applications, the soft real-time systems, violating a tim-
ing requirement, though not desirable, is tolerated provided that
this happens with a sufficiently low probability. Whereas in the
case of critical systems, the designers stress meeting deadlines at
the expense of product cost, in the case of soft real-time systems,
cost reduction is a strong incentive for using cheap architectures.

time

pr
ob

ab
ili

ty

pr
ob

ab
ili

ty

timet t

WCET
WCET

15%

Figure 1: Requirement of processors for WCET

Sorin et al [13] have illustrated the difference between following
a Worst Case Execution Time Approach(WCET) on one hand, and
using Execution times and QoS requirements on the other, for find-
ing right processor for a process. Let us consider two processors
and a task which runs on them. The probability density function
of the task execution time (ETPDF) on the processor 1 (inexpen-
sive and less computation power) is depicted in the left subfigure
of Figure 1. If the imposed deadline of the task is ‘t’ as shown in the
figure, then the processor cannot guarantee that the task will always
meet its deadline, as the WCET of the task exceeds the deadline. If
no deadline misses were tolerated, a faster and more expensive pro-
cessor (P2) would be needed. The ETPDF of the task on the faster
processor is depicted on the right in Figure 1. In this case, the more
expensive processor guarantees that no deadlines are missed. How-
ever, if a miss deadline ratio of at most 15% is tolerated, then even
the processor 1 would suffice.

A problem that has been addressed formerly is finding the per-
centage cases in which deadlines miss, given a multiprocessor plat-
form and an application. This is achieved through a large number
of simulation runs. The problem when stated in the reverse man-
ner is the more interesting problem of synthesis and is objective of
this work: “ given a multiprocessor hardware architecture and an
application expressed as communicating processes find a process
mapping such that the application runs on the architecture meeting
the desired constraints, and that the architecture cost is minimized.”

One way to address the problem is to use statistical data obtained
from simulation runs e.g. the worst case and average execution
times and higher moments of the distribution of execution times.

2.1 Illustrating Examples
[13] have given sample cases to show that only a complete anal-

ysis of the simulation data would result in correct solution to the
incorporation of QoS into synthesis. Simply using the average be-
haviour does not help as shown in the following example.

Let the application be as shown in Figure 2.2a. The circles de-
note the tasks, their shades denote the processors they are mapped
onto. The solid disks show the inter-processor communication. The
arrows between the tasks indicate their data dependencies. All the
tasks have period 20 and the deadline of the task graph is 18. Tasks
A, B, C, and D have constant execution times of 1, 6, 7, and 8
respectively. Task E has a variable execution time whose probabil-
ity is uniformly distributed between 0 and 12. Hence, the average
(expected) execution time of E is 6.

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

A B D

C E

18

15

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

B C

ED

A

B C

ED

A

A B E

C D

18

15

17

(a)

(c) (d)

Figure 2: Effect of mapping on deadline miss

The inter-processor communication takes 1 time unit per mes-
sage. Let us consider the two mapping alternatives depicted in Fig-
ure 2a and 2b. The two Gantt diagrams in Figure 2c and 2d depict
the execution scenarios corresponding to the two considered map-
pings if the execution of task E took the expected amount of time,
that is 6. The shaded rectangles depict the probabilistic execution of
E. A mapping strategy based on the average execution times would
select the mapping in Figure 2a as it leads to a shorter response
time (15 compared to 17). However, in this case, the worst case
execution time of the task graph is 21. The deadline miss ratio of
the task graph is 3/12 = 25%. If the stochastic nature of the execu-
tion time of task E is taken into consideration, the second mapping
alternative should be chosen, because of the better deadline miss
ratio of 1/12=8.33%. If, however, the worst case response times
are considered instead of average ones, then the second mapping
alternative will be chosen.

Approaches based on worst case execution times can be dis-
missed by means of very simple counter-examples.

Consider a process A which can be mapped on processor P1 or
on processor P2. P1 is a fast processor with a very deep pipeline.
Because of its pipeline depth, mispredictions of target addresses
of conditional jumps, though rare, are severely penalized. If A is

302

execution time on P1

pr
ob

ab
ili

ty

pr
ob

ab
ili

ty

execution time on P2t t

WCET
WCET

deadlinedeadline

Figure 3: Effect of processor on deadline miss

mapped on P1, its ETPDF is shown in Figure 3a. The long and
flat density tail corresponds to the rare but expensive jump target
address misprediction. If is mapped on processor P2, its ETPDF is
shown in Figure 3b. Processor P2 is slower with a shorter pipeline.
The WCET of task A on processor P2 is smaller than the WCET if
A ran on processor P1. Therefore, a design space exploration tool
based on the WCET would map task on P2. However, as Figure 3
shows, the deadline miss ratio in this case is larger than if task A
was mapped on processor P1.

2.2 QoS in our framework
There is a requirement for incorporating QoS constraint in syn-

thesis. The synthesis process involves selection of computation
modules, memory modules, communication architecture and map-
ping of processes of application onto compute units and channels
on memory modules. Partitioning and mapping of application onto
multiprocessor environment, requires the knowledge of how the
various processes of the application perform on processors and what
are their memory requirements. Instead of using the worst case
computation times of processes on various processors being ex-
plored, QoS specifications allow us to allocate much smaller times.
This is because it is not required to successfully complete 100% of
the process in time. This results in a more relaxed mapping con-
straint and thus a smaller and less power consuming hardware.

While exploring the mapping of processes of MPEG2 decoder
onto processors, the worst case execution times of the processes
of MPEG2 are fed to the framework. This does not give the best
possible solution. That is why work was done towards deriving a
methodology based on simulation statistics and QoS specification,
for obtaining a better DSE. It is my contention that working with
QoS constraint is likely to produce a much better solution.

3. STATISTICAL INCORPORATION OF QOS
In statistics, various inequalities are used to express the behavior

at the tail of PDFs. Whether they can be used for expressing QoS
and are valid for our applications is discussed here.

Let α denote the soft real time constraint. α is related to QoS as
1 - QoS(expressed as a fraction). So, α is the maximum fraction of
cases, in which the application is allowed to miss the performance
deadline. For statistical distribution, we know the Chebyschev’s
inequality which states that

Pr[|X −c| ≥ ε] ≤ 1/ε2E(X −c)2 (1)

Using mean and standard deviation in the above equation, we get:

Pr[|X −µ| ≥ ε] ≤VarX/ε2 (2)

Using this and the definition of α we get,

Pr[|X −µ| ≥ ε] ≤VarX/ε2 ≤ α (3)

X
ε

μ

Computation Time

N
um

be
r

of
 in

st
an

ce
s

Figure 4: Chebyschev’s Inequality for SRT constraint

i.e for the worst case, ε = (VarX/α)1/2

Hence X = µ+(VarX/α)1/2 (4)

The idea of relating the mean and the standard deviation is illus-
trated in Figure 4. Given the mean, Standard Deviation, and the
SRT constraint α, we have X, which can be used for the mapping
process.

• Chebyschev’s inequality assumes independence of measured
variables. Processes in a multimedia application typcially
depend on external data and possibly having a correlation
amongst themselves.

• Also chebyschev’s inequality gives loose bound. This is ac-
tually what was seen from the experiments that we did on the
computation time data for MPEG2 processes.

Thus we tried inequalities with tighter bounds and which sup-
port partial dependence. One such bound is the Chernoff-Hoeffding
bound. Chernoff-Hoeffding bounds are fundamental tools for the
tail probabilities, i.e. the probabilities of deviation from mean, for
bounded and independent random variables. [3] have given a more
generalized form of the inequality and shown that it is applicable
for variables with limited independence.

The tail inequalities could be of the following form:
Additive form:

Pr[X > λ] < f n() Or Pr[X > λ+µ] < f n() (5)

Multiplicative form:

Pr[X > (1+δ)] < f n(). (6)

The function on the right side of the above equations could be
a function of n(the number of data values), α or δ, and µ, the
mean. While Chebyschev’s inequality was expressed in additive
form, Chernoff-Hoeffding is in multiplicative form.

[3] have shown that the inequality can be applied to variables
for limited independence and have given the following forms of
inequalities.

Pr[X ≥ (1+δ)µ] ≤U(n,δ,µ) ≤ F(n,δ,µ) ≤ G(n,δ,µ) (7)

In each case put f (δ) = α and solve for δ, and substitute to obtain
X. Tighter the bound the more complex solving for δ or ε.

303

For example in the above forms,

U(n,δ,µ) = ((nCi∗)(µ/n)i∗)/µ(i+δ)Ci∗ where i∗ = µδ/(1−µ/n)
(8)

The easiest form here is that of function G(n,δ,µ)

G(δ,µ) ≤ e(δ2)µ/3 ≤ α (9)

Gives: X = (1+3ln(1/α)/µ)µ
The above inequalities actually gave too tight bounds. But even

if the result of the above inequalities cannot be used directly, it
gives us a means of expressing the value to be used as a function
of mean and standard deviation. Before describing the approach
that we followed for distributing the QoS, we describe in detail
Architectural Synthesis, specifically the MILP approach that we
used for it.

4. QOS IN ARCHITECTURAL SYNTHESIS
QoS constrained applications like video decoding are required to

give a certain throughput. Having a QoS constraint, as opposed to
having a hard real time constraint implies that though the applica-
tion has a constraint of 1/30 seconds a frame, but it is acceptable if
it does not complete each time and still meets the required viewing
constraints. As discussed in [6], considering the above flexibility
offered by soft-real time constrained applications in the form of
QoS, results in a cheaper architectural solutions. We discuss next,
what MpSoC synthesis involves and where QoS constraints can be
incorporated during MpSoC synthesis.

We consider applications represented as process networks (PN)
[11, 12]. However, our approach is not limited to process networks
and it can be applied to any other periodic task graph as well. Given
an application in the form of a process network and a component
library, synthesis of the architecture consists of the following to
minimize total cost or energy.

1. Allocation of processors, local and shared memories

2. Binding of processes to processors and queues to local or
shared memories

3. Allocation of communication components such as buses

Figure 5 shows an instance of a synthesized architecture. In this
example, the application process network is composed of 3 pro-
cesses and 3 queues. The synthesized architecture consists of 2 pro-
cessors, 1 local memory and 1 shared memory. Queue 1 is mapped
to the local memory of Processor 1 because reader and writer pro-
cesses of Queue 1 are mapped here. On the other hand Queue 2
and Queue 3 are mapped to the shared memory as their reader and
writer processes are mapped to two different processors.

When the objective function of the synthesis problem is to min-
imize the hardware cost, then the total cost of processors, local
memory modules, shared memory modules and interconnections
cost is minimized. On the other hand, in case of energy minimiza-
tion, one tries to minimize energy consumed during execution of
processes, memory accesses and data transfer on the interconnec-
tion network.

A MpSoC synthesis framework for process network such as the
one described in [14] using (Mixed Integer Linear Programming -
MILP) or described in [9] using a heuristic based framework can be
used to solve the above synthesis problem. The input is the PN de-
scription of the application, and an architectural component library
which contains compute units, memory modules and interconnec-
tion network components. Alongwith each compute unit, there is a

Process3
Queuing
DelaysProcess1 Process2

Queuing Delays

Local Memory 1

Queue 1
Process1

Process3

Process2

Bus 1

Processor 1
Processor 2

No conflict

Queue 3Queue 2
Shared Memory 1

Conflict for shared
resource => Waits

A
rc

hi
te

ct
ur

e

Q
ue

ue
 2

Q
ue

ue
 1

Q
ue

ue
 3

A
pp

lic
at

io
n

pr
oc

es
s

ne
tw

or
k

Figure 5: MpSoC Synthesis example

local memory. There could also be a number of shared memories
which are connected to the compute units through interconnection
network as shown in figure 5. Apart from these, in [14, 9], authors
have also assumed that performance requirements are specified for
individual processes of the process network.

A compute unit offers number of time units equal to its clock
frequency (cycles per second). This must accommodate computa-
tion overheads of processes mapped, context switch overheads and
interconnection network overheads. Let t pik be the binary variable
denoting mapping of process Pi onto processor PRk. ncyik is the
number of cycles taken by the process Pi when mapped onto pro-
cessor PRk for one iteration. iteri is the real time constraint on
process PRi indicating the number of iterations per second to be
performed by the process Pi. If the frequency of the processor PRk
is f reqk, then the Overall Performance Constraint is expressed as
follows.

∀k : ∑i t pik ×ncyik × iteri +
+ other overheads ≤ f reqk

(10)

The objective function to minimize hardware cost is follows.

minimize : compute units costs + Memory costs +
interconnection network cost

(11)

Let us assume that the QoS is specified in terms of fraction (say
90%). So, if instead of using worst case behavior, we incorporate
QoS in the performance constraints, it would reduce ncyik . In Equa-
tion 10, we note that reducing ncyik will give processor PRk more
slack. In effect, either f reqk can be reduced resulting in low energy
execution or more processes can be mapped onto PRk possibly re-
ducing hardware cost.

With the help of MPEG2 decoder application, in the next Sec-
tion, we describe how an application needs to be analyzed so as to
generate enough information for QoS distribution across the whole
application.

5. APPLICATION ANALYSIS
The methodology for finding the QoS described is applicable for

any application expressed as communicating tasks. Typical appli-
cation descriptions, like PN models, are used for architectural syn-
thesis, hence the methodology of QoS distribution proposed has
been applied to PN model. To know the individual QoS constraints,
and the methodology for finding it, the PN model of MPEG2 de-
coder (figure 6) was experimented with extensively.

As will be explained in section 6, we require the total compu-
tation time of various processes constituting the application. This
can be obtained by either simulation or estimation. Presently, the
computation time is measured by running the application on a mul-
tiprocessor(MP) VLIW simulator [2], which was instrumented by
us to give the profile of independent threads (processes). The ar-
chitecture consists of VLIW processors, with four issue slots, lo-
cal instruction and data caches, a shared memory. The system is

304

composed by assembling various processing elements, memories,
peripheral devices and interconnects. The MP simulator provides
a component library of parameterized and cycle accurate simula-
tion models of memories, VLIW processor, shared bus and non-
intrusive thread-aware function-level profiler. The final result of the
analysis is the QoS distribution, using the computation times and
input QoS. The accuracy of the methodology developed depends
only on the fidelity of the simulator or estimator in producing con-
sistent results.

For describing the application behavior and the meaning of QoS,
we have adopted the same convention as done by Manolache et. al.
[13]. Their focus is on task priority assignment and scheduling of
tasks, whereas with the input application model we have taken, we
only have to incorporate the QoS into mapping algorithm.

5.1 Application characteristics

5.2 Sample application
We have taken MPEG2 decoder process network as our example

application. Modeling the application as Process network solves
the scheduling problem. Mapping this PN model onto a multipro-
cessor architecture needs to be performed. The mapping of the
application has been done by taking the throughput constraints into
consideration, hence a run time scheduler can now execute the ap-
plication on the architecture and the solution meets the deadlines.
We aim to still meet the constraints provided by QoS. The algo-
rithm suggested brings a change in the mapping solution, it is not
at the run-time scheduling level.

The process network (PN) of MPEG2 decoder consists of 6 pro-
cesses: Header Decoding (P1), Slice Decoding (P2), Inverse Dis-
crete Cosine Transform (P3), Motion Prediction (P4), Addition(P5)
and Process Store(P6). This is shown in figure 6, with the arrows
between processes indicating the data flow between the processes.

Header
Extraction

Slice
Decoding

IDCT

Addition Storing

Prediction

Figure 6: MPEG2 Decoder PN Model

We generated various video streams, encoded such that they con-
tain only I and P frames. The methodology developed can be used
for more generic input consisting of B frames also. Analyzing var-
ious sample videostreams, we found that a videostream typically
consists of one I frame followed by 10 or so P frames. The decod-
ing times of I frames and P frames were obtained from simulation
and their mean values are as shown in table 1. P1 to P6 are the
processes in MPEG2 Decoder model as explained in Section 2.2.

P1 P2 P3 P4 P5 P6
I Frames 514 6332 2989 194 3205 2020
P Frames 143 5370 2681 2586 3653 1846

Table 1: Mean Computation Time (in 1000 cycles)

As expected, for processes P1(Header Decoding), P2(Slice De-
coding) and P3(IDCT) the computation times for I frames are higher,
while for P4(Prediction) it is mainly the P frames where computa-
tion is high. For P5(Addition), P frames take slightly higher time
owing to the input from prediction and IDCT. For P6(Storing), I
frames have greater computation time. Owing to these variations,
different data sets were taken for I Frames and P frames.

Four hundred such computation time values each for I and P
frames, from 8 streams (Common Intermediate Format (CIF) Pic-
ture size: 352x288, 30 frames/sec) were taken to perform the anal-
ysis. The process of generating one to n frame streams, running the
simulations and obtaining these values has been fully automated.
Thus, given sample video streams and the number of sample data
values to be obtained, the simulation proceeds automatically to give
these data points. Though simulation of MPEG decoding typically
takes a large time, this task of measuring the computation times is
a one time process, a pre-processing step to the architecture explo-
ration phase. If a good estimation technique is used to obtain these
computation times, then the this data collection which has presently
taken one day, could be done in a couple of hours. Moreover, for
the set of use-cases taken as input, the QoS distribution obtained, is
the optimal distribution that can be used for architectural synthesis.

We used Cumulative distribution function, CDFs to find the
appropriate values of QoS constraints for processes and also the re-
spective bounds to be considered. Let us denote by X the random
variable associated with the number of clock cycles used by a task
instance. We will use the cumulative density of probability func-
tion, CDF, associated with the variable X,. This function reflects
the probability that a task instance finishes before a certain number
of clock cycles.

CDF(x) = P(X ≤ x)
Consider Fig 3(b), the CDF of process 6, shows that 80% of con-

sidered sample cases have a value below 1.85e+06, while 99% have
it below 1.855e+06. A QoS of 80% for process 6 corresponds to
the fact that if given a computation time X for execution, atleast
80% of the cases P6 will execute correctly. This establishes the
direct relation between the values obtained by CDF and QoS re-
quired. CDFs are obtained by finding the computation times from
a large number of simulation runs and then sorting it in the ascend-
ing order. Thus for a given QoS for a process, for a value on the y
axis, the corresponding computation time corresponds to the value
on the x axis.

Please note that the computation times of the processes are input
data dependent. The CDFs of various processes differ. From the
total time of computation, CDF of the overall application can also
be plotted. Fig 7(c) shows the overall CDF for P frames.

5.3 Optimal QoS for Processes
Typically the overall QoS for an application is given. A vari-

ety of QoS for individual tasks can be chosen, all of which achieve
the same overall application QoS. However, as we show in this and
the next section, our algorithm achieves am optimal QoS distribu-
tion. The distribution is optimal because the chosen set results in a
achieving the least cost architecture for the overall application. Let
the QoS for process Pi is denoted by Si and the QoS for the overall
application by S. For simplicity of equations, S is taken as a frac-
tion rather than %. The computation time to be allotted to process
Pi is denoted by Ti, while for the overall application it is T. Clearly,

∑
i

Ti = T (12)

But no such simple equation exists for relating process QoS(Si)
to application QoS(S). The objective of our work now reduces to

305

 0

 20

 40

 60

 80

 100

 4e+06 4.5e+06 5e+06 5.5e+06 6e+06

D
at

a
pe

rc
en

ta
ge

s

Computation Time

CDF for P2 for PFrames

(a) CDF for P2

 0

 20

 40

 60

 80

 100

 1.835e+06 1.84e+06 1.845e+06 1.85e+06 1.855e+06 1.86e+06

D
at

a
P

er
ce

nt
ag

es

Computation Time

CDF for P6 for PFrames

(b) CDF for P6

 0

 20

 40

 60

 80

 100

 1.5e+07 1.55e+07 1.6e+07 1.65e+07 1.7e+07 1.75e+07

D
at

a
pe

rc
en

ta
ge

s

Computation Time

CDF for Total CT for PFrames

(c) CDF for Total CT

Figure 7: Cumulative Distribution Function for P Frames
(Computation Times in cycles)

finding an optimal Si for each Pi, such that we can minimize T,
while still meeting the overall QoS requirement of S. Note that Ti
and Si for each process are related by the corresponding CDF, as
shown in figure 7(a) and 7(b) for P2 and P6. If all the processes

were independent, from probability theory, it is easy to see that

∏
i

Si = S (13)

This would lead to a result that for achieving 90% QoS (i.e.
S=0.9) for the application, each process would require a QoS of
(0.9)1/6, which is very close to to 1. But this is almost never true as
the computation time of all the processes depends on the nature of
input data in a similar manner, i.e. there is “significant” correlation
between computation times of different processes. Let us define
CT(Pi,dk) as the computation time for process Pi for data dk. The
data in case of video decoding is a video frame. Let us consider
two data points d1 and d2. Two processes Pi and Pj are directly
correlated as follows.

CT (Pi,d1) > CT (Pi,d2) ⇒CT (Pj,d1) > CT (Pj,d2) (14)

In case of inverse correlation between Pi and Pj, with increase
in CT of Pi, there is decrease in the computation time of Pj. Both
direct and inverse correlations exist and help us in achieving better
overall QoS than the worst case. In case of direct correlation be-
tween P1 and P2, if the time allocated to both T1 and T2 are reduced
from the worst case, the QoS does not fall as a product. This is
because for most data where P1 misses its deadline, P2 also misses
its deadline. For inverse correlation between P1 and P2, one can
increase T1 and reduce T2 to achieve the same overall QoS. If the
objective is to minimize T, given an Sreq for the overall application,
how does it relate to the time that can be read from the complete
application CDF corresponding to Sreq (figure 7(c))? This time rep-
resents the lower bound on T given Sreq, and we denote it by Tlb

Tlb = value o f T at Sreq (15)

in the CDF of T. It is clear that for achieving a specified applica-
tion QoS Sreq, we need this minimum time, but do not know how to
distribute this time over the individual processes effectively. One
upper bound on Time T can be found by assuming the processes to
be independent and reading the time for each process CDF corre-
sponding to Si = m

√
Sreq for a process graph with m processes. This

corresponds to almost allocating worst case time for each process.
In the next section we address the problem of finding an “optimal”
close to the lower bound.

Tub = ∑Ti (16)

where Ti corresponds to Si, Si being worst case, defined above.

6. OBTAINING OPTIMAL PROCESS QOS
As explained in section 5.2, correlation amongst processes re-

sults in better overall QoS for given individual QoS than the ex-
pected worst case. Hence if we actually measure the overall QoS
for various individual QoS, then we will be able to find just the right
individual QoS that would suffice to obtain a desired overall QoS.
This is the key idea we have used to find optimal process QoS and
is described by algorithm 1. In the algorithm, α denotes assumed
QoS for the processes. The algorithm has two distinct stages. In the
first stage (Steps 1 to 6), we obtain a plot between S and α where
all Si have the same value α. In the second stage (Steps 7 to 10)
we vary the individual Si values to minimize the total time T, while
maintaining the overall QoS to Sreq.

In step 2 of the algorithm, we take up different values of α all
equated to Si (ranging between 90% and 99%) and find correspond-
ing value of S from the computation time data. A failure in any one

306

Algorithm 1 Finding Optimal QoS Distribution
Input: Computation Time Data (Various CDFs, data from simu-
lation or estimation) and Sreq
Output: Optimal {Si}

1: for all α = min to max do
2: Let Si be α for all i
3: Compute corresponding S
4: end for
5: Plot S against α
6: Read α′ corresponding to Sreq and initialize Si = α′ for all i
7: while one of steps 8 or 9 is feasible do
8: Select and decrease one Si while maintaining S ≥ Sreq
9: Choose a pair of processes Pi and Pj and reduce Si and in-

crease S j such that overall time T is reduced, maintaining
S ≥ Sreq

10: end while
11: Output {Si}

process for a data point is taken as a failure to meet deadline for
the complete application for that data. Hence, from the data set,
we identify the cases which correspond to failure to meet one or
more individual Si, corresponding to each time Ti obtained from α.
100− (% failures) = S by definition. Thus we can find S for dif-
ferent Si. Note that if Si are each 98%, the worst case S possible is
88% , since the violations caused by each might just add up as ex-
pected from ∏

i
Si = St for independent processes. Figure 8 shows

a plot of the assumed individual QoS for each process and the to-
tal application QoS observed. The violation cases actually overlap,
resulting in a better QoS. As shown in figure 8, the QoS achieved
is much better than the worst case expected. Also, the worst case
QoS, decreases faster than the obtained QoS, with decrease in Si.

Once a plot as shown in 8 is obtained, Reverse Mapping is used
in Step 6. Given Sreq, this plot is used to find Si of each process,
such that the overall constraint is met. e.g. given an overall
constraint of 90%, we know that a constraint of 96% each would
achieve it (instead of worst case of 98.4%). From each of these Si
values corresponding Ti and thus T can be computed.

 0

 20

 40

 60

 80

 100

 90 92 94 96 98 100

T
ot

al
 Q

oS

Individual QoS

Worst possible S
Obtained S

Figure 8: Effect of Individual QoS on overall QoS, QoS ex-
pressed in %

We can actually see correlation in the failure cases of individual
processes. P1, P2 and P3 typically fail together. P4, P5 and P6 fail
together, though not as consistently. That gives us some idea of the
correlation amongst processes. P4, P5 and P6 are higher for one
type of data, while P1, P2 and P3 are higher for another type.

Note that in the solution obtained from stage 1 of the algorithm,

all the processes are given the same Si. Having same value for each
Si would not give us the best possible set {Si}. While obtaining
this initial solution, we have used only positive correlation among
processes to our advantage. Steps 7 to 10 in the algorithm are ways
to improve the solution in terms of the total computation time of
the application. The steps involve exhaustive search for solution
{Si}, with the objective being to reduce T. First is simply to lower
Si for each i. Clearly T is reduced. At each step we check that Sreq
is not violated. This is done in the same way as originally the value
of S was seen, i.e. how many cases are violated. In our case, only
lowering of S2 was possible.

Next we consider the processes in pairs, increase the Si of one
to make space for decrease in S j of another such that overall T is
reduced. For this step, a way of choosing the pair of processes can
be considered. Take Pi to be such that increase in Si gives least
increase in T while let Pj be such that decrease in S j results in
maximum decrease in T. This can be easily seen from the gradient
of CDFs of the processes. Then increase in Si and decrease in S j
improves our solution.

Both the steps 8 and 9 of the algorithm are converging in na-
ture. The number of processes to consider is limited. For a process
network model, their number is usually less than ten.

7. EXPERIMENTAL METHODOLOGY AND
SIMULATION OVERVIEW

SrijanSim[2] is a cycle accurate multiprocessor VLIW simulator
which is parameterized and is flexible to a large extent, allowing
to vary common architectural parameters and plug in new compo-
nents as needed. Detailed execution statistics for the application
are required. SrijanSim is a simulation infrastructure developed
for a retargetable framework for cycle-true simulation and analysis
of Heterogeneous Multiprocessors. A HMP can be composed by
assembling various processing elements, memories, peripheral de-
vices and interconnects. SrijanSim defines modeling methodology
to develop simulation models of these components and provides
software utilities to facilitate the model development, and includes
a rich component library of parameterized and cycle accurate sim-
ulation models of memories, VLIW processor, shared bus and non-
intrusive thread-aware function-level profiler. Processors are mod-
eled through sequential composition of modules.

7.1 Simulation: Obtaining PN characteristics
The SrijanSim Profiler, a non-intrusive thread-aware function-

level statistics collector, can be used to generate a comprehensive
profile of multi-threaded applications. The profiler outputs detailed
information which can give the designer a keen insight into the ap-
plication characteristics. This profiler is more elaborate than the
standard GNU profiler in a number of ways, the most important
advantage being the ability to profile multi-threaded applications
to the same level of detail as that of single thread applications.
The SrijanSim profiler provides a completion to the extendable and
retargetable compiler-simulator infrastructure of Srijan, and estab-
lishes an elaborate workbench of integrated tools for research activ-
ities focused on application specific multiprocessor architectures.

The profiler yields different profiles such as Macro profile, Flat
profile, and Call graph, briefly discussed here. These are generated
for each processor in the architecture.

An example of the macro profile of the producer consumer ap-
plication is shown in table 3 . This is the top level information for
all threads in the processor. It gives the total execution time taken
by the target application (mapped to that processor). Note that all
times have been expressed as a percentage of total application time.

307

S1 S2 S3 S4 S5 S6 S

Worst Case 98.4 98.4 98.4 98.4 98.4 98.4 Sum
Corresponding T 586933 7735995 3015712 200344 3211702 2026160 16776846

Algorithm(Step 1 to 5) 96 96 96 96 96 96 Sum
Corresponding T 584812 7720957 3014040 200091 3211421 2025581 1643690

Algorithm(Step 7 to 10) 95.5 94 95 96 96 97 Sum
Corresponding T 584488 7707222 3004040 200091 3211421 2025750 16733012

Table 2: Finding a Better Distribution

Time sspnMPRead sspnMPWrite Comp CS Name
in % rdBf rdCh com wrBf wrCh com in % in %
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.001 ABS
1.7 0.0 0.0 0.0 0.1 0.0 0.1 1.5 0.049 run proc hdr pn node1
35.6 0.0 0.0 0.0 1.8 0.0 2.0 31.2 0.176 run proc slice dec pn node1
17.7 1.7 0.0 1.4 1.4 0.0 1.0 10.8 0.112 run proc idct pn node1
10.5 0.2 0.0 0.4 1.3 0.0 0.2 8.1 0.089 run proc pred pn node1
22.3 2.9 0.0 1.8 2.2 0.0 0.4 14.8 0.087 run proc add pn node1
12.1 2.2 0.0 0.5 0.0 0.0 0.0 9.2 0.088 run proc store pn node1

Table 3: MacroProfile

As can be seen from the profile besides the six thread corre-
sponding to the six processes, there is also the *ABS* thread, which
is the main simulator thread. which spawns the other threads. The
following thread level information is listed for each individual thread:

• Name (of the main function) of the thread

• Execution Time for each thread.

• Time spent in reading and writing onto buffers.

• Time spent in computation alone

• Context switching overhead for each thread.

Flat Profile: This profile shows more elaborate information such
as the computation time for the application in each function, the
number of times that function was called, the context switch over-
head for each function, etc. The information listed in this pro-
file allows the designer to infer context switch overheads, program
hotspots, inefficient code and other such information.

Call Graph: An example of a part of the call graph of the same
application is shown in table4. For each function, the call graph
shows which other functions is called, and how many times. There
is also an estimate of how much time was spent in the subroutines
of each function, as a percentage of the total time in the function.
For each thread, a table is displayed, which has an entry for each
function. Each entry in this table may have multiple lines. The
first line in each entry describes the current function information
The subsequent lines of an entry describe the function’s immediate
children. If the function does not have any children, then no child
information is displayed.

7.2 Experimental Methodology
The complete sequence of steps done for obtaining the QoS for

individual processes is as follows:

1. Extract video stream containing I frames(single frame streams)
and video streams containing known number, 1 I frame and
‘n’ P frames.

2. Profile to know the execution times of various processes of
the application.

3. From the set of data and specified QoS for total application,
find the QoS for individual processes

4. Minimize the Total Computation time, respecting the overall
QoS.

5. For each process, find the computation time corresponding
to the QoS obtained.

8. RESULTS AND DISCUSSION
The application of these steps to MPEG2 Decoder’s six pro-

cesses for Sreq = 90% is shown in table 2. The columns 2 to 7 of
the table correspond to processes P1 to P6, while column 8 contains
QoS and computation time for total application. The rows contain
the Si and their corresponding Ti. However the T for the application
corresponds to ∑

i
Ti.

Tmin for the application corresponds to 16652312 cycles for T
at 90% QoS. Tmax corresponds to ∑Ti where Ti corresponds to Si
being 98.4% is 16776846 cycles. By applying the above steps, we
obtained a reduction in T, such that it finally becomes 16733012
cycles, which is much closer to Tmin. The method has resulted in
reduction of T, such that it is closer to Tmin by a factor of Tmax −
T/Tmax −Tmin = 34.5%.

Steps 1 to 6 correspond to the basic algorithm. The last steps (7
to 10) are optimization steps and may be omitted if the Tmin and
Tinitial , obtained with equal Si for the application are not signifi-
cantly different.

The approach that we have proposed is better than a naive im-
plementation of QoS as a hard constraint, e.g. in our application
allowing the processes to run to completion and just maintaining
an overall real time constraint of 1/30 frames per second would be
the simple solution.

Imposing QoS for each process has two potential advantages.
First, as explained in section 2, the use of QoS has been used to
lower the HW cost in multiprocessor synthesis. This is achieved
since the computation power required for each process is lowered
now. The same might be true of resources like network through-
put and memory bandwidth required, but we have not measured
these. Second, an important area in which optimal QoS distribution

308

Time(%) Time(cycles) Self(%) Child time(%) Calls Name
100.0 726442 0.3 start

99.7 1 sspnOnly
99.7 723999 0.0 run proc hdr pn node1

100.0 1 proc hdr
99.7 723945 0.0 proc hdr

99.7 1 Decode Bitstream proc hdr
0.0 1 next start code
0.2 1 Initialize Buffer
0.0 1 strlen

0.0 193 100.0 Initialize Sequence proc hdr
3.8 27889 0.8 Headers proc hdr

99.2 5 Get Hdr proc hdr
99.4 721952 0.1 Decode Bitstream proc hdr

2.3 2 Headers proc hdr
97.6 1 video sequence proc hdr

97.0 704623 0.0 video sequence proc hdr
0.0 1 Initialize Sequence proc hdr
1.6 3 Headers proc hdr
0.5 1 write seq prop proc hdr
97.8 3 Decode Picture

Table 4: CallGraph

 0

 2

 4

 6

 8

 10

 12

 14

 50 60 70 80 90 100

E
ne

rg
y

S
av

in
g

QoS

Energy Saving due to P1

Figure 9: Minimum energy saving by QoS distribution, Energy
Saving and QoS expressed in %

can work is energy saving. Dynamic power management works by
switching of the processes which follow an already failed process,
e.g. in MPEG2 decoding process P1 is followed by P2 and so on,
and if P1 fails for a particular frame then P2 to P6 need not be ex-
ecuted. In the simple implementation of termination with overall
time constraint, processes would be given as much time to execute
as they want, with a check only in the end. Say P1 executes for
a long time for one data input, other processes would not be able
to meet the overall deadline. But still some of the processes did
run to completion. This would result in a higher energy consump-
tion than the optimal QoS distribution, in which P1 is given just the
right amount of time that it needs, and if it fails, we can decide not
to execute the other processes, and thus saving energy.

From the results obtained, the number of failures caused by P1
alone are of the order 4% when QoS total is 90%. Hence, if QoS
for individual processes is considered and process is terminated at
failure of P1, then simple calculations on the data show that 96%
energy is consumed compared to what would be if processes are
allowed to execute having no individual deadlines. Figure 9 shows
the energy saving only due to P1 for different QoS. The X axis

shows the total achieved QoS and the Y axis shows the energy sav-
ing made, obtained by considering that the cases when processes
are switched off, thus saving energy. By considering the other pro-
cesses, and extending the idea of aborting the iteration of the appli-
cation as soon as one process fails to meet its individual deadline,
the energy saving can be substantially increased.

Energy reduction can actually be made the objective while search-
ing for a solution to {Si}. For example in our application consisting
of processes P1 to P6, QoS of P1 may be reduced more. Imposing
a tighter bound on P1, implies early identification of failure cases,
and hence greater energy saving by following dynamic power man-
agement techniques. The algorithm ensures that the QoS require-
ments are met at every stage, and hence the solution obtained is a
more power efficient solution with the same performance. Figure 5
also shows that when lower QoS is accommodated, the power sav-
ing made by this approach are more. This is in line with the fact
that in low power battery devices, QoS required under low battery
conditions would be substantially smaller. In such a scenario, the
distribution of QoS with energy reduction as objective will be more
suitable.

9. CONCLUSION
Our work shows how QoS specification can be used for efficient

architectural synthesis. Video decoding applications have QoS con-
straints to be met. The requirement was to find the optimal QoS
for individual processes constituting the application during the ar-
chitectural synthesis stage itself. The effect of QoS of individual
processes on the overall QoS is application dependent, but we have
given a methodology following which, this relation can be found
and used for any application. We developed an algorithm which
accepts the data of the computation times of individual processes
and the required QoS. The output is the set of individual QoS for
the processes. The algorithm is based on static analysis of the ap-
plication and improves the mapping solution, without any dynamic
overhead or increase in computation time of the application. The
computation times of the processes constituting the application can
be obtained using either simulation or estimation.

The solution has been found with the objective of minimizing the

309

computation time of the application. Currently, the search that has
been implemented is exploratory in nature and can be replaced by
better techniques. It is also possible to target energy minimization,
rather than time minimization, while finding individual constraints
for processes.

The experiments were conducted on a PN model of MPEG2 De-
coder and the results applied to its mapping. The methodology can
be used for application models like periodic task graphs, and the
results be used in other mapping and partitioning algorithms. The
idea of incorporating QoS can also be extended to other resource re-
quirements like memory and interconnect. Energy aware mapping
and partitioning are active areas in research and we have shown
that QoS specifications can lead to significant reductions in energy
consumption.

10. REFERENCES
[1] Nicola Cranley and Liam Murphy, “Adaptive Quality of

Service for Streamed MPEG4 over the Internet,” in ICC2001,
IEEE International Conference on Communications, Helsinki,
Finland, June 2001

[2] M.N.V. Satya Kiran and Abhishek Marwah,“SrijanSim: A
Retargetable And Efficient System Simulation Framework,” in
Technote, Indian Institute of Technology, Delhi, May 2004

[3] Jeanette P. Schmidt, Alan Siegel and Aravind Srinivasan,
“Chernoff-Hoeffding Bounds for Applications with Limited
Independence,” in SIAM Journal on Discrete Mathematics,
1995

[4] David A. Karr, Craig Rodrigues, Joseph P. Loyall, Richard E.
Schantz, Yamuna Krishnamurthy, Irfan Pyarali and Douglas C.
Schmidt , “Application of the QuO Quality-of-Service
Framework to a Distributed Video Application,” in Third
International Symposium on Distributed Objects and
Applications (DOA’01), September 17 - 20, 2001

[5] Ralf Steinmetz and Max Mhlhuser, “Multimedia-Systems:
Resources and Quality of Service (QoS),” in
www.cs.odu.edu/ cs778/ralf, 2005

[6] Radu Marculescu and Amit Nandi, “Probabilistic Application
modelling for System Level Performance Analysis,” in Proc.
Design, Automation and Test in Europe Conf., Munich,
Germany, March 2001.

[7] Radu Marculescu, M. Pedram and J. Henkel, “Distributed
Multimedia System Design: A Holistic Perspective,” in Proc.
Design, Automation and Test in Europe, France, Feb, 2004.

[8] Jiong Luo and Niraj K. Jha, “Low Power Distributed
Embedded Systems: Dynamic Voltage Scaling and Synthesis,”
in Proc. International Conference on High Performance
Computing (HiPC), December 2002.

[9] Basant Kumar Dwivedi, Anshul Kumar and M. Balakrishnan,
“Automatic Synthesis of System on Chip Multiprocessor
Architectures for Process Networks,” in Intl. Conf. on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS 2004), Stockholm, Sweden, September 2004

[10] Jan Jonnson, “ Robust Adaptive Metric for Deadline
Assignment in Heterogeneous Distributed Real-Time System,”
in Proc. IEEE International Parallel Processing Symposium,
Puerto Rico, USA, April 1999.

[11] G. Kahn, “The Semantics of a Simple Language for Parallel
Programming,” in Proc. IFIP Congress 74. North Holland
Publishing Co, 1974.

[12] E. de Kock, G.Essink, W. Smits, P. van der Wolf, J.-Y.
Brunel, W. Kruijtzer, P. Lieverse, and K. Vissers,
“YAPI:Application Modeling for Signal Processing Systems”
in Proc. Design Automation Conference (DAC-2000), pages
402–405, June 2000.

[13] Sorin Manolache, Petru Eles and Zebo Peng, “Optimization
of Soft Real-Time Systems with Deadline Miss Ratio
Constraints,” in 10th IEEE Real-Time and Embedded
Technology and Applications Symposium, Canada, May 2004.

[14] Basant K. Dwivedi, Jan Hoogerbrugge, Paul Stravers and M.
Balakrishnan, “Exploring Design Space of Parallel
Realizations: MPEG-2 Decoder Case Study,” in International
Symposium on Hardware Software Codesign, Copenhagen,
Denmark, April 2001.

310

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

