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ABSTRACT
Upper bounds on worst-case execution times, which are com-
monly called WCET, are a prerequisite for validating the
temporal correctness of tasks in a real-time system. Due to
the execution history sensitive behavior of components like
caches, pipelines, buffers and periphery, the static determi-
nation of safe upper execution-time bounds is a challenging
task.

A successful timing analysis approach developed at Saar-
land University/AbsInt GmbH uses abstract interpretation
to derive safe WCET bounds based on timing models of the
processor and periphery in a system. So far, WCET re-
search has focused on processor timing behavior. System
performance depends heavily on the performance of the pe-
riphery, namely the system controller, which includes the
memory access logic. This paper is the first to describe ex-
perience in deriving a timing model for such a system con-
troller. The starting point is the VHDL description from
which the controllers FPGA implementation is synthesized.
By a sequence of simplifications and abstractions we obtain
an abstract VHDL model which can be translated easily into
a timing model.

The evaluation of the derived WCET tool shows that the
approach leads to a precise and efficient analysis. This opens
up the perspective of automatically deriving timing models
from VHDL descriptions also for processors.

Categories and Subject Descriptors
B.4.4 [Hardware]: Input/Output and data communica-
tions; B.5.1 [Hardware]: RTL implementation; C.3 [Com-
puter system organization]: special-purpose and appli-
cation-based systems; C.4 [Computer system organiza-

∗This work was partly supported by the German Research
Council (DFG) as part of the Transregional Collaborative
Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS) and the European
Union by the Network of Excellence on Embedded Systems
Design ARTIST2, IST-004527

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-542-8/06/0010 ...$5.00.
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engineering; J.7 [Computer Applications]: Computers in
other systems
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1. INTRODUCTION
For hard real-time systems, the knowledge about safe up-

per bounds for execution times of all tasks is a prerequisite
for systems validation. As a failure of the system (avionics,
automotive, weapon guidance, etc) may have catastrophic
consequences, the strictness of validation is high: one strives
for a proof that all tasks meet their deadlines, thus one needs
a proof that any derived bound is safe.

Obtaining execution-time bounds is a challenging task.
Modern architectures with caches, pipelines, buffers, etc.
are very sensitive to small changes in the execution state,
because the performance of those components is very ex-
ecution history sensitive, e.g. depends on cache contents,
pipeline occupancy, etc.

Static analysis has been proposed and utilized to obtain
guaranteed safe bounds [7, 14, 5, 12]. Bounds obtained by
static analysis are safe, because they are based on invariants
about all executions. These invariants are upper approxima-
tions. However, the approximations may loose some preci-
sion, i.e. the computed WCET bound may be larger than
the WCET.

The aiT tool [1] employs an abstract interpretation based
on a timing model of the system. This model consists only
of the components relevant for timing. The model works at
processor-cycle granularity and contains the necessary state
of the processor components and the systems periphery. The
principle is an abstract simulation of the model for consec-
utive processor cycles. The WCET analysis is proven to be
safe w.r.t. this model.

Yet, there is still a weak point in the rigid strive for a
correctness proof of the analysis: the models in [14] were de-
signed from information taken from processor and periphery
manuals and by performing experiments on the real hard-
ware. There is a chance that the resulting model contains
deviations from the behavior of the real hardware, as the un-
derlying information sources cannot be called authoritative.
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While great efforts have been undertaken to validate the
model by comparing its predictions against detailed hard-
ware traces in numerous experiments, an unsatisfying gap
in the proof chain remains.

This defect is not inherent in the methods applied, but
could be avoided. Modern processors and periphery are gen-
erated (synthesized) from higher-level descriptions in hard-
ware description languages (HDLs). VHDL [9], and Verilog
[15] are two examples for such HDLs. The whole behavior
of the component is described, including the timing behav-
ior. A timing model in the style of [14] derived from e.g. a
VHDL description would be an authoritative one: the re-
sulting WCET analysis is guaranteed to be correct, closing
the proof chain from hardware to WCET results.

Unfortunately, there are no VHDL or Verilog descriptions
publically available for the processors modeled in [14], which
where the targets for WCET analysis in the DAEDALUS
project [4]. However, Airbus France gave us access to a
VHDL specification of a system controller. This quite com-
plex controller connects the CPU to main memory and sev-
eral busses (PCI, etc). System performance for real-time
control applications is mostly limited by the performance
of peripherals, especially memory access times. The sys-
tem controller’s timing behavior has thus huge influence on
overall program execution performance and on the timing
predictability.

First, we tried to obtain a “high-level” model for this con-
troller in the same style as the model for the PowerPC 755
was designed. The intention behind this was that such a
high-level model would be more efficient for analysis. How-
ever, we were not able to obtain such a model, because the
only high-level descriptions available were not exhaustive
and only contained cases that engineers judged to be worst-
case scenarios. Due to timing anomalies [10] in the Pow-
erPC 755, one cannot rely on local worst-case descriptions
but must also consider other behavior for a global worst-case
analysis. Looking at the VHDL sources of the controller, it
became obvious that the inner workings are quite compli-
cated and interdependent.

Thus, a timing model for this controller was derived from
the VHDL description. This method gave a model that ac-
curately captured the controller’s behavior. In this paper,
we present our experiences with this process and the lessons
learned. Compared to a high-level model, this approach has
the possible danger of giving an inefficient model. After all,
we do not try to extract “meaning” from the VHDL sources,
e.g. that an access is a page hit in SDRAM, but rather (ab-
stractly) simulate the execution of the VHDL code itself.
On the other hand, correctness of the model is guaranteed
with this approach. As it turned out, the efficiency of this
“dump” approach is very good and does not pose a practical
problem.

Section 2 presents a short overview about WCET analy-
sis in general, especially about timing models. The concepts
and semantics of VHDL are sketched in Section 3. The sys-
tem controller is described in some detail in Section 4. The
important contribution of this paper is handled in Section 5:
how we obtained a timing model from the VHDL descrip-
tion. An experimental evaluation of integrating the model
into aiT is given in Section 6. Section 7 concludes the paper
and discusses related work.
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Figure 1: The aiT toolchain

2. THE WCET ANALYZER: AIT

The WCET tool aiT performs timing analysis in sev-
eral phases, it reconstructs the control-flow from an exe-
cutable, performs loop recognition, value analysis, system
analysis and computes the global bound from basic block
contributions, cf. Fig. 1. The details can be found in [7,
14]; relevant for this paper are only the value analysis and
the system analysis. The value analysis computes an over-
approximation for data addresses, an interval for each data-
access instruction in the program. In most cases (> 80%)
the analysis is able to determine exact addresses (i.e. sin-
gleton intervals). For the others, this means that the next
phase, the system analysis, has to assume that any memory
location inside the interval may be accessed by the instruc-
tion.

The system analysis computes an upper bound for each
basic block in each control-flow context. To compute the
bound it determines at each program point a set of abstract
system states. Each abstract system state represents a set of
(concrete) states of the system (content of queues, pipeline
stages, etc) such that every possible concrete system state at
the program point is represented by one abstract state. In
an abstract system state, there are no components, which do
not influence the timing behavior. Some components that
do influence the timing behavior are too costly to keep in
an analysis, e.g. memory or register contents: the analysis
assumes no information about their real contents and uses
a conservative approximation. Other components, e.g. the
caches, are approximated such that safe information is re-
tained about their contents, although the information is not
complete, cf. [6].

System analysis is an abstract simulation of the evolution
of these abstract system states over processor cycles. The
simulation for an instruction stops, when the instruction
has left the pipeline. The maximal number of transitions
from a starting state is the bound for that instruction. The
resulting states at simulation end are the starting states for
the successor instruction.

The transitions from one state to another are given by
a timing model. This model describes the different compo-
nents of a state and how it evolves. Following the examples
for HDLs, the model structures components into units (like
integer unit, load store unit, etc) communicating via signals.
Our formalism uses two types of signals: instantaneous and
delayed, which can both carry data. Instantaneous signals
take effect as soon as they are emitted, i.e. in the same pro-
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cessor cycle, receiving units react upon them immediately.
Delayed signals are received only in the next processor cycle
and thus carry events over processor cycles. Fig. 2 shows a
top-level view of the model for the PowerPC 755 processor
taken from [14]. Delayed signals are shown as dashed lines,
instantaneous as solid lines. The complete definition of the
model can be found in [14] here it is only important that
the three delayed signals at the bottom of Fig. 2 handle the
communication between the processor core (its Bus Unit,
BU) and the system controller (Chip Set Unit, CSU). The
ts(a, t, l) signal mimics the PowerPC 755’s transfer start sig-
nal with address a, type t (data or instruction) and length l
(1, 2, 4, 8 byte or burst access with 4× 8 bytes). The aack
and ta signals are the counterparts of the 755’s address ac-
knowledge and transfer acknowledge signals. The address
parameter of the ts signal is not a simple 32 bit address,
but rather an address interval computed by the value anal-
ysis. The bus protocol of the PowerPC 755 is divided into an
address phase and a data phase. The processor requests an
access by asserting ts, then waits for the aack signal from
the system controller. This constitutes the address phase.
The actual data is then transferred upon assertion of the ta
signal by the controller; one assertion for single transfers,
four assertions for burst accesses. This constitutes the data
phase. While a data phase is in progress, another address
phase may be performed (pipelining).

We want to derive a timing model for the CSU unit from
its VHDL description. For this purpose, the next section
briefly introduces VHDL.

3. VHDL
VHDL [9] models hardware by first specifying the inter-

facing of the components, called entities, and then giving
an implementation, called architecture, for each entity. The
interface consists of the signals that an entity receives or
sends out; signals can carry data.

An architecture can either implement an entity by giving
its subcomponents and their interconnection or by giving a
number of parallel processes. A process is sensitive to a list
of signals (from its interface or locally declared ones) and
executes an imperative program every time the value of a
signal in its sensitivity list changes. Besides signals, VHDL
also provides variables. The difference between the two lies
in the moment, at which an assignment takes effect. An
assignment to a variable takes effect immediately, while an
assignment to a signal is only scheduled to take effect later,
when the process suspends. The reason for this differenti-
ation lies in the resolution of conflicts during the parallel
execution of all processes. All processes that have been trig-
gered for execution by a signal change execute until they
have reached the end of their program code1.

When all processes have suspended, the new values for
signals scheduled by assignments take effect and may cause
several processes to restart. Variables are always local to a
process, so no effects across processes can occur by variable
assignment. As observed in e.g. [8], this form of parallelism
can be simulated by executing the processes in an arbitrary
order until they have suspended and then performing the
signal assignments. It is checked if any process has to be

1Or until they reach a wait statement. For synthesisable
VHDL, such a statement is implicitly placed at the end of
the process code and cannot occur anywhere else.

1 ENTITY buf IS

2 PORT(rd: in std logic; wr: in std logic;

3 dr: out std logic vector(15 downto 0);

4 wd: in std logic vector(15 downto 0);

5 reset: in std logic;

6 clk: in std logic );

7 END;

8 ARCHITECTURE rtl of buf IS

9 signal data: std logic vector(15 downto 0);

10 work: PROCESS(reset, clk) IS

11 IF (reset=’1’) THEN

12 -- clear data on reset

13 data <= "0000000000000000";

14 ELSIF (rising edge(clk)) THEN

15 IF (wr=’1’) THEN

16 -- write request

17 data <= wr; -- new content

18 END IF;

19 IF (rd=’1’) THEN

20 -- read request

21 dr<=data; -- copy out data

22 END IF;

23 END IF;

24 END; -- of process work

25 END; -- of architecture

Figure 3: A buffer in VHDL

restarted due to changes in the value of a signal in its sen-
sitivity list and the evaluation begins anew. Fig. 3 gives a
small VHDL example for a buffer.

In this example, a small buffer can be read or written
at the rising edge of the clock clk, while the reset signal
clears the data (and takes precedence over reading/writing).
A read request is denoted by a 1 on signal rd, write opera-
tion by signal wr; both can be active at the same clock edge.
Data is input/output via wd and rd. Note that the value
of signal data on line 21 holds the value the signal had at
the start of process execution, as the potential assignment
on line 17 has not yet been performed, but is only sched-
uled for execution at suspension time: when performing a
simultaneous read and write access, the read data returned
will be that of the previous write access (or 0), not the
one currently being written. By changing the declaration
of data to variable data: std logic vector(15 downto

0); and all assignments to it to use the variable assignment
operator := instead of <=, this behavior changes, as the ref-
erence in line 21 will then get the value written in line 17!

In the design we investigate, all processes are either sensi-
tive to the rising edge of the systems bus clock, or are queues
triggered by a read or write signal. Thus, in this case, all
processes have to be executed at the rising edge of the clock
until they finish and then execute the processes that handle
the queues, if the respective read or write signal has been as-
serted. No recheck of process execution is necessary for our
design. The next section gives an overview of the system
controller’s components and operation.

4. THE SYSTEM CONTROLLER
The system controller is automatically synthesized from a

VHDL description. It contains four main parts, cf. Fig. 4.
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Figure 2: PowerPC 755 timing model

The PowerPC bus interface manages the PowerPC bus.
Accesses on this bus are made up of two phases: address and
data. During the address phase, initiated by the ts signal
going active, the address, length and type of the access are
put onto the bus by the CPU. The system controller finishes
the address phase after latching the address and size/type
information by asserting the aack signal. The data phase
starts after the address phase is complete. Transfers are
acknowledged by putting the data onto the data lines and
asserting the ta signal. Depending on the transfer direction
(read or write), data lanes are driven by the CPU or the
system controller. The bus is pipelined, i.e. a new address
phase can start as soon as the previous address phase has
finished, even if the data phase of the first access is not
yet completed. The PowerPC CPU (PPC 755) limits the
pipelining depth to two outstanding accesses at any time.
Also, the interrupt and exception inputs of the PPC 755 are
generated by the controller.

The SDRAM part of the system controller is made up of
a part that directly drives the SDRAM protocol lines (RAS,
CAS, etc) and a checksumming part that provides the Error
Correcting Code (ECC) capability of the memory. For each
64 bit (the native bus width of the PPC 755) of data in
memory, 8 additional bits with checksums are stored. This
allows to detect two bit errors in memory. Furthermore, the
controller automatically corrects one bit errors during trans-
fers. The disadvantage of using ECC is that it can only be
computed for full 64 bit double words. For shorter accesses,
writing only a part of a double word, the full double word
must be read from memory, partly replaced and written back
after computation of the new ECC. To avoid this perfor-
mance penalty, the controller contains a write buffer. In
case of multiple consecutive short write accesses to the same
double word, only the first access has to read the data from

PPC Bus

PCI Bus SDRAM

InternalPCI Engine

IFace

2

1

3 4

ECC

SDRAM Control

1. The interface to the PowerPC bus

2. A SDRAM controller with ECC capability

3. A PCI controller

4. Internal registers and features

Figure 4: The system controller

memory. Further accesses only have to perform ECC com-
putation and double word writes. As usual with SDRAM
controllers, the system controller keeps track of the pages
it has open in the SDRAM memory chips. The controller
can have up to four pages open. Access time to SDRAM
heavily varies wether the accessed page is open or not. The
necessary refresh logic is also part of the controller.

The PCI part connects to a slower (1/2 of the bus clock)
PCI bus via a commercial PCI master interface. The in-
terfacing also contains a write buffer for PCI writes. The
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PCI transfer logic is handled by the commercial PCI mas-
ter, whose VHDL was not available for analysis, which in
turn is accessed by a simpler transfer protocol.

The internal functionality contains DMA engines, timers,
exception and interrupt generation logic and internal regis-
ters. The PCI and internal registers are memory mapped
into the PPC 755’s address space. Due to the buffers, page
registers and ECC machinery, the timings for accesses heav-
ily depends on the sequence of accesses performed by the
PPC 755 CPU and the intervals between consecutive ac-
cesses. No fixed timings can easily be derived and a higher
level description of access timing based on the sequence of
accesses being performed has not been possible with accept-
able effort. Therefore, we choose to simply transform the
VHDL itself into a timing model; the next section describes
our approach.

5. TRANSFORMATIONS OF VHDL
The VHDL model of the complete controller is quite large,

18000 lines of VHDL in total. As the PPC 755 model itself
is already quite complex, adding another complex part into
the timing model would render the resulting timing analy-
sis infeasible in terms of space and time consumption. The
setting given by the design of the hard real-time system
hardware and software determines, which scenarios have to
be modeled for timing analysis. If, e.g., the design will never
use a timer built into the system controller, then this timer
doesn’t have to be modeled. Other events, which are either
asynchronous to program execution (interrupts, peripheral
DMA) or are not predictable (ECC errors in RAM, excep-
tions) in the model cannot be dealt with in the analysis itself,
thus they don’t need to be in the model. Their effects on
execution time has to be considered in a different manner,
e.g. by statistical means or by adding penalties based on the
computed WCET and worst-case occurrences of events. In
the following, we list several issues the analysis can safely
ignore or has to deal with differently.

Exceptions/interrupts: if the system controller signals
an exception or interrupt to the CPU, the control soft-
ware will shutdown the complete system. In this case,
no bound for the tasks running when the exception
happens is needed. We can therefore safely assume
that no exceptions are signaled by the system con-
troller to the CPU.

Asynchronous Events: SDRAM refreshes, rewrites due
to ECC corrections, PCI slave device DMA transac-
tions and SDRAM to SDRAM DMA engine transac-
tions happen asynchronously w.r.t. program execution.
It is not possible to precisely include the events in a
static analysis. Instead, their effects can be incorpo-
rated into the analysis result afterwards by computing
how often they could have happened in the WCET
time interval and adding penalties for each occurrence.

Data Path Elimination: We cannot say anything about
data paths in our abstract timing model, as we have
already abstracted away registers and computations
in the CPU model. Thus, we want to abstract away
from data paths in the system controller model as well.
At the same time, information is not always available
precisely. For data accesses, the CPU model cannot
always provide an exact address, but rather provides

an interval of possible access addresses. Thus the in-
put to our model via the ts signal is an interval. This
means that for all parts that have to store the address,
namely the write buffer and SDRAM open page reg-
isters, we also use intervals. In addition, flags that
record if the data in a write buffer is valid are now not
boolean, but can take the additional value of ? for
“don’t know”.

From this basis, our task for deriving a timing model from
the VHDL code is threefold:

• throw away anything that is not relevant for timing
analysis

• abstract away things we cannot represent (precisely)

• translate the VHDL processes into a timing model up-
date program that performs the state update of the
system controller unit (unit CSU in Fig. 2)

Most processes in the VHDL code of the system controller
are structured as the example code in Fig. 3: one code block
handles the initialization when the reset signal is asserted,
another (mutually exclusive) code block handles the action
that is triggered by the bus clock. The reset action assigns
default values to all variables and signals in the design and
is not important during normal execution of the code.

5.1 Obtaining the default signal values
When we simplify the VHDL design in a later step, we will

remove assignments to signals or variables. Any remaining
read-references to these then read a constant value. This
value is the initial value of the signal or variable, which is
assigned when the system controller goes through the sys-
tem reset. To identify the default values of signals and vari-
ables, we evaluate the code segments that are triggered by
the system reset signal. The contents of all signals and vari-
ables after the code segments have finished are the initial
values. Note that the computation of the initial values may
not happen in just one clock cycle after the reset signal is
asserted. Several parts of the system have a longer initial-
ization sequence, e.g. the SDRAM controller, which goes
through a sequence of programming steps for the attached
SDRAM chips. Therefore, we have to define a condition on
the VHDL components that is true as soon as the system
has reached its “ready” state. We then simulate VHDL exe-
cution until this condition becomes true and take the values
of signals and variables at that point.

5.2 Finding important components by slicing
We only want to keep the parts of the system controller

that can influence the timing behavior. We perform forward
and backward slicing [16] on the VHDL code to find those
parts.

A forward slice on VHDL determines those instructions in
processes that may be executed, depending on the values of
a set of signals (and/or variables). This set constitutes the
slicing criterion. All instructions not in the slice are guar-
anteed to not depend on any signal (variable) in the set.
Naturally, the computation of the slice has to take into ac-
count transitive dependencies and dependencies introduced
by the sensitivity lists and process restarts of VHDL.

A backward slice contains those instructions that may in-
fluence the value of a signal (and/or variable) from a set of
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foo: PROCESS(x,y) IS

1:IF x=’1’ THEN

2: z<=’1’;

3:END IF;

4:w <=’0’;

5:IF x=’1’ THEN

6: r<=’1’;

7:END IF;

foo: PROCESS(x,y) IS

1:

2:

3:

4:w<=’0’;

5:

6:

7:

Figure 5: Sequential context elimination

those at the end of process execution (at suspension time).
Any instruction not in the slice is guaranteed to not influ-
ence the value of the signal (variable).

The timing depends only on the timing of the activation
of the transfer signals aack and ta from Fig. 22. We perform
a backward slice on these signals. All instructions not in this
slice cannot have an effect on the timing of these signals and
can thus be removed from the design. For the ts signal, we
have to perform a forward slice to find all parts of the design
that may be influenced by a new transaction on the bus and
may thus influence the timing. The union of these two slices
is the initial set of instructions we have to consider in the
remainder. All other instructions never have an influence on
timing.

5.3 Eliminating dead components
To reduce the size of the VHDL description, we have to

find code sections that are never executed. As stated before,
we assume that no interrupts, exceptions, error cases, etc.
happen during normal execution. As these events are trig-
gered by asserting signals (external on the bus or internal
signals in the controller code), we can simply “hardwire”
their values to the unasserted state. For those signals, we
look at every place in the program, where the signal is be-
ing assigned to (their definitions). If a value is assigned that
is different from the unasserted state, this assignment will
never be executed during normal execution and is thus dead
code. We can remove not only that assignment from the
code, but also its sequential context. The sequential context
of an assignment is the maximum section of the code that
will be executed if and only if that assignment is being ex-
ecuted. Consider the code on the left in Fig. 5 and assume
that signal r is hardwired to the unassigned state ′0′. Thus,
the assignment at line 6 is dead. The assignment is executed
if and only if the signal x has the value ′1′. Since x cannot
have value ′1′ during execution, this renders the assignment
to z dead code (in fact, the whole if statement). This leaves
only the code on the right in Fig. 5.

Note that the signal assignment semantics makes it very
easy to search for dead code in a process: the value of signal
x in the condition on line 5 is the same in the whole process.
Furthermore, we can propagate the condition x /= ’1’ at
every place in the design and find dead assignments for x.

Another reduction is the removal of variables or signals,
that are not used in expressions, but are assigned to. Since
nothing depends on their value, those variables or signals can
be completely removed. In some cases, this leaves empty
if-then-else constructs, where the branches only contained

2ts is driven by the CPU.

assignments to unused variables or signals. Removing the
whole if-then-else construct removes uses of the variables or
signals in the condition. Note that one must be careful not to
remove such assignments if the signal being assigned occurs
in the sensitivity list of a process; the later constitutes a use
of the signals value.

5.4 Value propagation
For the dead component elimination we have to know if

expressions have a constant value. To statically evaluate all
expressions as far as possible we can look at all the signals
and variables in the program and the places, at which they
are defined. If a signal or variable does not have a definition
and if it is not an external signal, then we can replace any
occurrence of the signal (variable) by its initial value and
remove its declaration completely. After doing this, we can
try to statically evaluate any expressions in the processes.
Some of them will evaluate to a static value, e.g. conditions
in if-then-else statements. For these conditionals, we can
either remove the ‘else’ part (if the condition evaluates to
true) or the ‘then’ part together with the condition test.
This will remove additional definitions of variables, allowing
to repeat the propagation process.

5.5 Abstraction
So far, this process follows traditional reduction tech-

niques for HDL simulation or verification. It turns out, that
the resulting model is still too large and contains elements
which cannot be put to use in the analysis framework due
to the abstractions already performed in the CPU part: re-
moval of data elements and approximation of addresses by
intervals.

By removing the data paths, the VHDL model shrinks
considerably because all data buffers are eliminated, the
ECC computation collapsed to a mere cycle delay compo-
nent and data routing code is removed. The latter also re-
moves uses of control signals.

The addresses in the design are replaced by address inter-
vals, as this is what the other part of the timing model use
as approximation. This step introduces non-determinism
into the model. Whenever a decision depends on abstracted
data and the abstraction is not able to precisely determine
the condition3, then both branches of the conditional execu-
tion have to be followed by generating new abstract system
states for each outcome. For the write buffer, we would
generate one state, where we assume the access hits in the
buffer and another one that assumes a miss. This is a safe
approximation which introduces more computation costs for
the WCET analysis.

Consider the write buffer for SDRAM accesses: the code
checks, if a write access hits in the buffer and then updates
the buffer and schedules a 64 bit write to the ECC engine.
Otherwise, a read of the double word is requested first. The
address tag in the write buffer has to be changed to an
interval. With address intervals we cannot always decide,
if an access hits in the write buffer or not. If the address
is the interval [1024,1056] and the write buffer tag is the
interval [1024,1032] then the access may hit in the buffer or
it may not: under this abstraction we cannot rule out either
case. If, on the other hand, the write buffer contained the

3Note that this is a dynamic feature: for the write buffer
we are able to determine exact hit/miss outcomes if the
boundaries of the intervals are cooperative.
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interval [512,520], then we know for sure that the access
misses in the write buffer. As the PPC 755 shows timing
anomalies [10], we cannot simply assume the local worst-
case (buffer miss), but have to consider both possibilities in
order to be sure to correctly approximate the global worst-
case behavior.

The same principle can be used for the page open registers
in the SDRAM controller itself and the determination of
page hit or miss.

As we removed the data paths completely, another form
of abstraction is possible. The controller design passes ac-
cess requests in some parts via a queue of accesses (access
pipelining). If we remove the data path, then entries in
some queues are empty. That means that only the number
of queue entries is important but not the contents of the
entries anymore. We can safely abstract the queues to mere
counters, which transforms the add and removal operations
on the queues to counter increments and decrements.

For accesses to the internal register of the system con-
troller, removing the data paths and hardwiring certain ex-
ception signals leads to a simplified structure of access tim-
ing. The register handling is distributed among the design,
according to the functional block that are controlled by the
registers. All access sequences in the different parts are a
simple sequence of clock cycles until transfer acknowledges
are generated. Thus, the register accesses can be centralized
again and abstracted by a simple access timer that counts
down clock cycles until the transfer acknowledge is asserted.

5.6 Iteration
The last three steps have to be repeated several times

until the VHDL model doesn’t change anymore. E.g., in the
assignment x<=y; assume that value propagation determines
that y can be replaced by its initial value ‘0′ but this value
contradicts the hardwired value ‘1′ for x: the assignment
becomes dead code, together with its sequential context.

5.7 Integration
The reduced and abstracted VHDL code has to be brought

into the form necessary for our timing model framework us-
ing delayed and instantaneous signals. That is, we have to
transform the VHDL semantics into the sequential unit up-
date of the timing model.

We choose to implement VHDL signals and variables as
mere unit components of our framework, cf. [14] for details;
intuitively, components are like variables in VHDL. Luckily,
the semantics of the ts, aack and ta signals is already VHDL
compatible, as they are delayed signals checked only at bus
clock intervals. As stated before, the design is mostly edge
triggered on the bus clock, with only a few queue-access
processes being triggered by queue read and write signals.
Therefore, we can safely concatenate the code of the clock
triggered processes into one sequential program. To handle
the delayed signal assignments, we follow the usual approach
in VHDL simulation and introduce for each signal a second
copy, the “future” incarnation of the signal. Assignments
are then simply assignments to these future incarnations,
while references use the actual signal values. Then, after
all clock triggered processes have finished, we can copy the
future VHDL signal values to the actual ones. After this, the
process code for queue accesses is executed, if the signals in
the sensitivity lists of those changed, which can be translated
as simple conditional checks. As the last step, the delayed

Table 1: Benchmark results
Prog. VHDL model Simple model Ratio

# WCET comp WCET comp WCETs

1 79774 111 94673 120 1.19
2 20006 15 23521 16 1.18
3 48031 5 57138 6 1.19
4 19929 6 23586 3 1.18
5 75436 4 93215 6 1.24
6 21254 15 24856 10 1.17
7 36721 6 43670 5 1.19

signals ta and aack are generated, if they are active in the
system controller components.

Naturally, as accesses on the PCI bus depend on the pe-
ripherals connected to the bus which we don’t know, the
PCI accesses part at the bus uses user supplied information
about access timings. That is, the user has to specify how
long a PCI transaction, once initiated takes to complete for
the devices mapped at specified addresses.

As our WCET analysis implements the actual cycle sim-
ulation in C, we had to translate the sequential unit update
for the CSU into C. The result is 1300 lines in C; the original
VHDL description has around 18000 lines. This transforma-
tion is straight forward and could have been automated. As
the effort to write the code generator would have been higher
than coding the model directly in C, this was not done. See
Section 7 for our future plans on this topic.

6. EVALUATION
The timing model has been integrated into aiT, the WCET

analysis tool with the PPC 755 implementation. To verify
the hand coded implementation of the abstracted VHDL
model in C, the predictions of aiT w.r.t. activation of the
bus signals were compared to actual hardware traces on a
large number of program runs. As could have been expected,
the traces are perfectly predicted by the model.

To assess the costs and the precision gain of adding this
detailed model of the system controller to the WCET anal-
ysis, we ran the analysis on several benchmark programs.
As basis for comparison we designed a much simpler sys-
tem controller which performs transfers which fixed timings,
where the timings can be specified per memory area being
accessed. We specified timing that we believe are upper
approximations to the SDRAM, PCI and internal register
access times.

The benchmarks are a representative set of programs from
the avionics area used at Airbus France to evaluate the use
of aiT. Table 1 gives the predicted WCET and computa-
tion time (in seconds) for the system analysis both for the
VHDL derived timing model and for the simple model. The
memory consumption is not given: we use a garbage collec-
tion based memory allocator. The tests were run on a 2Ghz
Pentium IV machine with 1GB of main memory. We choose
smaller benchmarks: each has between 8kB and 30kB of
code. The cache is configured such that only 8kB are avail-
able for replacement, the remainder is filled with garbage
data. Thus, the benchmarks are big enough to generate
cache contention.

Using the VHDL derived timing model for the system con-
troller does not significantly increase the analysis time: it
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doubles at most for small execution times. Sometimes, the
VHDL based analysis is even faster: this is because it can
correctly predict that accesses are performed faster (write
buffer hit). On the other hand, the predicted timing bounds
increase by 17-24% with the simple analysis. Given that in
[13] a precision of the timing analysis of around 30%-50%
was given w.r.t. running times, this means that a simple
model would overestimate around 50%-70%, i.e. half the
predicted time bound. On the other hand, there may be
cases when the simple model underestimates due to timing
anomalies in the PPC 755.

This shows that the derivation and integration of a timing
model from a VHDL description is not only possible but also
efficient. The computed timing bounds are not only correct
but also more tight than those computed with a different,
simpler model.

7. CONCLUSIONS AND RELATED WORK
We presented a way to derive a timing model for a system

controller from its VHDL description. The process involved
simplification of the design and abstraction of several com-
ponents by an abstract interpretation. The model was im-
plemented and integrated into the aiT tool and compared
against a simple model with approximated fixed times for
memory accesses. It has been shown that the performance
and precision of the new model are indeed very good. The
advantage of deriving the model from VHDL are that the
modeling source is authoritative.

We are continuing work in this direction. In the course
of the AVACS SFB, we are working on a framework that
can help to automate the steps necessary to derive a tim-
ing model. In this framework, VHDL designs can be parsed
and transformed into a representation suitable for data-flow
analysis. Slicing and other data-flow analyses, e.g. constant
propagation are implemented using the PAG [11] framework.
Furthermore, transformations on the VHDL are supported,
guided by tools using slicing and data-flow results to autom-
atize the steps mentioned in Sec. 5. Provisions are made to
specify which parts of the design are to be replaced by ab-
stractions. Furthermore, an automated code generation tool
produces C code that can be directly plugged into the aiT
tool to obtain the timing analyzer.

As a first goal, we are targeting the LEON SPARC pro-
cessor together with simple periphery in this process.

Another area of active research is the question of reusing
and combing models of peripherals. The AMBA bus has
gained wide use as a periphery interconnect bus at chip level.
Deriving models that all utilize this bus protocol in the same
way allows to easily built more complex models for a whole
chip from simpler building blocks.

7.1 Related Work
Modeling periphery access times has not played a role in

WCET research so far. If varying access times for different
memory areas are considered at all, they are assumed to be
fixed.

A lot of work has been done in performing simplifications
on HW designs both for synthesis or validation by model
checking. For verification, usually some parts of the design
are black-boxed or hidden behind a functional abstraction
[2, 3]. When simplifying for synthesis the goal is usually
to remove unused signals from the design to minimize the
resulting net lists. This can also include a simplification

of the design by hardwiring inputs and obtaining the back-
ward/forward slices.

To the best of our knowledge, no work has been proposed
for deriving timing models from VHDL or Verilog descrip-
tions.
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