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ABSTRACT
Distributed real-time and embedded (DRE) systems have stringent
constraints on timeliness and other properties whose assurance is
crucial to correct system behavior. Formal tools and techniques
play a key role in verifying and validating system properties. How-
ever, many DRE systems are built using middleware frameworks
that have grown increasingly complex to address the diverse re-
quirements of a wide range of applications. How to apply formal
tools and techniques effectively to these systems, given the range
of middleware configuration options available, is therefore an im-
portant research problem.

This paper makes three contributions to research on formal veri-
fication and validation of middleware-based DRE systems. First, it
presents a reusable library of formal models we have developed to
capture essential timing and concurrency semantics of foundational
middleware building blocks provided by the ACE framework. Sec-
ond, it describes domain-specific techniques to reduce the cost of
checking those models while ensuring they remain valid with re-
spect to the semantics of the middleware itself. Third, it presents a
verification and validation case study involving a gateway service,
using our models.

Categories and Subject Descriptors: D.2.4 [Software/Program Ver-
ification]: Model Checking

General Terms: Verification, Design.

Keywords: Middleware, Timed Automata.

1. INTRODUCTION
Significant research over the past decade has made middleware

more customizable through the use of pattern-oriented software
frameworks [13, 12]. Although this effort has made middleware
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solutions suitable for a wider range of applications, managing the
resulting multiplicity of customization options has become an in-
creasing concern. As is shown in Figure 1, abstractions from higher

Figure 1: Layers, Abstractions, and Properties

layers of the system software architecture build upon abstractions
from lower layers. This establishes an implicit dependence of higher
level properties on lower level properties, which in turn makes the
formal verification of application-level requirements more difficult
in middleware-based systems.

As Figure 1 illustrates, application-level properties such as the
timely return of a remote method invocation (A1), may depend
on middleware-level properties such as delays introduced by dif-
ferent strategies for establishing and re-using connections with re-
mote endsystems (M1) or for delivering the result of the remote
invocation to the application (M2). Furthermore, middleware-level
properties such as the delay in delivering the result of the remote in-
vocation to the application (M2) may depend on other middleware
properties such as the strategy used to wait for the reply from the re-
mote invocation (M3) and on OS-level properties such as whether
threads with the same priority are scheduled with round-robin or
run-to-completion semantics (O1) and whether other threads are
holding resources needed by the thread that will return the result to
the application (O2).

We have focused previously on the design and proof of protocols
to enforce application-level properties that depend on other proper-
ties at the application, middleware and OS levels. For example, we
have developed [22] and optimized [21] thread allocation protocols
that can provably avoid deadlock in middleware-based distributed
real-time and embedded systems whose 2-way remote method in-
vocation call graph is known. While this approach serves to ad-
vance the state of the art in both middleware design and distributed
systems theory, careful effort is required to design and prove an
enforcement protocol for each property of interest. The research
presented in this paper complements the design and proof of en-
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forcement protocols for system properties by establishing a formal
foundation that can be re-used effectively to check properties for
which enforcement protocols have not yet been developed. Our ap-
proach is also useful when existing enforcement protocols do not
consider new influences, such as those introduced by other enforce-
ment protocols or by new middleware or OS features.

Our approach offers the following benefits beyond those offered
by other related work, which we discuss in Section 7: (1) our
reusable, detailed and executable models of middleware building
blocks can be composed to model different kinds of middleware,
and then can be composed with different application models; (2)
the timing and liveness properties of these building blocks can be
verified with suitable precision; (3) our models offer a more rig-
orous and formal representation of detailed middleware engineer-
ing expertise that is currently represented as patterns [24]; (4) with
these resuable low-level models and verification techniques, the ex-
tent to which systems must be “over-designed” can be reduced due
to greater insight into the possible behaviors of middleware-based
systems.

The rest of this paper is structured as follows. Section 2 presents
a detailed system model and states the research problem this paper
addresses. Section 3 describes the middleware architecture that is
captured by our models. Section 4 discusses challenges and solu-
tion approaches for modeling concurrent object middleware using
the IF tool set. Section 5 discusses domain-specific state space opti-
mizations to allow tractable checking of the models we have devel-
oped. In Section 6, we present a case study of scenarios involving
a broader set of middleware concurrency and interaction strategies,
which in turn affect system timing and liveness properties. Sec-
tion 7 describes related work, and Section 8 offers concluding re-
marks.

2. SYSTEM MODEL AND PROBLEM
In this section, we formally describe some of the canonical build-

ing blocks [24] used in the construction of real-time middleware
and their interactions. We also describe the methodology that we
use to model and verify real world examples (see section 6) using
middleware built from these canonical building blocks. Although
our approach is similar to the approaches used in modeling and
verifying component interactions [11] in the context of a compo-
nent model like CORBA Component Model [29], the key differ-
ence from those approaches is the granularity of the elements that
interact. The interactions between the middleware building blocks
(e.g.packet arrival through an interprocess communication chan-
nel that can result in triggering a return from a select OS system
call, reactor making an upcall to an event handler) are less explic-
itly structured and more diverse than standard component models
(e.g.interaction via ports and event channels) and hence must be
captured by models that incorporate state transition and timing se-
mantics at a finer granularity than component models. We need
the full power of timed automata [1] for capturing the interaction
semantics of these middleware building blocks.

Our system model can be expressed as a 6-tuple {E, H, I,R, A, θ},
consisting of the following elements:

• E is a set of events denoting relevant asynchronous changes
in the system’s state, such as the expiration of a timer, the
arrival of a network packet, or a transport-layer buffer be-
coming available for writing.

• H is a set of event handlers, which perform application-
specific processing when system events are dispatched to them.

• I is a set of interaction channels, such as sockets and timer
registration interfaces, which trigger events as a result of ac-
tions performed on them.

• R is a set of reactors, which dispatch events to event handlers
by invoking event-specific handler methods.

• A is a set of actions performed on event handlers, interaction
channels, and reactors – such as registering an event han-
dler with a reactor, dispatching an event to an event handler,
sending data over a socket, or waiting in a reactor for events
to occur.

• θ is a set of endsystem threads – actions within a thread are
performed sequentially, while actions in different threads can
be performed concurrently.

Note that some categories of events (e.g., the return of a thread
from a method call) and actions (e.g., invoking a method call) could
apply to multiple instances and kinds of system elements. Further-
more, a given event or action can be performed repeatedly. To avoid
ambiguity, we assume that every event and every action is identi-
fied uniquely, and that each occurrence of a given event or action
is indexed uniquely across the entire system. We also assume that
each occurrence of an event is instantaneous, while each occurrence
of an action has a (possibly different) non-zero temporal duration,
and the initiation and completion of each action are represented by
distinct events in our system model.

The dynamic interactions between these elements capture for-
mally the relevant parts of the system behavior. These interactions
can be transformed into formulas in temporal logic using the rela-
tions described below. These formulas can then be proved using
formal verification techniques, such as model checking, abstract
interpretation, and deductive methods. Sections 4 and 5 describe
how these relations can be mapped to the IF model checker, while
Section 6 presents a proof using the IF tool. We envision a de-
velopment cycle where the translation (and its validation) to this
formal model is performed by the component developer. Some of
these translations and formal proofs can be reused across scenarios,
and are composable to form larger proofs specific for the particular
application.

Static relations. We first express several static relations in our
system model, which hold for the entire system lifetime. These re-
lations partition actions according to the system elements on which
the actions can be performed, and partition threads into reactor-
specific thread pools:

• αH : H → 2A. The set of actions that can be taken on event
handler h is given by αH(h).

• αI : I → 2A. The set of actions that can be taken on inter-
action channel i is given by αI(i).

• αR : R → 2A. The set of actions that can be taken on reactor
r is given by αR(r).

• threadpool : R → 2θ . The set of threads assigned statically
to reactor r is given by threadpool(r), with each thread as-
signed to exactly one reactor, and at least one thread assigned
to each reactor. We say that two threads are local to reactor
r if both are assigned to that same reactor. We say that two
threads are remote if they are assigned to different reactors.

Temporal relations. We use non-negative real number domain T
to denote time, and express several temporal relations in our system
model that are useful for the analysis of system timing and liveness
properties:

• registered : E×I×R×T → 2H . The set of event handlers
registered for event e on interaction channel i in reactor r at
time t is given by registered(e, i, r, t).

• active : R × T → 2E . The set of events that have arrived
at reactor r but have not been dispatched to event handlers at
time t is given by active(r, t).
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• ready : E × R × T → 2I . The set of interaction channels
for which event e is active in reactor r at time t is given by
ready(e, r, t), and a single event-specific action, such as one
read from a socket for a “data ready” event, can be taken on
a ready channel without blocking the thread in which that
action is taken.

• dispatched : R×T → 2θ . The set of threads in threadpool(r)
that are currently in use to dispatch events to event handlers
in reactor r, and thus are not available to dispatch other events
from active(r, t) at time t is given by dispatched(r, t).

• blocked : R×T → 2θ . The set of threads in threadpool(r)
that have taken blocking actions that will only unblock and
allow the thread to continue when a specific event occurs is
given by blocked(r, t). Note that for some scenarios, such as
a thread scheduling a timer and then blocking on the timer’s
expiration, unblocking will not depend on an action being
performed in another thread; for other scenarios, such as a
thread performing a blocking read on a socket, an event to
trigger unblocking must be generated by an action taken by
another (possibly remote) thread.

• deadline : N × E → T . The time by which the nth occur-
rence of event e must occur to preserve correctness is given
by deadline(n, e). Event occurrences without timing con-
straints are given a deadline of ∞.

• occurred : N × E → T . The time at which the nth occur-
rence of event e happened is given by occurred(n, e).

• live : R × T → 2θ . The set of threads assigned to reactor r
within each of which at least one action occurs after time t is
given by live(r, t).

• arrival time : N × E × R × I → T . The time of arrival
of the nth occurrence of event e on channel i at reactor r
is given by arrival time(n, e, r, i). Event occurrences are
numbered globally rather than by interaction channel, and if
the nth occurrence of an event happened in a different chan-
nel than i (or did not happen at all) then the time returned
would be ∞.

• dispatch time : N×E×R×I → T . The time of dispatch
of the nth occurrence of event e on channel i by reactor r to
t he a ppr opr i a t e event handl er i s give n by dispatch time(n, e, r, i ) .
If the nth occurrence of event e happened in a different chan-
nel than i (or did not happen at all), then the time returned
would be ∞.

Problem definition. Our approach hinges on the idea that inter-
ference occurs when the actions taken by endsystem threads can
affect each other in ways that produce adverse consequences for
the system’s specified constraints. In this research, we address the
specific problem of detecting interference in which threads’ actions
on reactors, event handlers, and interaction channels in the endsys-
tem middleware can cause violations of application-specific timing
and liveness constraints.

Interference. We analyze two forms of interference with time-
liness and liveness constraints: blocking delays and exhaustion of
threads in a reactor thread pool.

• blocking delay : N × E × R × I → T . The blocking
delay for the nth occurrence of event e is given by the in-
terval between its arrival at a reactor r on channel i and its
dispatch to an event handler, blocking delay(n, e, r, i) =
dispatch time(n, e, r, i) − arrival time(n, e, r, i). If the
nth occurrence of e happened in a different channel and/or
reactor than those given to the blocking delay function then
the return value would be 0.

• threads exhausted : R×T → {true, false}. The threads
in the thread pool of a reactor r are exhausted at time t if
|blocked(r, t)| = |threadpool(r)|.

Our analysis depends both on (1) the specific constraints given
and (2) how different middleware mechanisms shape different forms
of interference with those constraints. We model the constraints
as temporal logic statements and model the middleware mecha-
nisms as timed automata. We then use model checking to eval-
uate whether or not the constraints are satisfied. Specifically, we
search for states of the system in which two particular kinds of con-
straint violations appear: missed deadlines, which are timing con-
straint violations that can occur even when liveness is preserved,
and deadlocks which are liveness constraint violations that usu-
ally also lead to timing constraint violations in subsequent system
states. Checking for a missed deadline can be done using our sys-
tem model by comparing the time at which the nth occurrence of
event e happened, to the deadline for that occurrence of the event:
occurred(n, e) > deadline(n, e). Deadlocks can be detected us-
ing our system model by determining whether or not we reach a
state with global time t after which no further action will be taken
by any of a reactor r’s assigned threads : |live(r, t)| = 0. Note that
it is not sufficient to check whether or not all threads in a reactor
are blocked: |blocked(r, t)| = |threadpool(r)| says only that no
actions can be taken by the threads assigned to reactor r from time
t until a subsequent occurrence of an event (e.g., due to an action in
a remote thread) causes one of those threads to unblock, and only
indicates deadlock if no such event occurs after time t.

When a state containing a constraint violation is reached, the
model checker then can produce a trace of the system states that
led up to that constraint violation. By examining these traces and
correcting the particular patterns of interference they reveal, we can
remove design and implementation errors, and also gain insights
into designing new enforcement protocols to prevent or avoid con-
straint violations.

3. MODELING ARCHITECTURE
To be able to verify the correctness of different middleware con-

figurations in the context of each specific application, we have de-
veloped detailed and formal models of common middleware build-
ing blocks found in the widely used ACE [13] framework. We have
modeled reactors, thread pools, event handlers, interaction chan-
nels, and other middleware building blocks which can be composed
and checked rigorously to evaluate timing and liveness properties
in each particular application and its supporting middleware con-
figuration.

Figure 2 shows our modeling architecture, which we have imple-
mented in the context of the IF tool set [3]. We use the IF notation
to specify our fine-grained models as processes (automata) that run
in parallel and interact through shared variables and asynchronous
signals. The behavior of these processes is represented formally in
IF as timed automata with urgency [2] and the semantics of a sys-
tem modeled in IF is the Labeled Transition System (LTS) obtained
by interleaving the executions of its processes.

Our models are divided into three layers: (1) models of net-
work/OS level abstractions such as channels for interprocess com-
munication; (2) models of middleware building blocks such as re-
actors; and (3) models of application functionality implemented in
the form of event handlers. The models themselves are executable
in the IF environment and can be model-checked against system
property specifications. The unshaded rectangular boxes shown in
Figure 2 are modeled using timed finite state automata specified in
the IF language. The shaded rectangular boxes shown in Figure 2

254



IPC_SAP Buffers

IPC Channel

EventHandler
EventHandler

Reactor

Reverse channel

IPC_SAPIPC_SAP Forward channel

Handler
RepositoryIPC_SAP_Set

Handler
Repository

ThreadPool

IPC_SAP_Set

Data structures and operations

IPC_SAP

Event Handler
Transition

control
mechanisms

Application
abstraction

layer

Middleware
abstraction

layer

Network/OS
abstraction

layer

Acceptor

Connector

SAP Event Demultiplexer

SAP Reader

SAP Writer

Leader/
Followers

Property
Specifications

Read buffer Write Buffer

Read buffer Write Buffer
Read buffer Write Buffer

3

2

1

Figure 2: Middleware Modeling Architecture

are data structures that are shared by the different automata in the
models. Automata with timed transitions are shown by timer icons
in Figure 2.

Network/OS abstraction layer. At the lowest architectural layer
we model inter-process communication (IPC) mechanisms, such
as sockets, pipes, FIFOs, and message queues, as IPC channels.
An IPC channel has two Service Access Points (SAPs), for conve-
nience called the left-hand-side SAP (lhs-SAP) and the right-hand-
side SAP (rhs-SAP). Each SAP has a read-buffer and a write-buffer
associated with it. The read-buffer is used by the SAP to receive
any data sent to it from another SAP and the write buffer is used to
send data from that SAP to another SAP. Each SAP has a unique
handle associated with it and this handle is used as an index in the
IPC channel collection data structure to access the data buffers as-
sociated with that SAP.

An IPC channel is bidirectional. It is modeled as two data-
transfer automata, one for the forward direction, and one for the
reverse direction. The forward channel automaton waits for data
to be enqueued on the write-buffer of the lhs-SAP and transfers it
to the read-buffer of the rhs-SAP. The reverse channel automaton
waits for data to be enqueued on the write buffer of the rhs-SAP and
transfers it to the read-buffer of the lhs-SAP. These forward and re-
verse channel automata also can be parameterized with appropriate
propagation delays, if needed.

Middleware abstraction layer. Above the network/OS layer is
the middleware layer, where we model abstractions of semanti-
cally rich middleware building blocks. Each middleware primitive
is modeled so that the behavior seen when the model is executed
closely adheres to that of the actual implementation. This faith-
ful modeling of the middleware primitives in turn results in high-
fidelity models of higher-level middleware services, obtained by
composing these primitive models. To support such faithful model-
ing, we have developed data structures like the event handler repos-
itory used by the reactor to store mappings between a Service Ac-
cess Point (SAP) and the handler associated with that SAP. This
table is populated whenever an event handler is registered with a
reactor.

Application abstraction layer. Our models encapsulate applica-
tion functionality using event handlers, as is customary when de-
veloping ACE-based applications in practice. Each event handler
reads data from or writes data to IPC channels, which in turn model
interactions between different event handlers. The computation

performed by an event handler can be modeled as a (potentially
complex) automaton, or may be abstracted away and represented
by a single transition guarded by a constraint on a timer variable to
delay its execution completion event as necessary.

Property specifications for verification. In the IF tool set, ob-
servable system properties can be specified by observers [3]. These
observers are represented by timed automata; they are executed at
each step of the labeled transition system (LTS) that is generated
from the composed system model before an enabled transition is
selected. To facilitate specification, IF provides observer constructs
for a variety of events in a system including forking a new process,
output events, and input events. In general an observer records an
abstraction of the actions and interactions of other automata and
also can be used to control the model’s execution.

4. MODELING CONCURRENT OBJECTS
Although our goal is to model systems having multiple commu-

nicating threads, each of which executes actions including object
method calls, the distinction between an object and a thread is not
known to the IF model checker. Despite its lack of direct repre-
sentations for objects and threads, IF proved to be the best suited
tool set for our middleware modeling and analysis needs: while
Bogor [20] provides native support for objects and threads, IF of-
fers direct support for reasoning about explicit timing, which Bogor
does not provide. This decision required us to keep track of the dis-
tinctions between threads and objects in the models themselves. In
this section we describe the techniques we developed to represent
object-oriented concurrent DRE systems in terms of processes (au-
tomata) and their interactions in IF.

4.1 Modeling Object Interactions
To model object-oriented concurrent systems in IF, each method

call must be represented by a separate process, because multiple
simultaneous calls can be made to the same object (method), whose
computations may interfere with each other. If each object method
were modeled by a single process, all calls to this method would
be implicitly assumed serialized. This does not, however, correctly
represent actual system behavior of, for example, multiple threads
in a reactor. We therefore model a method call from one object to
another object by having the caller process create a new process for
the callee method and send a signal to the new process to start its
execution [10]. Upon completion of execution the callee process
sends a signal back to the parent (caller) process and stops, thus
deleting itself.

4.2 Modeling Threads
In IF, it is the responsibility of the model developer to represent

explicitly, in the model itself, the idea of a thread of control flow-
ing through multiple objects as part of a chain of object method
invocations. For example, Figure 3(a) shows a logical thread that
represents a flow of control from one object to another object (Foo1
to Foo2, Bar1 to Bar2), with both of these objects modeled as IF
processes. To model a distinct thread flow of control, we devel-
oped the concept of a thread id maintained by each IF process. The
thread id is a reference (of type pid in IF) to a unique instance of
an IF process of type Thread. Note that the Thread automaton
has been developed as part of this research and it is not a built-in
feature in IF. The thread automaton serves to record the real-world
thread context under which the IF process is executing.

To represent concurrency accurately, any thread in the actual sys-
tem should be modeled by creating a Thread automaton in our
models. When we model an object method invocation, the thread
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Figure 3: Modeling Thread Semantics in IF

context (represented by a unique thread id) under which that invo-
cation is made is carried over from the caller to the callee object.
To propagate the thread context, we use an IF observer [3]. IF ob-
servers record abstractions of the actions and interactions of other
automata. IF provides observer constructs for a variety of events
in a system including forking a new process, output events, and
input events. The IF model checker ensures that all enabled IF ob-
servers are run between any two labeled transition system (LTS)
steps. Our thread context propagation observer runs and updates
the thread context of a destination process of an IF signal to be the
same as the thread context of the source process.

4.3 Modeling Thread Priority Scheduling
In our approach, a Thread automaton with a user-defined state

variable named priority can be instantiated to restrict concurrency
in execution of the models, just as a priority can be used in OS
thread scheduling to reduce interleavings of threads actions in the
actual system. Since the Thread automaton is not a built-in con-
struct in IF, a mechanism by which we inform the model checker
about the priorities of logical threads is needed, so that the model
checker can give preference to transitions that are executing under
the context of a higher priority thread over those under the context
of a lower priority thread. We use the priority rules feature in IF to
specify the priority ordering among different automata interactions.

Figure 3(b) illustrates how we use the priority rules feature in
IF to achieve thread scheduling in our models. This IF priority
rule states that between two automata of IF process types Foo1 and
Bar1, if the thread contexts of these two automata are different,
then choose the automaton with a thread id that points to a Thread
automaton with a higher value for the priority state variable (in this
example, Bar1 is chosen over Foo1).

4.4 Modeling Run-to-Completion Semantics
In the previous section, we discussed how to model priority based

scheduling in IF, where we dealt mainly with modeling threads
with different priorities. In real-time systems, it is very common
to use the SCHED FIFO scheduling mechanism to reduce context
switching between real-time threads of the same priority. We use a
similar technique to control interleavings between the execution of
automata within different logical threads of the same priority.

In our models, each logical thread of control runs across multiple
IF automata until the thread blocks, or is preempted by a higher
priority thread - only then can another thread start running. In the IF
model, this translates to the notion of automata in the same thread
context executing in sequence until there are no enabled transitions
in the group of automata running under that thread context.

To realize run-to-completion semantics in IF, we developed a
combination of techniques: (1) keeping track of the currently run-
ning thread id as part of the state space; (2) performing thread con-
text propagation from a caller object to callee object; and (3) using
an idle catcher to reset the currently running thread when none of
the processes in our model have any enabled transitions. For the
purpose of this discussion, we assume that Thread1 and Thread2
have the same value for their priority state variables.

Currently running thread context. A globally accessible state
variable Current is used to record the thread context which is cur-
rently running. Each transition in every automaton in the model
updates this global variable with the locally stored thread context
under which that automaton is running. If multiple automata are
enabled, then only one automaton is selected by the model checker
to update the value of Current. Any IF process P whose thread con-
text is the same as the currently running thread will get preference
to any IF process Q whose thread context is not the same as the

256



currently running thread, provided the threads for P and Q have the
same priority. This policy is expressed in IF using a combination
of IF priority rules. Note that if there is no currently running thread
context, then we allow appropriate nondeterminism in the model.
For example, Figure 3(c) illustrates an execution sequence where
in state 1, the Foo1 automaton is chosen non-deterministically over
Bar1 since the value of Current is nil. The Foo1 automaton up-
dates the value of the Current state variable with the thread id (1)
of its thread context. In state 2, the model checker selects Foo2
over Bar1, since the value of Current (1) is the same as the thread
id of Foo2 and hence Foo2 is chosen over Bar1. Foo2 (and hence
Thread1) then blocks in state 3. Bar1 is now chosen to run since
there are no other automata that are eligible to run. Bar1 now sets
Current to its thread id (2). After this Bar2 runs and then blocks in
state 5. Thus we have achieved run-to-completion semantics.

Idle catcher. The combination of maintaining and propagating
thread contexts is sufficient as long as there is always an enabled
transition in the system. However, there could be problems when
there are no enabled transitions in the system, such as when time
needs to progress in the model. Figure 3(d) illustrates such a prob-
lem, where Thread1 and Thread2 from Figure 3(c) both become
unblocked after some time at state 6. At state 6, both Foo2 and
Bar2 are enabled and ideally there should be a non-deterministic
choice between them. But since the value of Current is 2, Bar2
is always chosen to run by virtue of its thread id being the same
as the value of Current. This results in over-constraining the state
space, in which a form of nondeterminism which is quite possible
and which may be relevant to the constraints of the actual system, is
removed. To avoid such over-constraining, we add an Idle Catcher
automaton as Figure 3(d) also shows.

This automaton has a lower preference than any other automaton
in the model, and runs only when there are no other enabled transi-
tions in the system. As soon as it runs, the idle catcher automaton
resets the currently running thread context to nil. When Foo2 and
Bar2 are enabled one of them is picked non-deterministically by
the model checker. The selected process then updates the currently
running thread context and runs to completion.

5. DOMAIN SPECIFIC OPTIMIZATIONS
A common problem with model checking is the potential for

state space explosion. With concurrency the state space can grow
especially large due to interleavings of transitions, even when in-
dividual processes have relatively small state spaces. Therefore it
is imperative to reduce unnecessary nondeterminism and to disable
state transitions that do not have a counterpart in the actual system.
In this section we describe the techniques we have employed to re-
duce nondeterminism in the system initialization phase and to limit
irrelevant interleavings of state transitions, respectively.

System initialization. When we construct an IF model of a sys-
tem, we first establish the static structure of the system, creating
both active objects (e.g., thread pools) and passive objects (e.g.,
Reactors) and their associations. In this initialization phase, the or-
der in which the different objects and their associations are created
may be irrelevant to the application semantics, in which case they
are observationally equivalent. However, different creation orders
are by default considered distinct states by the model checker. For
example, consider an application with objects A and B that each
create an instance of object C. In IF when a process is created (with
fork) it gets a unique id. Thus, depending on which object’s fork is
executed first, we may have the associations {A}0-{C}0, {B}0-
{C}1, or {A}0-{C}1, {B}0-{C}0. Although these two scenarios
are equivalent from an application point of view, they are consid-

ered distinct execution paths by the model checker. Since the num-
ber of combinations is exponential in the number of such object
creations, this can significantly impact the size of the state space.
To reduce this type of nondeterminism we arbitrarily choose and
fix an object creation order, e.g., in ascending order of process id
values, using IF priority rules.

Leader thread election. With some concurrency strategies, such
as the thread pool reactor, it may not matter in which order a thread
is chosen from a set of waiting threads, e.g., to become the leader
thread and start waiting for events on the reactor. If the choice of a
specific thread does not have any consequences for the safety, tim-
ing, or liveness properties of the system, then this nondeterminism
can be eliminated, thus reducing the state space. We use a simple
strategy to remove nondeterminism in this case: among the IF pro-
cesses representing the waiting threads, we choose the one with the
lowest process id number.

Although these techniques are useful in increasing the fidelity of
our models and reducing the state space, extreme care is needed in
using the above techniques to model real-time middleware. The
pre-condition for using each of the above techniques is that the
model checker cannot do these optimizations just by using par-
tial order reduction. Wherever necessary, the model checker is
provided with extra information necessary for the optimizations
(e.g.using the priority rules mechanism in IF). However, these tech-
nique need to be applied carefully so that subtle forms of interfer-
ence do not creep in. A formal treatment of these issues is beyond
the scope of this paper, but would necessarily involve proof of non-
interference and other relevant properties.

6. CASE STUDY: APPLICATION GATEWAY
The case study presented in this section (1) illustrates the reusabil-

ity of our models and (2) serves as an illustrative example of real-
istic systems1, where our low-level models help to identify gaps
between higher level models and the actual design and implemen-
tation of systems.

This case study illustrates how our low-level models can detect
the forms of interference discussed in Section 2, which are not en-
tirely captured by high-level system models like RMA [15]. This
case study also shows how our low-level models help to evalu-
ate different middleware-level design alternatives in light of these
forms of interference.

Gateway overview. We first give a brief overview of the gateway:
a more complete description of this middleware service appears in
[23]. The underlying idea of a gateway is the mediator pattern [7]
that allows cooperating peers to interact without having to maintain
references to each other. A peer that takes the role of a supplier
publishes events to the gateway. The gateway forwards these events
to peers that take the role of consumers and are subscribed to those
events.

We first extended the default functionality of the gateway so that
before forwarding an event to a consumer, the gateway can per-
form a value-added service that is specific to a supplier and done
before forwarding events to each consumer subscribed to that sup-
plier. This is a reasonable extension for real-world applications,
e.g., when a stock quote is broadcast to different subscribers the
gateway may collect and distribute more information such as the
stock’s performance history.

1Although customers of Riverace (a company that helps to main-
tain ACE and provides commercial support for a number of ACE-
based systems) could not share the details of their use cases with
us, Steve Huston, the CEO of Riverace, confirmed that the gateway
example is an exemplar of such applications.
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We developed two variations of the gateway, both with event
propagation from suppliers to consumers and with suppliers being
consumer agnostic. The two variations show how feature additions
(i.e., real-time, reliability) can produce changes in the middleware
configuration which in turn can affect the timing and liveness prop-
erties of the system: (1) a gateway used by an application with
real-time requirements; and (2) a gateway used by an application
with a control-push data-pull model and reliability requirements.

6.1 Real-time Gateway
We first examine the use of the gateway by a real-time applica-

tion. We consider a scenario where events are supplied periodically
by two suppliers S1 and S2 with periods 100ms and 50ms respec-
tively. Events from S1 are forwarded to consumers C1 and C2 and
events from S2 are forwarded to C2 and C3. Note that C2 receives
events from both S1 and S2. The deadlines for the arrival of these
events at the consumers is the same as the period of the supplier
that supplies the events. The value-added service processing for
the events supplied by S1 takes 20ms and that for S2 takes 10ms.
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Figure 4: Real-time Gateway Design Choices

High level modeling using RMA. During high level modeling,
we try to determine whether the above application is schedulable
under the given parameters. Typically for a periodic system like
this, Rate Monotonic Analysis (RMA) [15] is used to determine
whether sharing the same CPU among tasks is feasible. Assuming
that there is a constant propagation delay from the suppliers to the
gateway, the events arrive at the gateway at regular intervals. Under
RMA, the gateway thus can be considered a periodic system with 2
periodic tasks (with periods 100ms and 50ms and execution times
of 20ms and 10 ms respectively). Since the total utilization (80%)

is well below the utilization bound (100%) for harmonic periods,
the system is guaranteed to be schedulable if the higher frequency
task is given a higher priority, preemptively.

Having done a high-level analysis, we now examine three design
choices for configuring the gateway, which are shown in Figure 4.
Note that in the RMA analysis, we only considered the sharing of
resources at the hardware level and did not consider the sharing of
resources that could take place at the middleware level. This lack
of detail in the high-level model in turn may lead to a violation of
system timing properties during system execution, unless we use
a sufficiently detailed model to capture the effects of various de-
sign choices thereby guiding the designer to make the appropriate
choice. Therefore, we now provide the middleware design details
using our own models and analyze the resulting models for any
timing violations.

Design 1: single reactor thread. With this design choice, shown
in Figure 4(a), an I/O thread waits on socket events using a reactor.
When an event arrives from a supplier, the reactor makes an upcall
to the appropriate supplier handler which then forwards the event
to the appropriate consumer handlers. The consumer handlers send
these events to the consumers in the context of the I/O thread itself.
Note that the value-added service (if any) for each consumer is also
done in the context of the I/O thread.

The model execution trace in Figure 5(a) shows that a deadline
miss occurred because of a priority inversion (A) that occurred at
the reactor in the gateway. The priority inversion occurred because
of the sequential nature of the reactor upcalls. Message from S1
was processed first and then message from S2 was processed. This
resulted in a blocking delay for the message from S2. The block-
ing delay was the time it took for the value-added processing for
message from S1, which in the above example was 40 time units
(20 time units each for C1 and C2). Because of this blocking delay
there was a deadline miss for Consumer C3 at (B). This trace thus
shows that the enforcement of the high-level RMA model is not
achieved using this design approach.

Design 2: reactor priority lanes. To eliminate the priority in-
version due to blocking at the reactor in Design 1, we now use
separate reactor/thread pairs to handle I/O events corresponding to
the two suppliers. Under this design choice, which has been used to
avoid priority inversion in real-time ORBs like TAO [18, 19], there
is an I/O thread and reactor per priority level, as is shown in Fig-
ure 4(b). The value-added service for each consumer is also done
in the context of the I/O thread. To protect the same event han-
dler (for example the consumer handler for C2) from concurrent
upcalls from different reactor threads, access to the event handlers
is synchronized.

The model execution trace in Figure 5(b) shows that the priority
inversion seen at (A) in Figure 5(a)) is prevented because of the pri-
ority isolation achieved by separation of I/O handling for the events
from the two suppliers. However, a priority inversion still occurs
(C) at the synchronized consumer handler corresponding to C2 be-
cause the value-added service corresponding to the event from S1
to C2 is done by the synchronized consumer handler for C2. This
delays the second event from S2 (released at time = 50) that is wait-
ing for access to the same consumer handler.

Design 3: reactor and dispatch priority lanes. Under this design,
a consumer handler hands over an event to an active object [24],
which has its own thread of execution to forward the events to a
consumer. Synchronization at the event handler is maintained as
in Design 2, but the value-added service itself is done by the active
object thread rather than within the event handler. To achieve prior-
ity isolation for event dispatching by the active object threads, we
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used simple Kokyu [8] style priority lanes. The number of lanes is
the number of priority levels needed - 2 lanes in this example under
RMA, since we have two rate groups (100ms and 50ms).

Our model execution traces indicated no deadline misses or pri-
ority inversions, as is shown in Figure 5(c). According to RMA, the
lane corresponding to the 100ms period was given a lower priority
than that for 50ms. As a result, the S1-C2 event processing by the
low priority active object thread is preempted (at time = 50 units)
by the S2-C2 event processing by the high priority thread.
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Figure 5: Timelines from Model Execution

6.2 Reliable Gateway (Control-Push Data-Pull)
In Section 6.1 we have seen how our middleware models can

help to evaluate different design choices with respect to timing con-
straints and alternative configurations of the application level gate-
way. That discussion focused on blocking delays caused by the
single threaded reactor or by synchronization at an event handler
shared by two different gateway threads.

We now examine a second form of interference that our mod-
els capture - exhaustion of reactor threads - using an application
with reliability requirements. This example reemphasizes the fact
that such interference can be captured only by including lower-
level models of middleware building blocks in our analysis. In this
example, the application uses an event propagation model called
“control-push data-pull” model. In this model, the supplier pub-
lishes a “data-available” event to the gateway and the gateway for-
wards it to the subscribed consumers. The consumers then make
remote calls to the supplier to fetch the data.

Apart from the control-push-data pull model, the application also
has a reliability requirement - every event that is published by a
supplier must be acknowledged by the gateway and every event
received by a consumer from the gateway must be acknowledged
by that consumer. Once the gateway receives acknowledgements
from all the consumers for an event, it sends an acknowledgement
back to the supplier.

To wait for an acknowledgement from the gateway after pub-
lishing an event, a supplier could use the WaitOnConnection or
WaitOnReactor strategy. Which of these strategies is most suitable
depends on other factors such as inter-process dependencies and
available threads, as well as on application-specific constraints [27].
We now analyze the impact of these two design choices on the live-
ness of the system, and illustrate how a deadlock may occur in the
context of the gateway example as a consequence of using the Wait-
OnConnection reply wait strategy.

We enhanced both the composed set of low-level models and
the implementation of the gateway example in ACE to accommo-

date reliability. In the following discussion, we consider a single-
threaded implementation of the gateway, where a reactor thread is
responsible for demultiplexing among connections from suppliers
and forwarding the events to consumers. We also assume the sup-
pliers and consumers to have a single-threaded reactor. Scenarios
involving multi-threaded suppliers, consumers, and gateways can
lead to similar analyses [22] to those presented here, but a detailed
discussion of those scenarios is beyond the scope of this paper.

Design 1: reply wait using WaitOnConnection. Figure 6 shows
the sequence of interactions drawn from the trace output from our
model execution. The trace shows that a supplier first (1) publishes
an event to the gateway, and then (2) waits for an acknowledge-
ment from the gateway using the WaitOnConnection (WoC) reply
wait strategy. The gateway reactor unblocks, and (3) makes an up-
call to the appropriate event handler. The event handler (4) for-
wards the event to a consumer handler, which then (5) forwards it
to the appropriate consumer. The consumer (6) receives the event
and makes a remote call to the supplier to get data. After this no
transitions are enabled and time advances to a large preset num-
ber, indicating a deadlock. The detection of this deadlock exposes
an insufficiency of resources (here, reactor threads) for the given
construction of the call graph, which can be addressed by enforc-
ing a deadlock avoidance protocol (e.g., BASIC-P or EFFICIENT-
P [21]) in the reactors.
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ConsumerHandler 
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2
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Figure 6: Interaction Sequence: WaitOnConnection

Design 2: reply wait using WaitOnReactor. Figure 7 shows
the sequence of interactions drawn from the trace output from our
model execution. The trace is similar to the one with the Wait-
OnConnection strategy (shown in Figure 6) until (6) where a con-
sumer got an event and sends a request to the supplier and waits
for a reply. The only difference until (6) in Figure 7 is that the sup-
plier (2) waits for the acknowledgement from the gateway using the
WaitOnReactor (WoR) reply wait strategy. After (6), the request
sent by the consumer reaches the supplier whose single thread was
waiting both for requests and for pending replies, using the reac-
tor. In the WaitOnReactor reply wait strategy, the reactor thread is
used to receive the incoming remote call from the consumer and
make an upcall to the appropriate event handler. The event han-
dler for the remote call then (7) sends a reply to the consumer,
which (8) receives the reply and then (9) sends an acknowledge-
ment to the gateway, which in turn (10) sends an acknowledge-
ment back to the supplier. This trace shows that the WaitOnRe-
actor strategy eliminated the deadlock arising from the loop in the
supplier→gateway→consumer→supplier call-chain.
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7. RELATED WORK

Model-integrated computing. Our work follows the Model-Driven
Middleware [9] paradigm, which applies model integrated comput-
ing [28] techniques to the domain of middleware. Our approach
provides a detailed set of models for use in conjunction with other
model-based middleware configuration techniques such as the CoS-
MIC [9] tool set, which supports integrated model-driven compo-
nent assembly, deployment and configuration. We plan to inves-
tigate the possibility of integrating our formal models within the
Generic Modeling Environment [14] and Ptolemy II [16] environ-
ments.

DREAM. DREAM [17, 6] is an open-source tool and method
that allows DRE system designers to do model-based schedulabil-
ity analysis of time and event-driven DRE systems. DREAM offers
a computational model called the DRE semantic domain [17]. The
key elements in this computational model are tasks, timers, event
channels and schedulers. Tasks are triggered either by a timer or ex-
ternal aperiodic events and tasks communicate among themselves
by means of an event channel. Within this computational model,
DREAM considers the problem of deciding the schedulability of
a given set of tasks with time and event-driven interactions. By
using timed automata models for each of the elements in the com-
putational model, the schedulability problem is converted [6] into a
reachability problem in the composed model using a model check-
ing tool like UPPAAL. DREAM also provides a model transforma-
tion facility by which a model of the DRE system expressed using
a domain specific modeling language (e.g., ESML [14]), is trans-
formed using model transformation tools to timed automata models
in the DRE semantic domain. Even though our approach is similar
to DREAM [17, 6] in that we use timed automata models to verify
system properties, the problems that these research efforts address
are different. Whereas DREAM addresses the problem of deciding
schedulability of a set of tasks, our research addresses the problem
of correct composition of reusable middleware building blocks that
are modeled at a finer level of granularity than the elements in the
computational model offered by DREAM.

CADENA and Bogor. CADENA [11] is an integrated environ-
ment for building and modeling CORBA Component Model [29]
systems. [5] shows how model checking using the extensible Bo-
gor [20] model checker has been applied to verifying event-driven
systems using an event channel. We plan to investigate how the
low-level formal models we have developed, combined with the
middleware building blocks our models represent, could be inte-
grated with these tool sets to provide fine-grained model checking
and software synthesis capabilities over a common and reusable
software base.

Schedulability Analysis. Model checking provides a common
formal basis for checking a wide range of concurrency and timing
properties in DRE systems. A variety of analysis techniques for
individual properties have been developed in other related work,
e.g., for schedulability analysis in tool-sets such as VERSA [4] and
Cheddar [25].

8. CONCLUSIONS AND FUTURE WORK
Our middleware modeling approach presented in this paper is

designed to address the need for a more detailed formal basis for
verification of correct middleware construction and configuration
in the context of individual applications. The examples presented
in Section 6 illustrate a variety of ways in which evaluating timing
and liveness properties can be complicated by different combina-
tions of middleware mechanisms. In practice, the range of compli-
cating factors is much larger than even these examples show, which
motivates both our development of reusable mechanism-level mod-
els and our composition-based model checking approach for anal-
ysis of entire systems. For example, different applications will nat-
urally exhibit (1) different dependency topologies between event
handlers; (2) various strategies for concurrency, scheduling, event
demultiplexing, and other crucial mechanisms; and (3) alternative
strategies for handlers relinquishing control, such as WaitOnCon-
nection and WaitOnReactor. Furthermore, the constraints each ap-
plication places on timing and other properties may alter the criteria
by which system timeliness and liveness are evaluated.

Summary of results. The results of our case study presented
in Section 6 motivate the need for detailed modeling of low-level
middleware mechanisms, and evaluation of those models through
model checking tools. We compared the results of executing our
models with the results of executing actual implementations of our
case study scenarios with ACE 5.4.7 on Linux 2.6.12, using the
design alternatives that we discussed in Section 6. Both the the
priority inversions predicted by the models in Section 6.1, and the
deadlocks predicted by the models in Section 6.2, appeared in the
actual runs, thus demonstrating the validity of our models.

Moreover, for the real-time gateway scenarios in Section 6.1, we
populated the models with execution times from the actual runs and
then generated timeline traces from the resulting model execution.
The timelines from the model execution trace resembled the time-
lines from actual execution trace very closely, demonstrating the
fidelity of our models. A more detailed discussion of our modeling
approach, of this case study, and of other verification and validation
examples using our models can be found in [26].

These results support the view that modeling and analysis should
be done as an integral part of the system design and engineering
process. Significant further work is needed to make this vision a
reality in the DRE middleware domain, but the research presented
in this paper demonstrates the suitability and viability of that ap-
proach.
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