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ABSTRACT
Miniaturization of devices and the ensuing decrease in the
threshold voltage has led to a substantial increase in the
leakage component of the total processor energy consump-
tion. Relatively simpler issue logic and the presence of a
large number of function units in the VLIW and the clus-
tered VLIW architectures attribute a large fraction of this
leakage energy consumption in the functional units. How-
ever, functional units are not fully utilized in the VLIW
architectures because of the inherent variations in the ILP
of the programs. This underutilization is even more pro-
nounced in the context of clustered VLIW architectures be-
cause of the contentions for the limited number of slow inter-
cluster communication channels which lead to many short
idle cycles.

In the past, some architectural schemes have been pro-
posed to obtain leakage energy benefits by aggressively ex-
ploiting the idleness of functional units. However, presence
of many short idle cycles cause frequent transitions from
the active mode to the sleep mode and vice-versa and ad-
versely affects the energy benefits of a purely hardware based
scheme. In this paper, we propose and evaluate a compiler
instruction scheduling algorithm that assist such a hardware
based scheme in the context of VLIW and clustered VLIW
architectures. The proposed scheme exploits the schedul-
ing slacks of instructions to orchestrate the functional unit
mapping with the objective of reducing the number of tran-
sitions in functional units thereby keeping them off for a
longer duration. The proposed compiler-assisted scheme ob-
tains a further 12% reduction of energy consumption of func-
tional units with negligible performance degradation over a
hardware-only scheme for a VLIW architecture. The ben-
efits are 15% and 17% in the context of a 2-clustered and
a 4-clustered VLIW architecture respectively. Our test bed
uses the Trimaran compiler infrastructure.
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1. INTRODUCTION
The ongoing improvements in the semiconductor technol-

ogy bring along various challenges[7]. One such challenge
is the rising level of the leakage energy consumption in the
logic. The transistor density doubles every eighteen months
by packing more logic into the same area. However, this
increase in the transistor density requires reducing the sup-
ply voltage in order to operate the circuit reliably. The
reduction in supply voltage also requires reduction in the
threshold voltage in order to maintain the speedup and this
leads to an exponential rise in the leakage component of the
energy consumption[25]. With the 70nm and smaller tech-
nologies currently in fabrication, the leakage energy is on
par with the dynamic energy consumption. In future tech-
nologies the leakage energy will further dominate the overall
energy consumption[32].

VLIW and clustered VLIW architectures rely on compile-
time scheduling. This simplifies the issue logic by alleviat-
ing the need for a dedicated hardware for scheduling. Thus,
a significant fraction of the total leakage energy consump-
tion in VLIW architectures is attributed to functional units.
The frequent access of functional units raises the tempera-
ture level and makes the leakage energy consumption even
worse. Though, the exact percentage depends upon the
architecture and circuit details, earlier studies report that
30% to 35% of the static energy conumption in a VLIW
architecture is attributed to functional units[19]. An archi-
tecture level model developed in [8] also confirms that the
leakage energy consumption in functional units constitutes
a noticeable fraction of the overall processor leakage energy
consumption despite having a smaller transistor count com-
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pared to the caches. Thus, optimizing leakage energy in
functional resources is becoming more important by each
process generation.

However, these architectures are often designed targeting
embedded domains where the real-time performance is of
utmost importance. Thus, the design is often optimized for
the peak performance and as a result, the functional units
are underutilized due to the inherent variations in the ILP
of the programs. Clustered VLIW architectures improve
over the VLIW architectures by solving the scalability prob-
lem (in order to obtain a better clock rate) by distributing
functional units among different clusters[13]. However, con-
tentions for the limited number of slow inter-cluster com-
munication channels introduce many short idle cycles and
makes the utilization of functional units worse.

The underutilization of functional resources can be ex-
ploited to reduce leakage energy consumption. Some earlier
work in this area reports leakage energy management at a
coarser granularity of loop level[19] or block level[31]. How-
ever, the rising level of leakage energy in current and future
process technologies requires aggressive leakage energy man-
agement even for short idle periods. One such purely hard-
ware based scheme in the context of a superscalar architec-
ture is due to Albonesi et al.[11]. Their scheme utilizes the
unique characteristics of dual-threshold domino logic with
sleep mode that can transition between active mode and
sleep mode without any performance penalty[20]. However,
such a fast transition incurs moderate amount of energy
penalty. Their scheme puts any integer ALU into low leak-
age mode after one cycle of idleness. Their results confirm
the benefits of such an aggressive scheme. However, being
a purely hardware based scheme, the benefits are severely
(on average, by 30%) affected by frequent transitions from
active mode to sleep mode and vice-versa because of many
short idle periods.

In this paper, we propose and evaluate a compiler in-
struction scheduling algorithm that assists such a hardware
based scheme in achieving better energy savings in the con-
text of VLIW and clustered VLIW architectures. Whereas
the hardware scheme suffers from a limited program view,
a compiler can analyze whole program regions and is ca-
pable of orchestrating the mapping between operations and
functional units. The proposed scheme exploits the schedul-
ing slacks of the instructions to maximize the simultaneous
idle time and usage of functional units, thereby reducing
the number of transitions drastically. This reduction in the
number of transitions leads to significant improvements in
energy savings over those obtained by a purely hardware
based scheme. Moreover, since the proposed scheme keeps
a limited number of functional units active and use them
as much as possible, it generates a more balanced schedule
which helps to reduce the peak power and the step power[35].

The rest of the paper is organized as follows. Section 2
provides a motivation for this work along with some quan-
titative results. Section 3 describes our new instruction
scheduling algorithm and presents an example to show the
benefits of the proposed scheme. Section 4 provides detailed
experimental results and analysis. Section 5 describes the
earlier work done in the area of instruction scheduling for
clustered architectures, architectural approaches for leakage
energy management, and energy-aware scheduling for VLIW
architectures. Section 6 concludes this paper with future di-
rections for this work.
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Figure 1: (a) % Savings for ’MaxSleep’ and
’NoOverhead’ Policies (b) % Cumulative Distribu-
tion of Idle Cycles

2. MOTIVATION
The VLIW and clustered VLIW class of architectures are

in widespread use in the embedded domain. The primary
reason for their success in this domain is high level of ILP
in the embedded workload and the suitability of a compiler
scheduling algorithm to map this explicit ILP to available
hardware. In order to satisfy the demand for high perfor-
mance in embedded applications (most of which are real-
time applications), these architectures use more and more
number of functional units. However, the inherent varia-
tions in the ILP of the programs lead to underutilization
of functional units. We observe that integer ALUs are idle
for 60% of the time on an average for a collection of media
benchmarks. This idleness figure is for a VLIW configu-
ration having only a moderate number of ALUs so as to
achieve 95% of the peak performance (details of our exper-
imental setup and energy model appear in a later section).
The idleness is even more pronounced for a clustered VLIW
configuration because of the contention for a limited number
of slow interconnects which manifests itself in the form of
many short idle cycles.

A hardware based scheme such as ’MaxSleep’ proposed
in [11] puts a functional unit into low leakage mode af-
ter an idleness of one cycle and thus saves leakage energy.
However, if there are many short idle cycles then there are
many transitions and the transition overheads adversely af-
fect the benefit gained by such a scheme. Figure 1 (a)
presents the energy savings obtained by a ’MaxSleep’, en-
ergy savings obtained by a ’NoOverhead’ scheme which is
a hypothetical scheme (same as ’MaxSleep’) but does not
incur any transition energy overheads and % energy over-
head of ’MaxSleep’ due to transitions as compared to that
of ’NoOverhead’ scheme for integer ALUs in a 2-cluster con-
figuration. These results clearly indicate that the ’NoOver-
head’ scheme is able to achieve an average savings of 50%
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in total energy, where as the average savings for ’MaxSleep’
is only 31%. ’MaxSleep’ has an average energy overhead of
26% (due to transitions) as compared to the ’NoOverhead’
scheme. These results are also in agreement with the results
presented in [11]. Thus, reducing the number of transitions
will increase the idleness duration for functional units and
improves the energy benefits of a hardware based scheme.

Motivated by this, we have developed a scheduling algo-
rithm in the context of VLIW and clustered VLIW archi-
tectures that leverage the available slack in scheduling in-
structions in order to keep the idle functional units idle for
a longer duration while maximizing the utilization of active
functional units. Figure 1 (b) shows the average cumulative
distribution of idle cycles in integer ALUs for a 2-clustered
machine on our collection of benchmarks. The graph for
’MaxSleep’ clearly shows many small idle cycles constitute
a large percentage of overall cycles. 50% of total 71% idle
cycles have a duration less than or equal to 10 cycles. The
graph after applying our scheduling scheme is shown with
title optimized. This shows that the many small idle cycles
have been converted to large idle cycles by reducing transi-
tions and only 34% of overall idle cycles are now less than
10 cycle. Idle cycle of length between 10 to 20 cycles con-
stitute 32% of total idleness for ’Optimized’ scheme while
for the ’MaxSleep’ scheme this is only 18%. This clearly
shows that our scheme is able to exploit the slack to reduce
the number of transitions thereby increasing the duration of
idle periods.

3. THE SCHEDULING ALGORITHM
The Elcor backend of the Trimaran infrastructure has a

cycle scheduling algorithm designed and implemented for
flat VLIW architectures[4][5]. We have modified this algo-
rithm to perform leakage energy optimization for VLIW as
well as clustered VLIW architectures. Another loop has
been added inside the main scheduling loop of the cycle
scheduler to perform cluster scheduling in an integrated fash-
ion. The integrated approach[30][24][17] to cluster schedul-
ing makes the cluster assignment decision during tempo-
ral scheduling. This is in contrast to phase-decoupled ap-
proaches[6][10][21] which perform cluster assignment prior
to temporal scheduling. Essentially, our integrated schedul-
ing algorithm for leakage energy optimization consists of the
following main steps.

1. Prioritizing the ready instructions

2. Assignment of a cluster to the selected instruction

3. Assignment of functional unit to selected instruction
in target cluster

In what follows, we describe how each of these step is per-
formed in our algorithm. An outline is shown in Algorithm
1.

3.1 Prioritizing the Ready Instructions
Instructions in the ReadyList are prioritized using a pri-

ority function that uses instruction slack and number of
consumers of the instruction. Instructions with less slack
should be scheduled early and are given higher priority over
instruction with more slack to avoid unnecessary stretching
of the schedule. Instructions with the same slack values are

Algorithm 1 The Main Scheduling Loop

if (Scheduling for a clustered configuration) then
ClusterScheduling ← 1

end if
Initialize ReadyList with root operations of the dependence graph
of the region to be scheduled
CurrentCycle← 0
while (ReadyList is not empty) do

Initialize EarlyCycle with CurrentCycle, and LateCycle with
SchedulingCycle determined using performance driven schduling
slack = LateCycle− EarlyCycle
while (Not all operations in ReadyList have been tried once)
do

(CurrentOperations← UnSchedList.pop())
AlternativeList ← DetermineSchedulingAlternatives(

CurrrentOperation, ClusterScheduling)
if (IsEmpty(AlternativeList) then

CONTINUE
end if
TargetCluster ← 0
SUCCESS ← FALSE
if (ClusterScheduling) then

TargetCluster ← DetermineBestCluster(CurrentOperation)
AlternativeList ← DetermineSchedulingAlternatives(

CurrentOperation, TragetCluster)
end if
while (CurrentAlternative = AlternativeList.pop()) do

if (FU in CurrentAlternative are active) then
Schedule CurrentOperation using CurrentAlternative in
CurrentCycle on TargetCluster.Cluster using TragetClus-
ter.CommOption
SUCCESSS ← TRUE

end if
end while
if (!SUCCESS and Slack ≤ SLACK THRESHOLD)
then

FallBackAlternative ← DetermineBestAlternative(
AlternativeList, TargetCluster)

Wakeup FU in FallBackAlternative
Schedule CurrentOperation using FallBackAlternative in
CurrentCycle on TragetCluster.Cluster using TragetClus-
ter.CommOption

else
ReadyList.add(CurrentOperation)

end if
end while
CurrentCycle← CurrentCycle + 1
ReadyList.update()
updateFUStatus()

end while

Procedure 2 DetermineBestCluster
FirstTarget.Cluster ← −1
FirstTarget.CommCost← 1000000;
SecondTarget.Cluster ← −1
SecondTarget.CommCost← 1000000
for (CurrentCluster ranging from FirstCluster through LastClus-
ter) do

Compute the Cross-path Requirements in CurrentCommOption
Compute the Communication Cost in CurrentCommCost
if (FU and Cross-paths required by CurrentOperation are avail-
able in CurrentCycle for CurrentCluster) then

if (FU under consideration is in active mode and FirstTar-
get.cost > CurrentCommCost) then

FirstTarget.CommCost ← CurrentCommCost
FirstTarget.CommOption ← CurrentCommOption
FirstTarget.Cluster ← CurrentCluster

else
if (SecondTarget.cost > currentCommCost) then

SecondTarget.CommCost← CurrentCommCost
SecondTarget.CommOption← CurrentCommOption
SecondTarget.Cluster ← CurrentCluster

end if
end if

end if
end for
if (FirstTarget.cluster! = −1) then

RETURN FirstTarget
else

RETURN SecondTarget
end if
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further ordered in the decreasing order of the number of con-
sumers. An instruction with a large number of successors is
more constrained in the sense that its spatial and temporal
placement affects scheduling of more number of instructions
and hence should be given higher priority. Giving prefer-
ence to an instruction with many dependent instructions
also enables better future scheduling decisions by uncover-
ing a larger portion of the graph.

Scheduling slack of an instruction is defined as the differ-
ence between the earliest start time and the latest finish time
of the instruction. Traditionally, slack is determined stati-
cally during dependence graph analysis before the schedul-
ing begins, assuming a machine with infinite resources of
each type. This calculation is inherently pessimistic as any
real machine will have contentions for resources which pro-
longs the execution time. Since our algorithm exploits slack
of instructions to delay their execution in order to save en-
ergy without affecting performance, a better quantification
of available slack is of utmost importance. We quantify the
slack of instructions while scheduling a region for the specific
target machine by taking resource constraints into account.
We first schedule the instruction using a simple cycle-by-
cycle scheduler. The schedule time of the instructions is
stored during this phase. In the second phase, this sched-
ule time (Late cycle) is used to determine the slack of the
instruction. In our implementation, slack is dynamically
updated for all the operations in the ready list after every
cycle. The earliest schedule time of an instruction is set
to the current cycle, before scheduling for the current cycle
begin (Early cycle). The slack is then determined as a dif-
ference of the Early cycle and the Late cycle. The dynamic
update of slack after each cycle ensures that any consumed
slack is taken into account while scheduling instructions in
the future cycles.

3.2 Cluster Assignment
Once an instruction has been selected for scheduling, we

make a cluster assignment decision. The primary constraints
are :

• The chosen cluster should have at least one free re-
source of the type needed to perform this operation

• Given the bandwidth of the channels among clusters
and their usage, it should be possible to satisfy the
communication needs of the operands of this instruc-
tion on the cluster by scheduling these communications
in the earlier cycles (so that operands are available at
the right time).

Note that if we are scheduling for a plain VLIW architecture
with no clustering, we assume that there is only one cluster
(numbered 0) that is holding all the resources and the same
algorithm is used. Selection of a cluster from the set of the
feasible clusters is done as follows. A cluster with an active
functional unit of the type needed to schedule the operation
is given preference. If no such cluster is available or more
than one such cluster is available, the one which reduces the
communication cost gets preference. The communication
cost is computed by determining the number and type of
communications needed by a binding in the earlier cycles as
well as the communication that will happen in the future.
Future communications are determined by considering the
successors of this instruction which have one of their parents

Figure 2: An Example Data Dependency Graph

Figure 3: (a) Schedule 1 (b) Schedule 2 (c) Schedule
3 (d) Schedule 4

bound on a cluster different from the cluster under consid-
eration. This is due to the fact that if the instruction is
bound to the cluster under consideration, it will surely lead
to communication(s) in the future while scheduling the suc-
cessors of the instructions. Although, we have experimented
with many other heuristics for cluster assignment, the above
mentioned heuristic seems to generate the best schedule in
almost all cases[27].

3.3 Functional Unit Binding
A functional unit binding scheme decides the binding of

a chosen instruction to a functional unit. The algorithm
maintains a FU map that explicitly keeps track of the status
of each functional unit. A functional unit is marked to be in
sleep mode after one cycle of idleness and activated on next
use.

If the functional unit required for the instruction under
consideration is active in the target cluster, it is bound as
usual. otherwise, the available slack of the instruction is
considered. If the slack is below a threshold (we use the
threshold value of 0 in our experiment) the functional unit
required by the instruction is woken up. In case there is more
than one alternative available (for activating), the functional
unit which is in sleep mode for a longer duration is wo-
ken up in order to amortize the cost of waking up. In case
the instruction possesses enough slack, its scheduling is de-
ferred to a future cycle and it is put back in the ReadyList.
Note that the next time this instruction is picked up for
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scheduling, its earliest scheduling time and hence the slack
get updated. This guarantees that the slack of an instruc-
tion reduces monotonically and eventually comes below the
threshold ensuring that it is scheduled. Hence the algorithm
is guaranteed to terminate.

3.4 An Example
In this subsection, we present an example to illustrate

how the available slack of instructions is exploited by the
proposed scheduling algorithm to get energy benefits with-
out hurting performance. Figure 2 shows an example data
dependency graph and Figure 3 shows some schedules. Let
us first discuss schedule 1 and schedule 2 for a plain VLIW
architecture having two adders (namely A1 and A2) and
two multipliers (namely M1 and M2) both of which are
pipelined. We assume that the latency of an add operation
is one cycle and the latency of a multiply operation is two
cycles. Schedule 1 is generated by a traditional performance-
oriented scheduler which schedules the instructions as early
as possible and uses the slack value of instructions to break
any contentions for resources and the total schedule length
is 8 cycles.

Our energy efficient scheduler realizes the criticality of
MPY operations and available slack for ADD operations
and schedules the same data dependence graph as shown
in schedule 2. Since deferring the execution of any MPY
operation leads to stretching of schedules, they are sched-
uled in the same way as in the performance-oriented sched-
ule 1. However, the scheduling of ADD operations is de-
layed as well as serialized, capitalizing on available slack of
add operations. Notably, the scheduler determines the slack
value available in scheduling an operation by first doing a
performance-oriented scheduling pass on data-dependence
graph and uses the estimate of schedule length from this
pass to calculate the exact slack value available in schedul-
ing an instruction which is used to generate the schedule for
energy efficiency. Schedule 2 takes same execution cycles
as schedule 1 but is better than schedule 1 in many ways.
First of all, schedule 2 make use of only one adder compared
to schedule 1 which clearly reduces the leakage energy con-
sumption because the second adder is always in low-leakage
mode. Secondly, there are fewer transitions from active to
low leakage mode and vice versa in schedule 2 as compared to
schedule 1. Assuming availability of hardware mechanisms
that put a functional unit into low leakage mode after 1 cy-
cle of idleness, the number of transitions from active mode
to low leakage mode and vice-versa for M1, M2, A1, and A2
are 2, 2, 4, and 2 for schedule 1 and 2,2,2, and 0 for schedule
2. Schedule 2 is also more balanced as compare to schedule
1 in terms of resource usage. The resource usage vector of
the first schedule is (4,3,2,0,1,0,1,0) and that of second is
(2,2,2,1,2,1,1,0). Thus cycle to cycle variation in resource
usage is clearly reduced in schedule 2 as compared to sched-
ule 1. Which in turn helps in reducing step power and peak
power dissipation [35]. Thus, it is clear that the proposed
scheme is capable of reducing leakage energy consumption,
transition energy overheads, as well as peak power and step
power dissipation without affecting the performance.

Consider schedules 3 and 4 generated for a 2-clustered
VLIW architecture (equivalent to above mentioned VLIW
architecture) having 1 adder and 1 multiplier in each cluster
and a bidirectional bus between the two clusters with 1 cycle
transfer latency. Schedule 3 is generated by a performance-

oriented scheduler. The extra delay of inter-cluster com-
munication stretches the schedule from 8 cycles to 9 cycles
as compared to the corresponding VLIW schedule 1. ADD3
(MPY3 resp.) is scheduled in cycle 3 (cycle 4 resp.) because
it takes a cycle to transfer the result of ADD2 (MPY2 resp.)
from cluster 2. The Total schedule length is 9 cycles.

Scheduling the same set of operations using our energy-
efficient scheduler generates schedule 4. The major point
to note is that the scheduler leverages the available slack
due to inter-cluster communication to map all the operation
to just cluster 1, keeping cluster 2 completely idle, thereby
saving even more leakage energy. The number of transitions
from active mode to low leakage mode and vice-versa for
M1, M2, A1, and A2 are 2, 2, 4, 2 for schedule 1 and 2, 0,
2, 0 for schedule 2 respectively. Finally schedule 2 is much
more balanced : The resource usage vector of first schedule is
(4,2,1,2,0,1,0,1,0) and that of the second is (1,1,2,2,1,2,1,0).

4. EXPERIMENTAL EVALUATION

4.1 Setup
We have used the Trimaran suite[4] for our experimen-

tation. Trimaran was developed to conduct state-of-the-
art research in compilation techniques for ILP architectures
with a specific focus on VLIW class of architectures. We
have modified the Trimaran suite to generate and simulate
code for a variety of clustered VLIW configurations. The
machine description module has been upgraded to describe
various clustering related parameters such as the number of
clusters, number and types of functional units in each clus-
ter, interconnection network parameters such as number and
types of buses between different clusters, and their latency
parameters. These parameters are fed to the parameter-
ized machine-dependent optimization modules in the back-
end. Major modifications have been performed in the Tri-
maran scheduler and register allocator module (which was
originally written for a class of flat VLIW architectures)
to faithfully account for the conflicts due to limitations on
the number of available functional units and registers in a
cluster as well as the limitations on the number of avail-
able cross-paths between clusters. The scheduler has been
modified to implement the scheduling algorithm described
in the last section. We have used twelve benchmarks out
of which nine are from mediabench[22][1] (viz. cjpeg, djpeg,
rawcaudio, rawdaudio, g721encode, g721decode, md5, des,
and idea), two from netbench[15][3] (viz. crc, and dh), and
one (susan) is from MiBench[16][2]. We have tried other
benchmarks from these suits as well but these are the only
ones which compiled successfully and executed correctly in
the Trimaran framework and hence we report results for
them.

We present results for an unclustered, a two-cluster ma-
chine and a four-cluster VLIW machine. The unclustered
VLIW configuration has 4 ALUs, 2 load-store units, 1 branch
unit, and 64 registers. The 2-clustered configuration has 2
ALUs, 1-load store units, 1 branch unit and 32 registers
in each cluster, whereas the 4-clustered configuration has
1 ALU, 1-load store unit, 1 branch unit and 16 registers
in each cluster. The number of functional units selected
for the VLIW configurations are such that the performance
achieved using this configuration is within 95% of the peak
performance achieved by using many more functional units.
This moderate number of functional resources guarantees
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that the benefits reported have not been obtained by triv-
ially putting the numerous idle functional units into the low
leakage mode. Also, we report results only for Integer ALUs
which are heavily used and pose a challenge for any leak-
age energy management scheme. Thus the benefits reported
here have not been magnified by the leakage energy benefits
of the load-store, branch, and FP units which are mostly
idle.

4.2 Energy Model
We have used the same analytical energy model as in

[11] to directly compare the energy benefits of the proposed
scheme over the pure hardware based scheme proposed in[11].
We briefly describe this model here. The reader is referred
to [11] for details. The total energy in a functional unit in
this model is determined as follows:

E
′
total = DynamicEnergy + LeakageEnergy+

TransitionEnergy + SleepModeEnergy

E
′
total = nA(αEA + (1 − D)ES1) + (nAD + nUI)

∗(αEs0 + (1 − α)Es1) + Mz((1 − α)EA + ESleep)
+nZEs0

Here nA is the number of active cycles, nUI is the number
of uncontrolled idle cycles, nZ is the number of sleep cycles
and Mz is the number of transitions. We have determined
these values differently for each configuration by using the
trimaran simulator. Es0 and Es1 are low leakage and high
leakage energy and are related by the following equations.

Es0 = s ∗ES1 ,0.0001 ≤ s ≤ 0.01 and Es1 = p ∗ EA,
0 ≤ p

Where p is the ratio of the maximum leakage energy ex-
pended to the maximum energy for evaluation per unit of
time (1 cycle). After simplifying and normalizing the equa-
tions with respect to active energy, The following model for
total energy consumption is obtained :

Etotal = nA(α + (1 − D)p) + (nAD + nUI)
∗(αsp + (1 − α)p) + Mz((1 − α) + ESleep/EA)
+nZsp

The technology parameters that we have used (s=0.01
and ESleep/EA = 0.01) are also the same as in [11] in or-
der to compare the benefits of our scheduling algorithm to
the hardware-only scheme. Considering the current 70nm
fabrication technology where leakage energy is on par with
dynamic energy, we set p to 0.5 .α is activity factor and D
is the duty cycle of the clock. We use a typical value of 0.5
for both of these parameters in our simulation as in [11].
Sensitivity results with different values of α and p can be
found in associated technical report[28].

4.3 Results
We have performed a detailed experimental evaluation of

the proposed scheme in terms of the reduction in the num-
ber of transitions and the associated energy savings. We
present results for the hardware-only scheme from [11] called
’MaxSleep’ as well as for our scheduling scheme that as-
sists the hardware based scheme. We call this scheme ’Op-
timized’. The results are presented in comparison with a
hypothetical scheme called ’NoOverhead’ that is the same

as ’MaxSleep’ but does not incur any of the energy over-
heads of transitions. This scheme represents a theoretical
ideal against which a leakage energy management scheme
can be compared for its effectiveness.

Figure 4 (a) shows the percentage reduction in the num-
ber of transitions due to our algorithm as compared to the
hardware-only scheme. We observe that the number of tran-
sitions reduce by 48.34%, 53.97%, and 58.29% for VLIW, 2-
Clustered VLIW, and 4-Clustered VLIW respectively. The
reduction in the number of transitions depends on the to-
tal available slack in scheduling instructions as well as the
distribution of idle cycles in the benchmark. Benchmarks
like des, dh, crc, and susan have many short idle cycles
and our algorithm is able to exploit the available slack in
these applications to avoid many transitions. In the case of
g721encode and g721decode, the available slack is relatively
less and consequently the reduction is also less.

Figure 4 (b) shows the energy overhead of ’MaxSleep’
and ’Optimized’ schemes as compared to the ’NoOverhead’
scheme. ’MaxSleep’ and ’Optimized’ schemes show aver-
age energy overheads of 23.59% and 13.32% respectively as
compared to the ’NoOverhead’ scheme. The proposed ’Opti-
mized’ scheme reduces the total energy overhead by 11.85%
over the ’MaxSleep’ scheme which is significant taking into
account that it is a purely software based scheme and does
not incur any hardware overhead. These results are in agree-
ment with the results presented in [11], where the author
mention that the ’MaxSleep’ scheme incurs 30% more en-
ergy overheads than the ’NoOverhead’ scheme (some differ-
ence compared to our evaluation is due to change in work-
load). In [11] the evaluation is based on the spec benchmark
in the context of superscalar architecture, whereas our eval-
uation uses the media benchmark in the context of VLIW
and clustered VLIW architectures.

The benefit of our scheme is even more pronounced in
the context of clustered architectures. In the context of 2-
clustered architecture ’MaxSleep’ and ’Optimized’ have av-
erage energy overheads of 26.36% and 13.26% respectively
as compared to the ’NoOverhead’ scheme (Refer Figure 5
(a)). The energy benefits of ’Optimized’ over Maxsleep
is 15.11% in context of 2 clustered architecture. For a 4-
clustered configuration, ’MaxSleep’ and ’Optimized’ incur
27.02% and 12.15% overhead as compared to ’NoOverhead’
scheme (Refer Figure 5 (b)). The ’Optimized’ scheme im-
proves over the ’MaxSleep’ scheme on the average by 16.92%
in the context of 4-clustered architectures. The reasons for
more savings in the context of clustered architectures are
as follows. Clustering brings along extra contentions for a
limited number of slow cross-paths (for inter-cluster commu-
nication). This leads to many short idle cycle during which
functional units are waiting for operands to arrive from other
clusters. A purely hardware based scheme with traditional
scheduling algorithm undergoes transitions for such many
short idle cycles and suffers the associated energy penalty. In
contrast to the performance-oriented scheduling algorithm
which is designed for utilizing the resources spread over dif-
ferent clusters to achieve a better performance, our energy-
aware scheduling algorithm sometime limits the spreading
of operations, if it can fetch some energy benefits without
hurting performance. Thus, some of the extra slack which
is available while scheduling for clustered architectures due
to contention for inter-cluster communication is utilized to
gain energy benefits in our algorithms.
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Figure 4: (a) % Reduction in Transitions with
scheduling w.r.t. Hardware only Scheme (b) %
Increase in energy w.r.t Hypothetical No-overhead
Scheme (VLIW)

Figure 5: % Increase in energy w.r.t Hypothetical
No-overhead Scheme (a) 2 Cluster (b) 4 Cluster

5. RELATED WORK
In this section, we briefly describe the earlier work done

in the area of instruction scheduling for clustered architec-
tures, architectural approaches for leakage energy manage-
ment, and energy aware scheduling for VLIW architectures.

5.1 Instruction Scheduling for Clustered
Architectures

Earlier proposals for scheduling on clustered VLIW ar-
chitectures can be classified into two main categories, viz.,
phase-decoupled approaches and phase-coupled approaches.
A phase-decoupled approach to scheduling works on a data
flow graph (DFG) and performs partitioning of instructions
into clusters to reduce inter-cluster communication while ap-
proximately balancing the load among clusters. The anno-
tated DFG is then scheduled using a traditional list sched-
uler while adhering to earlier spatial decisions. A major ar-
gument in favor of this approach is that a partitioner having
a global view of a DFG can perform a better job of reducing
inter-cluster communication and load-balancing. The pro-
posals in this direction are due to Ellis[12], Desoli[10], Gon-
zalez[6], Lapinskii[21], Mahlke[9], Lee[23], and Nystrom[29].
However, the phase-decoupled approach is known to suffer
from the phase ordering problem. Since the spatial scheduler
has only an approximate knowledge of load on clusters, us-
age of functional units, and cross-paths, approximate load-
balancing often leads to cluster assignments which unneces-
sarily constrain the temporal scheduler in the later phase.
Moreover, some of these schemes are designed for reducing
inter-cluster communication and end up reducing the ILP
in the program in this pursuit[30][17].

An integrated approach to scheduling combats the phase-
ordering problem by combining spatial and temporal schedul-
ing decisions in a single phase. The integrated approach
considers instructions ready to be scheduled in a cycle and
the available clusters in some priority order. The priority or-
der for considering instructions is decided based on mobility,
scheduling alternatives, the number of successors of an in-
struction etc. Similarly, the priority order for considering
clusters is decided based on communication cost of assign-
ment, earliest possible schedule time etc. An instruction is
assigned a cluster to reduce communication or to schedule
it at the earliest. The proposals in this direction are due
to Ozer[30], Leupers[24], Kailas[17], Zalamea[36], and Nag-
pal[27][26].

5.2 Architectural Approaches for Leakage
Energy Management

Study of leakage energy management at the architectural
level has mostly focused on storage structure such as cache.
Yang et al., propose power supply gating of L1 cache cells[34].
Kaxiras et al., dynamically adjust the interval after which a
cache line is put into low leakage mode[18]. Flaunter et al.,
propose a state-preserving drowsy cache design and a simple
control scheme which is able to deliver most of the leakage
energy benefits[14].

In contrast to storage structures, little work has been done
on architecture level leakage energy management in the con-
text of functional units. Our work directly improves over
the work due to Albonesi et al. [11]. This work proposes
and evaluates an architectural policy for aggressively con-
trolling leakage energy in integer ALUs. The ’MaxSleep’
policy puts a functional unit into low leakage mode after
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one cycle of idleness. This scheme depends on dual threshold
domino logic circuit with sleep mode proposed in [20] which
has no delay penalty of transition between active mode and
sleep mode. Their performance evaluation using an analyt-
ical energy models in the context of spec benchmarks for
superscalar architectures shows that for technology such as
70nm, the leakage energy benefit gained by such an aggres-
sive scheme is significant. However the overhead of tran-
sitions from active mode into low-leakage mode and vice-
versa are significant (on an average 30% when compared to
a ’NoOverhead’ scheme).

5.3 Energy-Efficient Scheduling
Zhang et al.,[37] have proposed a rescheduling scheme to

reduce dynamic and leakage energy in the functional units
of a VLIW processor by exploiting the remnant slack of a
performance-oriented schedule. In contrast, our approach
works on raw unscheduled code with all the available slack
for scheduling and complements a hardware based mecha-
nism for leakage energy management. Kim et al.,[19] have
proposed a leakage energy management scheme for VLIW
processors that approximates the ILP available in the pro-
gram using heuristics (as the exact estimation problem is
itself NP complete). The calculation is done at the loop
level granularity assuming that there is little variation in
the ILP within the loop. Their scheme keep only canon-
ical subset of functional units that is sufficient to exploit
this approximated ILP active. In contrast, our approach
adaptively applies leakage energy management at a finer
granularity based on available ILP. Gupta et al.,[31] pro-
pose a novel data structure called power-aware flow graph.
Their leakage energy management scheme in the context of
superscalar processors works over this graph to determine
larger program regions called power blocks which offer op-
portunities to save leakage energy. ISA and architectural
support is needed to switch on and off the functional unit
at the boundaries of power blocks and nullify spurious on-
off. Kim et al.,[35] have proposed a modulo scheduling algo-
rithm that produces a more balanced schedule for software
pipelined loops with an objective to reduce the peak power
and step power dissipation. Though our algorithm is not di-
rectly designed towards improving the peak power and step
power dissipation, it generates a more balanced schedule.
The closest to our work is the work by Vardhan et al.[33].
They extend the standard list scheduling algorithm but pri-
oritize instruction selection (from the ready queue) based
on a closeness metric. This algorithm is evaluated for an
in-order superscalar processor.

6. CONCLUSIONS AND FUTURE
DIRECTIONS

In this work, we have proposed a new energy-aware in-
struction scheduling algorithm for VLIW and clustered VLIW
architectures that is capable of reducing the number of tran-
sitions by exploiting the scheduling slack of instructions.
The experimental evaluation reveals that the proposed scheme
is able to reduce the number of transitions by approximately
48% (more for clustered architectures). This results in 11.85%
energy savings in the context of VLIW architecture while
15.11% and 16.92% energy savings in the context of 2-clustered
and 4-clustered VLIW architecture respectively, as compared
to a purely hardware based scheme. In addition, the pro-

posed scheme is able to generate a more balanced schedule
that help in reducing the peak power and step power dissi-
pation of the processor. In future, we would like to integrate
the proposed scheme for leakage energy management with
the slack based approach to dynamic energy management.
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