Schedulable Persistence System for Real-Time
Applications in Virtual Machine

Okehee Goh

Tempe, AZ
ogoh@asu.edu

ABSTRACT

Persistence in applications saves a computation state that
can be used to facilitate system recovery upon failures. As
we begin to adopt virtual execution environments (VMs)
for mission-critical real-time embedded applications, persis-
tence service will become an essential part of VM to ensure
high availability of the systems.

In this paper, we focus in a schedulable persistence sys-
tem in VMs and show a prototype persistence system con-
structed on CLI’s open source platform, MONO. By employ-
ing object serialization, the system enables concurrent and
preemptible persistence operation, i.e., the task in charge of
persistence service runs concurrently with application tasks
and is a target of real-time scheduling. Thus, the execution
of application tasks can be interleaved with the operations
of persistence service, and the task timeliness can be guar-
anteed as the pause time caused by persistence service is
bounded. The experiment output on the prototyped system
illustrates that persistence service is appropriate for real-
time applications because of its controllable pause time and
its optimized overhead.

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems|:
Realtime and embedded systems; D.4.5 [Operating sys-
tems]: Reliability — Checkpoint/restart; D.4.7 [Operating
systems]|: Organization and Design— Real-time systems and
embedded systems

General Terms

Reliability Performance

Keywords

schedulable persistence system, checkpoint/recovery, real-
time applications, virtual machine, CLI

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EMSOFT’06, October 22-25, 2006, Seoul Korea

Copyright 2006 ACM 1-59593-542-8/06/0010 ...$5.00.

Yann-Hang Lee
CSE, Arizona State University = CSE, Arizona State University
Tempe, AZ

yhlee @asu.edu

195

Ziad Kaakani
Honeywell International Inc.
Phoenix, AZ

ziad.kaakani@honeywell.com

1. INTRODUCTION

Virtual Machines (hereafter, VMs), such as JVM[17] and
CLI (Common Language Infrastructure)[9], enable an ab-
stract computing environment for program execution. Ap-
plication programs are compiled into intermediate codes (byte-
codes) to permit portability of ”write once, run everywhere.”
Besides that, applications written in Java[13] or CLI-compatible
languages are claimed secure due to type-safety and security
sandbox model [27]. The ensured safety, portability, and
reusability of OO languages make VMs attractive to em-
bedded systems and have led to the introduction of many
VMs designed for embedded applications. One example is
Real-Time Specification for Java (RTSJ)[4] which has been
established as a standard specification of JVM to meet the
requirements of real-time embedded applications.

Along with the interests of employing VM in real-time
embedded systems, persistence of applications is becoming
a necessity as an approach to ensure high availability of
long-running embedded applications. Persistence in applica-
tions preserves a computation state of applications beyond
its lifetime. If a failure occurs, the systems can be recovered
by using the preserved computation state while minimiz-
ing any loss of computation. Without a support of persis-
tence, system failures may force the systems to restart from
the beginning (cold start) or result in an inconsistent state
with which computation cannot advance. Despite of the ad-
vantages of persistence, there is a concern whether making
applications persistent may introduce an unpredictable la-
tency that can impair the timeliness of real-time embedded
systems. For example, Monga et al. [19] shows in the exper-
iment of persistence service using standard object serializa-
tion of .NET framework that serialization for 100 instances
of System.Int32 type takes about 100ms, which is intoler-
able to most real-time applications in the aspects of both
performance and pause time.

Before proceeding further, we firstly define some termi-
nologies, frequently used in the rest of this paper. Persis-
tence System and Persistence Service refer to a subsystem
in charge of making applications persistent, and an activity
of making applications persistent, respectively. Addition-
ally, Persistent data and Persisted data indicate the data
that needs to be persistent among runtime data in applica-
tions, and the one that is saved through persistent service,
respectively.

Due to the time constraints that real-time applications
have, persistence service integrated to real-time systems should
not cause unpredictable blocking delays to application tasks.
To prevent unpredictable blocking delay, the service should

_,{ - Period of Persistence Increment

> e Pause of Persistence Increment

A

[

€

Persistence Cycle

»
=l

Figure 1: Scheduling Model of Schedulable Persis-
tence System

be a schedulable object by allowing preemptivity and bounded
pause time. Thus, a Schedulable Persistence System can be
interleaved with real-time applications and both the time-
liness and persistence of the real-time applications can be
guaranteed.

In this paper, we depict an approach of schedulable per-
sistence service in VM environment. The persistence service
is taken by a separate task that runs concurrently with real-
time application tasks. The service is divided into small por-
tions (persistence increment, hereafter) to bound the pause
time caused by the service. As illustrated in Figure 1, the
scheduling model for the proposed approach is basically to
allocate CPU cycles to consecutive persistence increments
periodically. Hence, the whole persistence service becomes
preemptible after each persistence increment and its execu-
tion can be treated as a periodic task invoked in a persistence
cycle.

One of the issues raised while supporting preemptivity of
persistence service is to guarantee the consistency of per-
sisted data. We define that a consistent persisted data is
a snapshot of all persistent data when the persistence ser-
vice is triggered. With concurrent and preemptible persis-
tence service, mutators (i.e. application tasks) are executed
concurrently with the persistence service and may update
the persistent data before the data becomes persisted com-
pletely. We address this issue by using write barrier in a
cost effective manner.

The proposed approach of making persistence service schedu-

lable along with real-time applications in VM environment
can be viewed as a part of efforts to make VMs suitable
for real-time embedded systems. However, even if we con-
sider the emerging RTSJ’s commercial products, PERC [1]
and Sun Real-Time Java System [25], there is no existing
VM that enables persistence of applications while consider-
ing the timeliness of real-time applications simultaneously.
Beyond VMs, a few previous works [16, 8] aimed at con-
current checkpointing for general real-time systems. These
approaches are to save a process memory content based on
architectural support and/or by using coarse grained write
barriers. Their limitations include non-portability of check-
point data (process image) and/or the lack of semantics of
preserved data for alternate recovery processing.

In the following, we give a brief background on object seri-
alization and a discussion of related works in Section 2. The
design approach for a schedulable persistence system is in-
troduced in Section 3. In Section 4 and Section 5, we present
the details of the prototyped schedulable persistence system
and the experimental results. Finally, Section 6 draws a
simple conclusion.

196

2. BACKGROUND AND RELATED WORKS

2.1 Checkpointing & Object Serialization in
VMs

Checkpoint based roll-back recovery is a fault-tolerant
technique to minimize the lost computation due to failures.
A checkpoint can be taken during failure-free execution and
a state of computation is saved. Upon a failure, the recov-
ery operation uses the checkpoint to restore the computa-
tion state up to the moment that the checkpoint was taken.
Then, the computation can proceed.

Checkpoint can be done in the level of VM to save the
state of live objects which represent the computation state of
applications. Also, as suggested in [5] and [23], the applica-
tions’ execution state can be save as portable checkpoints of
thread objects. The saved state of data and thread objects
can be serialized by following VM’s standard data format
and then become readable by a VM in any architecture.

Object Serialization in Java and CLI-compatible languages
[22, 18] is a significant functionality used for lightweight ob-
ject persistence, and data marshaling/demarshaling in RMI
(Remote Method Invocation) or .NET Remoting program-
ming. Object serialization transforms the state of objects
in memory into a sequence of bytes or other representations
suitable for transmission to file systems or communication
media. It can be a simple approach to support object persis-
tence. According to object reachability, Persistent Objects
or Persistent Data include not only a persistent root object,
but also all reachable objects from the root object. Dur-
ing serialization all reachable objects from the root object
must be traced to generate persisted data. Then, deserial-
ization restores objects from the persisted data. However,
the current approach for object serialization suffers several
drawbacks [10]:

e The procedure for serialization or deserialization runs
as a sequential operation of the invoking threads. Hence,
the normal thread operation can only proceed after
the serialization operation and may suffer a long pause
(the serialization operation cannot suspend in the mid-
dle of the procedure).

Object serialization does not consider consistency of
persisted data. For example, if a thread serializes an
object graph (all reachable objects from a persistent
root object) while other threads mutate any objects in
the graph, the consistency of the persisted data in the
graph is not guaranteed.

Apart from the aforementioned drawbacks, the perfor-
mance of the existing serialization operation in terms of time
and space is also a concern. The object serialization in both
JVM and CLI heavily uses Reflection mechanism of VM,
which allows managed code to retrieve information of fields,
methods, constructors for objects, classes etc. Reflection is
basically an interpreted operation on object meta data and
may incur a significant overhead and performance penalty.

2.2 Efficient Object Serialization

There were several attempts to improve the performance
of Java Object Serialization in order to enhance RMI mech-
anisms. Haumacher et al. [20] suggested a serialization func-
tion in pure Java code. To remove the overhead in a wire
protocol, it minimizes the size of metadata in the serialized

data by omitting data fields’ type information, name, etc.
To avoid any costly invocation of reflection mechanism in a
generic serialization operation, it supports only user-defined
serialization, which requires programmers to specify meth-
ods to serialize/deserialize objects of each class. Breg et al.
[6] implemented a serialization function in native code by
using JNI. Their study shows that the overhead from Re-
flection and JNI is still high although the implementation in
native codes improves the performance to a certain extent.
In addition, a type-cache was employed in their approach
to reduce the overhead caused by repetitive invocations of
Reflection functions.

2.3 Orthogonal Persistent Object Systems

Making data persistent beyond the lifetime of applica-
tions may require extra programming effort to save and re-
store data using specific programming constructs, for ex-
ample, DB languages to access DBMS. Orthogonal Persis-
tent System [2] aims at a transparent programming such
that no significant programming effort is required to han-
dle persistent data in a database. In addition, it adopts
Lazy pointer swizzling and Incremental updates techniques
to reduce the latency due to restoring and saving the persis-
tent objects. Lazy pointer swizzling is to update the loaded
object’s address (from persistent storage address to mem-
ory address) on demand. Furthermore, with incremental
updates, only updates, instead of the whole data objects,
are saved to a persistent storage since the latest persistence
service. Through the techniques, the orthogonal persistent
object system provides scalability on enterprise applications
that handle massive data. However, its unpredictable la-
tency still makes the system inappropriate for real-time ap-
plications.

2.4 Checkpointing for Real-Time Applications

There are few investigations on checkpointing memory
content of real-time application processes in OS level. Li
et al.[16] present a concurrent checkpointing algorithm in
which mutators are allowed to interleave with a checkpoint-
ing thread. The algorithm incurs a reduced latency by
checkpointing memory pages one at a time rather than check-
pointing the whole memory space of mutators at once. The
consistency of checkpointed data is addressed by employing
a copy-on-write mechanism. The mechanism places write-
protection on memory pages when checkpoint starts. When
mutators try to update a memory page, the page is check-
pointed before the update is applied. Although this ap-
proach can reduce the latency modestly, two limitations fol-
low. Firstly, the granularity in a level of a memory page
is too coarse to satisfy the timely requirements of real-time
applications. Secondly, there is a significant initialization
delay to enable MMU (Memory Management Unit) write
protection on the whole memory space of the application.

Cunei et al. [8] propose a concurrent checkpoint mecha-
nism by employing a mirror copy of memory blocks. The
mirror copy works as follow: the checkpoint mechanism
maintains an auxiliary memory block as a mirror copy of
main memory. In order to have the mirror copy constantly
updated, update operations of mutators apply on both the
main memory and the mirror copy. When a checkpoint
starts, the updates on a mirror copy are suspended, and
then the data on the mirror copy is saved to a persistent
storage. Write barriers can be used to allow the mirror copy

197

updated in software, rather than depending on a specific
hardware. To reduce the cost of write barriers, the mirror
copy is mapped to separate physical memory pages while
checkpoint is underway. Hence, write barrier operations do
not need to be changed according to the presence of check-
point. Employing a mirror copy can be a solution of check-
point while concern the timeliness of applications. However,
the cost having extra memory blocks may not be tolerable
to resource constraint embedded systems, and the approach
is also limited to checkpoint memory content in OS level.
There have been a lot of research work focusing in the
scheduling issues for fault-tolerant real-time applications with
time-redundancy schemes [15, 12, 11], and [21]. Because the
time-redundancy schemes require extra time for fault detec-
tion and fault recovery, scheduling fault-tolerant real-time
applications are resorted to finding the WCET (Worst Case
Execution Time) of the applications with failure detection
and recovery, conducting schedulability study, and establish-
ing efficient scheduling algorithms in the presence of faults.

3. DESIGN APPROACHES

The design of the proposed persistence system is focused
on achieving three goals: to enable concurrent and pre-
emptible persistence service with adjustable pause time while
ensuring consistency of persisted data, to make persistence
service efficient for resource constrained systems, and to pro-
vide essential features necessary for fault recovery as well as
data recovery. We will limit the scope of the persistence
service to data persistence but not thread persistence for
applications. However, we claim that the characteristics of
real-time embedded applications, and inevitable initializa-
tion for external data during recovery make data persistence
the foremost concern for failure recovery.

We design a schedulable persistence system by employing
object serialization and extending the functions of VM envi-
ronment. We use MONO, an open source development plat-
form of .NET framework running on Linux platforms [2§],
as an example platform to illustrate the details of our de-
sign. The benefit of employing object serialization is porta-
bility because object serialization generates persisted data
with VM-aware standard format. Thus, the persisted data
can be used in both HW and time redundant fault tolerant
architectures. Serialization and Deserialization are imple-
mented in native codes as a subsystem of CLI. This decision
is drawn to overcome the limitations of serialization pro-
vided as managed code including poor performance and the
inadequacy to be extended for preemptible and concurrent
serialization. Since we employ object serialization to achieve
persistence, we will refer serialization and serialized data in-
terchangeably with persistence service and persisted data,
respectively.

3.1 Efficient Serialization Algorithms

The serialization operation consists of three steps, firstly
to obtain the state of objects, secondly to transform the state
into binary sequences, and then to write the serialized data
to memory, or files (persistent storage) [14]. The factors
affecting the performance of serialization are:

e Reflection allows managed code to retrieve informa-
tion of persistent objects’ fields. It is only way to ob-
tain the state of objects in serialization implemented
in managed code, but it is very costly.

e The serialized data consist of metadata as well as states
of persistent objects. The metadata include type infor-
mation, headers necessary to parse the states for dese-
rialization. The excessive metadata increases 1O over-
head as well as the size of serialized data. The bench-
mark on object serialization implemented for .NET
Compact Framework [6] indicates that reducing the
size of metadata overhead helps improving the perfor-
mance.

e The execution performance in managed code is much
slower than native codes. To improve the performance,
Breg et al. [6] implemented serialization in native
codes using JNI. However, the overhead associated
with JNT is not negligible.

An efficient serialization should avoid any reference to re-
flection mechanism and minimize the meta data information
saved in persistence storage. To further optimize the per-
formance, we can adopt a native code implementation of
serialization service as internal functions of VM. To begin
the design, persistence class and fields should be declared.
Hence, programmers can apply their knowledge of the ap-
plications to select the class and field of data that must be
made persistent. In C#, this can be done with additional
attributes, such as [SPersistent] and [SPersistentField]. As
shown in Listing 1 of a C# class declaration of a persistent
class with two persistent fields. Attribute in C# is associ-
ated with managed code in a form of Class Metadata, but
does not alter the managed code’s semantics. When man-
aged code is loaded, the associated class metadata is placed
as in-memory data structure. In Java, similar to Serializable
interface, a persistence interface can be defined to indicate
a class whose instances may be persistent.

[SPersistent |
class Foo

{
[SPersistentField |
public int i;
public double d;
[SPersistentField |
public Bar o;

}

Listing 1: Example declaration of a persistent class

To implement serialization/deserialization as internal func-
tions in VMs, we will not be able to use reflection mecha-
nism to retrieve underlying information of persistent class-
es/fields. Our approach is to maintain a Persistent Class
Map internally for persistent classes. The map facilitates
the introspection function of a reflection mechanism and
contains persistent fields’ type information and offset. For
example, the map for Foo class in Listing 1 lists two en-
tries for a field z and a field 0. The map helps efficiently
locating persistent fields from persistent objects during se-
rialization and deserialization. A persistent class and its
persistent fields are identified by accessing the persistence
attribute information in class metadata. The map can be
built when the class is loaded or when the class’ persistent
objects are serialized for the first time.

198

Serialized data includes not only the states of persistent
objects but also object header, which describe class infor-
mation, fields’ types, fields’ names, and other header infor-
mation, etc. We design a Serialization Protocol to define
the format of serialized data. The protocol minimizes the
amount of serialized data by reducing the amount of the
metadata to be saved with persisted data. This is done by,
firstly, not carrying a verbose format of metadata to specify
names and types of its fields in serialized data. Those infor-
mation can be retrieved through persistent class map, which
is also generated during deserialization. Secondly, persis-
tent classes are distinguished with unique class identifica-
tion (Class ID) and are maintained in a Persistent Class
Cache with detail information such as assembly version etc.
Serialized data of persistent objects carry only Class ID rep-
resenting its class instead of verbose format of its class infor-
mation. The cache is also serialized so that deserialization
can generate the same type of persistent class cache. The
serialized data is converted into binary stream, which is in-
dependent of the underlying hardware platforms.

To invoke serialization/deserialization operations, we em-
ploy a simple API of three static methods of class SPC.
AddRoot registers a persistent root object and returns a
persisted data ID. When the data needs to be persisted,
the second method SendPData is called. For deserializa-
tion, RecvPData is invoked with the ID of a persistent root
object which is used to locate the corresponding persisted
data.

oValue;
nRootID2;

Foo oKey,
int nRootID1,

//Initialization Phase for cold start
if (IsWarmRestart ()==false)

{

new Foo();

new Foo ();

oKey =
oValue =
//Register persistent root objects
nRootID1 = SPC. AddRoot (oKey);
nRootID2 = SPC.AddRoot(oValue);
//Initialization Phase for warm restart
else

{
oKey = SPC.RecvPData(nRootID1);
oValue = SPC.RecvPData(nRootID2);
}
//Periodic Operation Phase
while ()
//Main operations
//Serialize all persistent object graphs
SPC. SendPData ();
}

Listing 2: An example program of using persistence
service

Listing 2 is an example of a persistent application to sup-
port warm start using the API. In many real-time control
applications, function blocks are invoked repetitively using
sensor inputs and to control actuators. The applications are
typically structured with Initialization Phase and then Pe-
riodic Operation Phase. In the initialization phase, resource

required to execute the function blocks are initialized. Then,
in the operation phase, function blocks are invoked period-
ically. Once applications’ data is persisted at the end of
each period, failure recovery can be done by restarting the
applications at a new period with the latest persisted data.

3.2 Concurrent Persistence Mechanism

The existing serialization in JVM or .NET is an atomic
procedure, i.e., the applications have to wait until the last
object of persistent object graph gets serialized. This may
result in a long pause on applications. To make persis-
tence service schedulable for real-time embedded applica-
tions, we assign a separate task responsible for the service
(hereafter, SP task) and make the task preemptible by di-
viding the service into small increments. As a consequence,
real-time scheduling algorithms can be applied to dispatch
urgent tasks once the SP task performs a bounded persis-
tence service per increment and relinquishes CPU cycles to
other tasks.

We define that a consistent persisted data is a snapshot of
all persistent data when the persistence service is triggered.
With concurrent and preemptible persistence service, the
mutators may modify the persistent data before it is com-
pletely serialized. We address this issue by using a write
barrier. The write barrier traps the update operations of
mutators on persistent objects. If the persistent object yet
gets serialized, the write barrier performs serialization of the
object before the update is effective on the object.

Ideally, a write barrier should be only applied to the up-
date operations on the persistent data when persistence ser-
vice is in progress. However, unless the object graph starting
from the root object is scanned, there is no straightforward
approach that can identify whether an object of persistent
class needs to be serialized. To avoid the application of write
barrier to all objects, we may take either of the following two
approaches: the first approach is to apply write barrier on
methods that update persistent fields of a potential persis-
tent object, and the second approach is to mark persistent
objects in advance.

3.2.1 Annotating Methods that Update Persistent
Objects

Under this scheme, the methods that update persistent
objects are annotated (hereafter ” Annotating SP”) such that
a write barrier becomes effective when the methods are in-
voked during a persistence service interval. Then, the write
barrier performs two operations on the object encountered:
a test operation for the serialization status of the object and
a serialization operation if it is not yet serialized. The anno-
tation can be done by the programmer or by compiler when
a definition of persistent fields is detected. When it is done
by the programmer, the approach relies on users’ descrip-
tions to effectively restrict the range of write barrier to likely
update operations on persistent fields of persistent objects.
Because not all fields in persistent classes are persistent, ap-
plying write barrier on methods that update persistent fields
can narrow down the effective range. As shown in Listing
3, the attribute [SPersistentUpdate] is used to specify the
annotated method set. This scheme can be also applied in
JVM given that annotation is supported since JDK 1.5 as
a result of JSR 175, ”a metadata facility for the Java pro-
gramming language” [24].

[SPersistent]

199

class Foo {
[SPersistentField]
public int x;

[SPersistentField]
public IxVertex PNodes;

public int XP {

get {
return x;
}

[SPersistentUpdate]
set {

} =

value;

}

public void Bar() {
Xf’;lo;
PNodes [i]=Baz;

public class IxVertex {
[SPersistentField |
public Vertex[] nodes;

public IxVertex(Vertex|]
nodes paraml ;

paraml){

public Vertex this

get {
return nodes [index];

[int index] {

[SPersistentUpdate |
set {
nodes [index |

value;

}

Listing 3: An example persistent class with method
annotations

However, if the methods specified with the [SPersisten-
tUpdate] attribute conduct update operations on nonper-
sistent fields as well as persistent fields, the write barrier
is unnecessarily applied to the update operations on non-
persistent fields. The solution is to use a wrapper method
designated for updating a persistent field, and to make other
program codes call the method to update the field. To real-
ize that solution, we recommend to define Property for each
persistent field, and access the field through its correspond-
ing property. Property in C# is an interface to provide
a direct access of a class field through two methods: Get
method to return the value of the field, and Set method to
write a value to the field. Thus, specifying [SPersistentUp-
date] to the property’s set method can confine write barrier
to the persistent field’s update. For example, in Listing 3, an
integer type field z is a persistent field and XP is a property
to the field z. The attribute [SPersistentUpdate] on a set
method of the property XP allows to activate write barrier
on the set method while a persistence service is in progress.

If a persistent field is array (actually a reference to an ar-
ray object in CLI), the update operation on each element of
the array should trigger the write barrier. However, the set

method of the property corresponding to an array reference
does not invoke a write barrier on access to the element of
the array. A solution is to define an Indezxer class for an
array in C#. This approach allows the instances of a class
or struct being indexed in the same way as arrays. Indexer
consists of get/set methods similar to properties except that
their accessors take the indices to the elements such that
the elements are guarded. In Listing 3, for example, a class
IzVertez is an Indexer class defined to provide get/set meth-
ods to an access to array’s elements.

The limitation of the Annotating SP is that it may con-
sider nonpersistent objects as persistent objects. For exam-
ple, a nonpersistent object whose class happens to be a per-
sistent class but it is not reachable from the persistent root
objects can be still protected by the write barrier. Although
it can cause unnecessary overhead, it does not violate the
consistency or integrity of persisted data because the non-
persistent objects mistakenly serialized will be deserialized
as dead objects that are unreachable via any live objects
and are the subject of garbage collection. The another limi-
tation of this scheme is that any updates to persistent fields
must be done through properties or indexers although in
C#, properties and indexers are recommended to provide
encapsulation. However, we can also rely on compiler tech-
niques to insert write barrier on updates to persistent fields
or define properties or indexers as shown in Listing 3.

3.2.2 Marking Persistent Objects In Advance

To identify precisely the persistent objects, the persistence
service can mark persistent objects in advance before serial-
izing the objects. The approach (hereafter, ”Marking SP”)
takes two phase: Marking Phase and Serialization Phase.
In marking phase, SP task traces and marks all persistent
objects in the object graph. In serialization phase, all the
marked objects get serialized. Both phases are preemptible
and are protected by a write barrier. The operations of the
write barrier is different according to the phases. In marking
phase, the write barrier tests the serialization status of the
object encountered, and then in serialization phase, write
barrier tests the mark status of the object, and serialize the
object if it is marked and is not yet serialized. The write
barrier in making phase does not check the mark status be-
cause marking on objects is underway. It may generate some
false-serialized objects, but they may not be many because
the marking phase usually takes a short amount of time
comparing to the serialization phase.

This scheme can confine the write barrier on any update
operations to persistent objects. However, the overhead is
that all update operations in marking phase conducts test
operation for the object encountered. That can be imple-
mented with a fast path like inline codes. The study on cost
of write barrier using a fast path [3] shows that the cost
is tolerable. Unlike Annotating SP, this does not give pro-
gramming burden to limit access to persistent fields through
properties or indexers.

In summary, either Annotating SP or Marking SP can
be used to distinguish persistent objects from nonpersistent
objects and to efficiently narrow down the effective range
that the guard operation by a write barrier is applied. The
choice among two approaches might depend on the amount
of checking operations and the annotations provided by pro-
grammers.

200

SP Task —p— —— :
I .
1 Serializing ; Nonvolatile
: Buf 1 RAM
1 L]
! 1
! —1/ 1 WriterTask

O : Writing :

1 Buf S
B
1
1 - !

PersistedData
Buffer

Persistent

Persistent Objects
Storage

Figure 2: Structure of the proposed Schedulable
Persistence System

3.3 Structure of Data Persistence

The architecture for schedulable persistence system is de-
vised to aim at a general persistence system that can be
applied regardless the types of persistent storage. The data
persistence system consists of two tasks, SP task, and Writer
task in Figure 2. SP task traces persistent objects, serial-
izes the state of the objects, and then writes the persisted
data into a buffer. On the other hand, Writer task moves
the data from the buffer to a persistent storage. The system
maintains two buffers: one buffer can be the SerializingBuf
to where SP task writes persisted data; and the other buffer
will be the WritingBuf read by Writer task to move per-
sisted data to persistent storage. The roles of the buffers
are switched back and forth such that the write and read
operations are performed concurrently. Hence, a smooth
data transfer of persisted data to storage devices can be ac-
complished.

4. IMPLEMENTATION

We implemented a prototype of schedulable persistence
system in CLI’s MONO platform version 1.1. The major ef-
fort in the implementation includes the construction of the
SP task designated for persistence service and write barrier
schemes. The SP task starts to serialize objects when Send-
PData API gets called as stated in Listing 2. As illustrated
in Figure 1, persistence service is performed by conducting
small increments of the service periodically. Runtime para-
meters are set with the targeted pause time of each persis-
tence increment and the period of persistence increment.

During each persistence increment, the minimum work
unit of serialization is a single object; that is, the pause
time of a persistence increment can be as small as the dura-
tion taken to serialize a single persistent object. Persistent
object graphs are traced through a breadth-first search, and
any object types including strings and array of strings are
treated as single persistent object to keep a minimum work
unit of a single object. An internal queue is employed to
buffer the persistent objects encountered when the object
graph is traced. During each persistence increment, depend-
ing upon the target pause time, a number of objects from
the queue are traced and serialized. To access the fields of
a persistence object, persistent class map is used to quickly
locate persistent fields within persistent objects. The map
is organized as a linked list of all persistent fields specified

with attribute [SPersistentField]. In our prototype imple-
mentation, the map is built while loading a persistent class
in order to avoid any delay during serialization.

To serialize persistent objects, the state of objects as well
as their reference relationship must be preserved. Each refer-
ence points to a corresponding object using an actual mem-
ory address (MID). In persistence storage, each MID must
be converted to a unique logical address (LID). We main-
tain the pairs of MID and LID for all persisted objects in
a hash table MID2LID. Whenever an object is encountered
during the breadth-first search of persistent object graph,
MID2LID is looked up such that references to shared objects
can get converted by the same LID. In addition, MID2LID
table keeps the status of each object indicating whether it
has been serialized or not. The status is encoded by us-
ing MSB (most significant bit) of LID in the table to save
memory space.

To invoke write barrier when a serialization gets started,
we consider the instructions defined in Common Language
Instruction (CIL). Among the 250 instructions, only stfld
and stelem.{1,i1,i2,14,i8,74,78,ref} are used to store a new
value in a field of an object and in a vector element, respec-
tively!. To protect any update operations through write
barriers, MONQO’s JIT compiler is modified such that the
two instructions are translated into CLI’s internal functions.
Each of these functions calls indirectly to a update function
through a pointer which is altered according to the presence
of concurrent persistence service. In other words, the up-
date function with write barrier is invoked when concurrent
persistence service is underway, otherwise the one with no
write barrier is called. This approach is applied to both An-
notating SP and Marking SP. However, the former modifies
the implementation of stfld and stelem instructions when
they are a part of the methods annotated with [SPersisten-
tUpdate]. The translated code is not altered if the stfld and
stelem instructions are not done by an annotated method.
On the other hand, in the latter scheme, the translated codes
for all stfid and stelem instructions are modified. Then, ob-
ject mark is tested to trigger a write barrier.

The operation of de-serialization is completed in two phases.
In construction phase, objects are re-constructed based on
serialized data and a hash table with pairs of LID and MID
is established. In the following fiz-up phase, the LIDs are
fixed up with corresponding memory address (MID) to re-
cover the reference relationship between objects. Only the
objects with reference member fields are enqueued into a fix-
up cache in construction phase so that the fix-up operation
is limited to the objects with reference fields.

Unlike serialization, in our current implementation, de-
serialization does not work in a concurrent mode; that is,
when deserialization for recovery is requested due to an ap-
plication’s failure, the recovered application’s execution can
resume once deserialization over the entire serialized data
completes. If the recovery, due to large amount of serialized
data, places a long latency beyond the application’s timely
requirements, the timeliness of the application cannot be
guaranteed even with persistence service. One of solutions
over this problem might be to resume the execution of a re-
covered application with a partial recovery once the partial

LCIL defines additional store instructions such as stsfld,
stind.(type), starg.(length), and stloc. However, these store
instruction do not require a write barrier because their store
operation is not conducted on instance objects.

201

recovery initializes the application enough to resume. To al-
low a partial recovery, we can apply on-demand object dese-
rialization and lazy pointer swizzling [2]: on-demand object
deserialization deserializes objects when they are referred,
and lazy pointer swizzling converts LID to a correspondent
MID when the object represented with the LID is actually
accessed. Other technique to be considered is In-Place Ob-
ject Deserialization which is suggested as a method of serial-
ization/deserialization for Java RMI (Remote Method Invo-
cation) in [7]. The in-place object deserialization conducts
deserialization without allocation and copying of objects by
reusing a buffer allotted to serialized data for deserialized
object. We leave considering a partial recovery as a future
work.

5. EXPERIMENTS

Experiments in the prototype persistence system are con-
ducted to examine the performance of the proposed de-
sign approaches. The experiment is done in a PC worksta-
tion with 1.5GHz Pentium IV processor and 256 MB mem-
ory. To have a high resolution timer and preemptive kernel,
TimeSys’ Linux/Real-Time(v4.1.147)[26] is used.

The experiments basically follow a comparative study among

the performance measures of serialization and deserializa-
tion operations. MONO’s serialization library and the pro-
posed schedulable persistence (SP) service with the Anno-
tating SP and Marking SP write barrier schemes are tested.
We collect both the maximal and average measures after
running the experiments 40 times. If a specific measure is
common to Annotating SP and Marking SP schemes, we
simply denote it as a SP measure for the proposed schedu-
lable persistence system. Whenever SP service and appli-
cations run concurrently in Linux threads, the SP thread is
assigned with a higher priority than application threads.

5.1 Performance of Serialization and
Deserialization

The performance of serialization and deserialization oper-
ations using MONQ’s serialization library, Annotating SP,
and Marking SP, are collected by running in the stop-the-
world mode. Since the time needed to complete the opera-
tions depends upon the object types as well as the number
of persisted objects, the serializations of a red-black tree of
composite objects (consisting of multiple primitive fields),
and an array of a primitive type (integer) are benchmarked.
The average response times of serialization and deserializa-
tion for the red-black tree and the array of a primitive type
are shown in Figure 3, Figure 4, Figure 5, and Figure 6
respectively.

The results in the figures clearly indicate that, in terms of
the response time of the serialization and deserialization op-
erations, the proposed schedulable persistence system (with
either Annotating SP and Marking SP) outperforms the
MONO's serialization library significantly. The performance
improvement is derived from two main factors. First, the SP
serialization is implemented as a subsystem of CLI by defin-
ing native functions which is much more efficient than the
serialization library of managed code. The second factor is
the use of persistence class map which allows us to avoid
costly reflection mechanism.

Given that the experiments were run in the stop-of-the-
world mode, the effect of write barrier schemes is not pre-
sented in the results. However, comparing the Annotating

600

T
= Serialization Library
=#~ Annotating SP
-O- Marking SP

Avg. Serialization Time (ms)

20000

10000

15000 25000
Number of Persistent Objects

Figure 3: Serialization

= Serialization Library
-+ sP

of Tree

Avg. Deserialization Time (ms)
8
s
7
.

10000 0000

1
Number of Persistent Objects

Figure 4: Deserialization of Tree

SP and Marking SP schemes, we found that Marking SP has
a 30% more overhead than Annotating SP especially for ap-
plications with many reference objects. This is mainly due
to the difference of the invocation numbers of internal func-
tions translated from stfld, and stelem. More detail is given
in 5.2. Furthermore, the extra marking phase before con-
ducting serialization in Marking SP scheme also contributes
to that. On the other hand, in this experiment, the size of
the serialized binary data in SP is not much different from
that of serialization library because in each of the bench-
marked applications there is only one persistent class and
the metadata preserved is only a small portion of serialized
data.

5.2 Controlling the Pause Time of Persistence
Increments

The aforementioned experiments illustrate the execution
time of the schedulable persistence system. To support real-
time applications, we need to examine whether the proposed
schedulable persistence system has a behavior following the
scheduling model of Figure 1. The experiments conducted
are to apply the two write barrier schemes in two differ-
ent execution modes, stop-the-world mode (STW) and pre-
emptible modes. For the preemptible mode, the targeted
pause time of each persistence increment and the period
of pergistence increment are set to 500us and 3ms, respec-
tively.

2This experiment focuses on measuring the flexibility of per-
sistence increment’s granularity and the overhead due to

202

T
= Serialization Library
=#- Annotating SP
-O- Marking SP

Avg. Serialization Time (ms)
@
3
:

@ - - m—— 4

@ L
5000 10000 15000 20000

Array Size

25000

Figure 5: Serialization of Array of Primitive type

= Serialization Library i i
-+ sp

S
3
T

3
3
T

Avg. Deserialization Time (ms)
N o
8 3
7 :

Q
8
T

N
S
T

L L
15000 20000

Array Size

L
5000 10000 25000

Figure 6: Deserialization of Array of Primitive type

The benchmarked application mainly constructs a directed
weight graph, which contains 1326 persistent objects. The
total amount of serialized data is about 43KBytes. The ap-
plication works as follows. First, the application constructs
a directed weight graph of nodes. After the construction is
complete, it triggers a persistence service. Then, the appli-
cation starts to make changes on the connections of nodes
and then delete all the nodes of the graph one by one. In
other words, in preemptible mode, the SP task serializing
the graph runs concurrently with a mutator that updates
the persistent objects.

The experiment results are shown in Table 1. It indicates
that the schedulable persistence system by using both write
barrier schemes is able to control the pause time of each
persistence increment to meet the targeted bound of 500.us.
The average execution time of serialization in preemptible
mode is slightly higher that that in the stop-the-world mode.
This difference is somehow expected given additional over-
head caused by context switches and controlling the pause
time of each increment.

The total execution times of the application of the Mark-
ing SP in both stop-the-world mode and preemptible mode
are higher in than that of the Annotating SP. In both write
barrier schemes, the CIL update instructions, stfid and stelem,
are translated into internal functions during JIT (runtime
compilation). Then, depending upon whether a serializa-
tion is in progress or not, the internal functions call actual
update functions with either a write barrier or without a

persistence service’s preemptivity so that these numbers,
500us and 3ms, are arbitrarily chosen in that sense.

Annotating SP Marking SP Marking SP(v2)
Properties STW | 500us | STW | 500pus | STW | 500us
Max. pause time per increment(us) | 5171 453 6162 478 6344 478
Avg. pause time per increment(us) 5056 401 6084 388 6257 398
Avg. persistence cycle (ms) NA 39 NA 48 NA 48
Max. serialization time(us) 5171 6056 6162 6758 6344 7367
Avg. serialization time(us) 5056 5632 6084 6612 6257 6859
Max. application exec. time(ms) 300 301 374 390 302 309
Avg. application exec. time(ms) 279 282 351 366 272 284
Avg. No. of Increments 1 14 1 17 1 18
Avg. No. of WB invocations 0 1284 0 185762 0 16284
Avg. No. of WB Serializations 0 24 0 41 0 50

Table 1: Pause time and overhead of schedulable persistence system

write barrier, accordingly. The main difference between the
two schemes is the number of CIL update instructions trans-
lated into the internal functions. Annotating SP limits the
instructions to those in the methods annotated with /[SPer-
sistentUpdate] whereas all stfld and stelem instructions, in-
cluding the ones in standard class libraries, are converted
into the internal functions in Marking SP. The overhead in-
curred in the execution of the internal functions results in a
longer execution time of the application in Marking SP. Fur-
thermore, that Marking SP has a marking phase in advance
which also affects the execution time for serialization.

To find out a compromised solution for the added cost of
internal functions for write barrier, we experiment a modi-
fied Marking SP scheme in which only the stfld and stelem
instructions in the methods of persistence classes are trans-
lated into the internal functions. The performance is shown
in the Marking SP(v2) column of Table 5.2. This modi-
fication reduces the number of invocations of the internal
functions significantly and leads to a total execution time
of the applications similar to that of Annotating SP. It in-
dicates that even though the execution time in Marking SP
is high, it can be adjusted by defining the scope of the up-
date operations to persistent fields. If persistent fields are
updated through the methods of persistent class, a write
barrier on the methods of persistent class is able to provide
a sufficient guard without an excessive overhead.

Besides execution times, the numbers of increments to
complete a persistence cycle and the length of a persistence
cycle are presented in Table 1. In addition, the numbers of
invocations of write barrier operations, and the numbers of
objects serialized during write barrier operations are given.
The distinct characteristics revealed on the two measures is
discussed in the following subsection 5.3.

5.3 Objects Serialized by Annotating SP and
Marking SP

In this experiments, we look into how the two schemes,
Annotating SP and Marking SP, efficiently distinguish per-
sistent objects from nonpersistent objects. To have mixed
persistent and nonpersistent objects in heap memory, the
benchmark application consists of three threads and each
of which firstly constructs a directed graph of nodes and
then deletes all the nodes one by one. Each graph is differ-
ent in the perspective of persistence. The first one makes
all objects in the graph persistent by making its root node a

203

Annotating | Marking
STW SP SP
Avg.No. of persistent objs. 1326 1326 1326
Avg.No. of serialized objs. 1326 1677 1326
Avg.No. of WB invocations 0 2643 240912
Avg.No. of WB serialization 0 339 13

Table 2: Checking and serialization operations of
the two write barrier schemes

persistent root object before deleting any nodes. The second
one has no persistent objects but using the same persistent
class as the first thread. In the third thread, a different class
is used to instantiate the objects in the graph and no per-
sistence service is invoked. Among three threads, only the
first one triggers a persistent service after the construction
of the graph. The application has 1326 persistent objects
out of a total of 3978 objects.

The results of the experiment is shown in Table 2. The
data indicates that Marking SP is able to precisely pinpoint
persistent objects. On the other hand, extra 351 nonpersis-
tent objects accessed by the 2nd thread are serialized in An-
notating SP. These extra objects happen to be the same class
of the persistent objects and are updated by the annotated
methods when the 1st thread requests a persistence service.
However, because Annotating SP limits the write barrier
to the annotated methods, the number of invocation to the
write barrier operations is much less than that in Marking
SP. Note that, in Annotating SP, the average number of
objects serialized by the write barrier operations, i.e. 339,
is less than the average number of the extra nonpersistent
objects serialized by the scheme. This should not happen
if nonpersistent objects can only be serialized (mistakenly)
by the write barrier operations. In fact, an object serialized
by the write barrier operations may have references to other
objects. These referenced objects must also be serialized
and are placed in the internal queue such that the SP task
can trace the object graph through the breadth-first search.
Thus, extra nonpersistent objects may be preserved by the
SP task during the subsequent persistence increments.

6. CONCLUSION & FUTURE WORKS

In this paper, we aim for a schedulable persistence sys-

tem to support object persistence for real-time applications
in VMs. The system is designed with a concurrent per-
sistence service task to avoid any long pause delay caused
by sequential operation of serialization. To guarantee the
consistency of persistent objects due to the concurrent op-
erations of persistence service task and application tasks,
write barrier schemes are devised. A prototype system, in-
volving the modification of JIT and rewriting the serializa-
tion operation, is constructed in CLI’s open source platform,
MONO. The experiments show a significant performance
gain resulted from the native function implementation for
serialization operation and a replacement of reflection mech-
anism for class introspection. In particular, we are able to
demonstrate the bounded pause time for each persistence in-
crement in the prototype system and the modest overhead
incurred in write barrier operations.

Based on the insight gained from this study, our future
work is to establish a cost model for the persistence ser-
vice. The model is to estimate the worst case execution
time of persistence service based on number of persistence
objects, the class information of the objects, and their refer-
ence dependency. The model can then be used to schedule
persistence cycle and increments, as well as to design a suit-
able scheduling algorithm for application tasks subject to
recovery constraints.

7. ADDITIONAL AUTHORS

Additional authors: Elliott Rachlin (Honeywell Interna-
tional Inc., email: elliott.rachlinGhoneywell.com).

8. REFERENCES

[1] Aonix North America, Inc. PERC, 2006.
http://www.aonix.com/perc.html.

[2] M. Atkinson and M. Jordan. A review of the rationale
and architectures of PJama: a durable, flexible,
evolvable and scalable orthogonally persistent
programming platform. Technical Report TR-2000-90,
Sun Microsystems Laboratories and Dept. Computing
Science, Univ. Glasgow, UK, 2000.

[3] S. M. Blackburn and A. L. Hosking. Barriers: friend
or foe? In ISMM, pages 143-151, 2004.

[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr,
and M. Turnbull. The Real-Time Specification for
Java. Addison-Wesley, 2000.

[5] S. Bouchenak, D. Hagimont, S. Krakowiak, N. D.
Palma, and F. Boyer. Experiences implementing
efficient java thread serialization, mobility and
persistence. Softw., Pract. Ezper., 34(4):355-393,
2004.

[6] F. Breg and C. D. Polychronopoulos. Java virtual
machine support for object serialization. In Java
Grande, pages 173-180, 2001.

[7] C.-C. Chang. Safe and Efficient Cluster
Communication with Explicit Memory Management.
PhD thesis, Cornell University, 1999.

[8] A. Cunei and J. Vitek. A new approach to real-time
checkpointing. In Proceedings of the 2nd ACM Virtual
Machine and Ezecution Environments Conference
(VEE 2006), June 14-16, 2006 Ottawa, Canada.
ACM, 2006. (to appear).

[9] ECMA. Ecma-335 common language infrastructure,
2002.

[10] H. Evans. Why Object Serialization is Inappropriate
for Providing Persistence in Java. Technical report,
Department of Computing Science, University of
Glasgow, Glasgow, 2000.

[11] S. Ghosh, R. G. Melhem, D. Mosse, and J. S. Sarma.
Fault-tolerant rate-monotonic scheduling. Real-Time
Systems, 15(2):149-181, 1998.

[12] S. Ghosh, R. Mellhem, and D. Mosse. Enhancing
real-time schedules to tolerate transient faults. In
IEEE Real-Time Systems Symposium, pages 120-129,
1995.

[13] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Addison-Wesley, 2nd edition,
2000.

[14] M. Hericko, M. B. Juric, I. Rozman, and A. Zivkovic.
Object serialization analysis and comparison in Java
and .NET. ACM SIGPLAN Notices, 38(8):291-312,
2003.

[15] H. Lee, H. Shin, and S.-L. Min. Worst case timing
requirement of real-time tasks with time redundancy.
rtesa, 00:410, 1999.

[16] K. Li, J. F. Naughton, and J. S. Plank. Real-time,
concurrent checkpoint for parallel programs. In Second
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (2nd PPOPP’90),
SIGPLAN Notices, pages 79-88, Mar. 1990.

[17] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 2nd edition, 1999.

[18] Microsoft Corp. Microsoft .NET framework
binaryformatter serialization format, 2002.

[19] M. Monga and A. Scotto. A generic serializer for
mobile devices. In Proceedings of the 20th annual
ACM symposium on applied computing, Santa Fe, New
Mexico, USA, 2005.

[20] M. Philippsen and B. Haumacher. More efficient
object serialization. In IPPS/SPDP Workshops, pages
718-732, 1999.

[21] S. Punnekkat, A. Burns, and R. Davis. Analysis of
checkpointing for real-time systems. Real-Time
Systems, 20(1):83-102, 2001.

[22] R. Riggs, J. Waldo, A. Wollrath, and K. Bharat.
Pickling state in the Java(TM) system. USENIX,
Computing Systems, 9(4):291-312, 1996.

[23] T. Suezawa. Persistent execution state of a java
virtual machine. In Java Grande, pages 160-167, 2000.

[24] Sun Microsystems, Inc. JSR175 : a metadata facility
for the java programming language, 2005.
http://www.jcp.org/en/jsr/detail7id=175.

[25] Sun Microsystems Inc. Sun Real-Time Java System,
2005. http://java.sun.com/j2se/realtime.

[26] TimeSys Corporation. Timesys linux/real-time user’s
guide, version 2.0, 2004.

[27] B. Venners. Inside the Java Virtual Machine.
McGraw-Hill, 1999.

[28] Ximian. MONO. http://www.go-mono.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

