
Automatic Phase Detection for Stochastic On-Chip Traffic
Generation

Antoine Scherrer
∗

LIP - ENS Lyon
46, allée d’Italie

69364, Lyon cedex 7, France

ascherre@ens-lyon.fr

Antoine Fraboulet, Tanguy Risset
CITI - INSA Lyon

21, avenue Jean Capelle
69621 Villeurbanne Cedex, France

firstname.lastname@insa-lyon.fr

ABSTRACT
During System on Chip (SoC) design, Network on Chip
(NoC) prototyping is used for adapting NoC parameters to
the application running on the chip. This prototyping is
currently done using traffic generators which emulate the
SoC components (IPs) behavior: processors, hardware ac-
celerators, etc. Traffic generated by processor-like IPs is
highly non-regular, it must be decomposed into program
phases. We propose an original feature for NoC prototyping,
inspired by techniques used in processor architecture perfor-
mance evaluation: the automatic detection of traffic phases.
Integrated in our NoC prototyping environment, this fea-
ture permits to have a completely automatic toolchain for
the generation of stochastic traffic generators. We show
that our traffic generators emulate precisely the behavior of
processors and that our environment is a versatile tool for
networks-on-chip prototyping. Simulations are performed
in a SystemC-based simulation environment with a mesh
network-on-chip (DSPIN) and a processor running MP3 de-
coding applications.

Categories and Subject Descriptors: C.4 [Computer
Systems Organization] : Performance of Systems – Modeling
techniques.

General Terms: Algorithms, Performance, Experimenta-
tion.

Keywords: Traffic generation, Network-on-chip, Phase be-
havior, Stochastic modeling, Performance evaluation.

1. INTRODUCTION
Systems on chip (SoC) are now commonly used in embed-

ded systems for multimedia and telecommunication applica-
tions. Most of these SoC are composed of a single processor
controlling various components (Intellectual Property: IP)
all connected together. The computing power required by

∗This work has been partly founded by CNRS and ST-
Microelectronics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

emerging applications running on mobile terminals, such as
video on mobile phone for instance, has induced the devel-
opment of a more complex SoC infrastructure, the so-called
multi-processor SoC (MPSoC) typically composed of a num-
ber of master components (processors or DMA for hardware
accelerators) connected to a network-on-chip (NoC) or a hi-
erarchy of busses.

The advent of networks-on-chip (NoC) has significantly
increased the design complexity of such systems with some
hard problems related to parallelism such as memory and
cache coherency, non-determinism, efficient workload dis-
tribution, and network contention. Solving these problems
during the short time available for design requires funda-
mental improvements in design methodologies. The most
important shift is the setting of a refinement methodology
allowing designers to explore design space at various levels
of precision. These levels, called transaction, bus-accurate,
synthesizable, allow the designer to check quickly that per-
formances related to various metrics are achieved before
writing the complete description of the system.

During design space exploration, simulation time is a ma-
jor problem. There are two run-time behaviors very difficult
to model at a high level: cache behavior and network con-
tention. Precise simulation of these two behaviors can only
be done with a low-level description of the components. This
means hours (sometimes days) of simulation for a single ex-
ecution or, as it is usually preferred, the use of extremely ex-
pensive hardware emulators. Reducing simulation time can
be achieved by a clever analysis of the behavior of the system
during execution. We are interested in the simulation of on-
chip network behavior and performance evaluation. Traffic
generators (TG) are more and more used during SoC design
for platform prototyping or performance evaluation. When
using TGs, simulation time is decreased because the IP is
not fully simulated. Simulation is also more flexible.

Most recent traffic generation methods use stochastic mod-
els. Statistical analysis and synthesis of on-chip traffic is dif-
ficult because this traffic usually presents complex statistical
behavior. As pointed out by [13], the behavior of application
code is decomposed into phases which have very different
characteristics. Each phase can appear several times during
the complete execution of the program. The precision of the
simulation and the possibility of integrating the whole pro-
cess in an automatic (or at least semi-automatic) framework
are important parameters for evaluating the usefulness of a
traffic generation environment.

In this paper, we present the automatic detection of traf-
fic phases by analyzing simulation traces and show that

88

these phases are necessary to emulate the traffic generated
by multi-media applications running on SoC. By gathering
different features presented individually in various recent
works, our traffic generation environment provides a very
flexible tool for networks-on-chip prototyping. It can run a
deterministic traffic replay (as in [9]) or generate a stochas-
tic traffic with first order (as in [6]) and second order (as
in [15]) statistics adjusted to a particular trace. The feature
described in this paper is the ability to run a traffic divided
into separate phases, each phase having different charac-
teristics. This makes our TG able to capture the inherent
non-stationarity present in the traffic generated by the pro-
cessors. We validate the precision of our traffic simulation in
SystemC. We show that the network latency, transaction de-
lay and aggregated throughput of a complete SoC platform
are very close when we use TGs replacing processors. With
our environment, the designer can explore the design space
in a very flexible manner by, for instance, exploring other
network architectures on a single phase in which network
contention occurs.

The paper is organized as follows. In Section 2 we re-
view the different existing techniques of traffic generation.
Section 3 presents our traffic generator and the flow that
we propose for analyzing and synthesizing on-chip traffic.
Section 4 presents our experimental results highlighting the
points mentioned above.

2. RELATED WORK
Using traffic generators in a simulation platform involves

the following steps: i) the IP designer collects simulation
traces by observing the behavior at the interface of each
master component (if the IP is available), ii) he builds traf-
fic models as close as possible to these traces, iii) the plat-
form designer instantiates a traffic generator for each master
component based on these models, and iv) inserts them in
the simulation platform in place of the original components.
Traffic generators can be separated into two main categories:
the deterministic approach, in which traffic is produced using
a finite state machine (FSM) configured by the IP designer
or using a previous simulation trace, and the stochastic ap-
proach, in which the traffic is produced by a parameterized
non-deterministic process.

Deterministic traffic generators (TG) [3, 9, 7] are derived
from real simulation traces or written from scratch by IP
designers. Such TGs can generate accurate transactions in
time, size, and idle time that match the behavior of an IP.
The advantages of this approach are the precision and the
speedup factor it can achieve compared to the complete IP
simulation. However, one limitation of the deterministic ap-
proach is that the length of the simulation is limited by the
length of input traces used. Furthermore, such TGs cannot
handle behaviors that are dependent on input data sets.

An alternative solution is to use stochastic traffic genera-
tors. These TGs build a model of the traffic. Such a mod-
eling permits to study how small variations in the model
parameters impact performance. This is an interesting way
of testing NoC robustness with reasonably accurate traffic.
Such a model can also be useful when the IP is not fully
available or when the behavior is likely to change slightly
from one execution to the other. However some traffics are
very difficult to model and the traffic generation environ-
ment should include advanced statistical analysis tools such
as multi-phase statistical analysis and second order statis-

tics fit. For instance Marculescu et al. [15] have isolated a
long-range-dependent behavior (i.e. second order statistical
properties) at the coarse-grain level. Our simulation envi-
ronment is currently able to capture and generate traffic
with second order statistic adjusted to a particular covari-
ance [12]. However, our experiments do not exhibit long-
range dependence (even in the execution of the MPEG2 ap-
plication not reported here). In the work of Marculescu [15],
the MPEG2 is executed by hardware accelerators, and long-
range-dependence has been observed in the communications
between the accelerators, whereas we use a software imple-
mentation of the MPEG2 algorithm running on a processor
and its associated cache. This result has to be confirmed
by other simulations; our conjecture is that the absence of
long-range dependence is due to the presence of caches that
smooth the communications.

The major part of NoC performance evaluation is cur-
rently done using random sources [16, 14, 6]. These works
mainly focus on the evaluation of the NoC in its early stage
of development, and on its performance under random traf-
fic. However none of these works propose a fitting procedure
to determine the adequate statistical models that should be
used to simulate the traffic: most of them choose arbitrarily
the statistical behavior of each IP. Moreover to our knowl-
edge, none of these approaches have introduced multi-phase
modeling. A complete traffic generation environment should
integrate both deterministic and stochastic traffic generation
techniques.

A processor associated with a cache generates a non-statio-
nary traffic, which can be divided into phases corresponding
to different parts of the executed program. Each phase is
stationary in the sense that its stochastic characteristics are
almost constant. This point has been thoroughly investi-
gated in the domain of processor architecture performance
evaluation, a very good summary of which is presented by
Calder et al. in [13]. Calder et al. isolate program phases by
analyzing basic blocs repartition in successive intervals (an
interval can represent 10 millions of instructions). Then,
these phases are compared and grouped using a k-means
algorithm [8]. We have adopted a similar approach to de-
compose the traffic generated by a processor in phases. Our
model is simpler and the interval is approximately composed
of a thousand of transactions. The data used to represent
the activity of the processor is the traffic’s statistical char-
acteristics.

Calder et al. use such a phase decomposition in Sim-
Point [5] for architecture performance evaluation. This is a
powerful technique that can provide huge improvements in
simulation by simulating only one simulation point per phase
and replicating the behavior during all the corresponding
phases. We do not pursue the same goal here because we
target precise traffic simulation of a given IP for NoC proto-
typing. Network contention needs to be precisely simulated,
and as it is the result of the superposition of several traffics,
picking simulation points becomes a difficult task. However
further studies should be done, based for instance on the
work of [2] to see if the use of simulation points may be
applicable for NoC prototyping.

3. MPTG ENVIRONMENT
We now present our analysis and synthesis flow for build-

ing multi-phase traffic generators that can be used to replace
an IP in cycle-accurate NoC performance evaluation.

89

Performance EvaluationMulti-Phase Traffic Generator ConfigurationReference Trace

Parser

Segmentation

Analysis

Compression

Synthesis

Stochastic

Selection
Models

Compressed
Trace

TG Config

MPTG
Config

SocGen

Design Space
Exploration

Simulation

Platform
Description

Performance
Analysis

MPTG IP
Generic

SystemC
IP

without interconnect
Simulation

Trace

Application
IP

Processor

Figure 1: MPTG Framework: Traffic analysis and synthesis flow

3.1 On-chip traffic modelling
The traffic produced by a component is modelled as a

sequence of transactions. The ith transaction is a 4-uple
(A(i), C(i), S(i), D(i)) meaning in this order, target ad-
dress, command (read or write), size of transaction, and de-
lay (number of cycles between two successive requests). This
is illustrated in Figure 2. From the transaction sequence, we
define the aggregated throughput WΔ(j), which corresponds
to the amount of bus-words transferred in the time interval
[jΔ, (j +1)Δ]. We also define the latency of the ith transac-
tion L(i) as the number of cycles between the start of a ith

request and the start of the associated response. It basically
corresponds to the round-trip time in the network.

Time (cycles)

D(k)
Requests

Responses

S(k)

Req(

Resp(k)

)A(k),C(k)

L(k)

Figure 2: Traffic modelling formalism

Traffic is generated according to the 4-uple describing each
transaction, and this 4-uple can be either read from a previ-
ously recorded trace (replay), or generated as the realization
of a stochastic process.

3.2 Global methodology
The global simulation flow is depicted on Figure 1. First,

we generate a reference trace by simulating the processor IP
to be emulated. This trace is obtained with an ideal network
environment (no network contention), which makes the sim-
ulation very fast. Then, we process the trace in our traffic
analysis and synthesis tool and we obtain configuration files
for the traffic generators. A parametric generic traffic gen-
erator has been written once for all, it is referred to further
in the text as MPTG. Transactions are generated by MPTG
according to a phase description file and a sequencer is in
charge of switching between phases. Each phase consists ei-
ther of a replay of a recorded trace, or of a stochastic model
with parameters adjusted by the fitting procedure described
in [12]. Finally, the platform designer describes the desired
platform architecture (such as the one presented in Figure 3)
and uses a perl script (referred to as SocGen) that generates
all files needed for simulation. Thus, the simulation takes

place and performance analysis indicates whether some pa-
rameters of the platform have to be changed or not.

Two important features of our MPTG are the following:
i) it is aware of the network latency (requests are sent only
if the network is ready), and ii) it can be configured to
emulate the communication scheme of the target IP. For
example, as we target processor/cache traffic, the MPTG
is configured with blocking reads and non-blocking writes
in order to emulate the write buffer of the cache. These
properties ensure that the same MPTG configuration files
can be used on various on-chip interconnects, thus allowing
fast design space exploration of the NoC.

3.3 Automatic phase determination
The contribution of the paper lies in the adaptation of the

work of [13] to NoC prototyping. In general, decomposing a
non-stationary process into stationary parts is very difficult.
Nevertheless, it appears that our programs are piece-wise
stationary. We use the k-means algorithm [8] which is a clas-
sical technique to group multi-dimensional values in similar
sets, and we end up with a good clustering as demonstrated
in section 4. The worst case complexity of this algorithm is
exponential but it is in practice very fast. Our automatic
phase determination algorithm is the following:

1. First, we select a list of M elements of the transac-
tion sequence (delay, size, command, address, see Sec-
tion 3.1).

2. The transaction sequence is then split into non-overlap-
ping intervals of length L transactions. Mean and
variance are computed on each interval and for each
selected element, so we build a 2M -dimensional repre-
sentative vector used for the clustering.

3. We perform clustering in k phases using the k-means
algorithm with different values of k (2 to 7 in prac-
tice). The algorithm finds k centroids in the space of
representative vectors. Each interval will be assigned
the number of its closest center (in the sense of the
quadratic distance).

4. To evaluate different clustering, we compute the Baye-
sian Information Criterion (BiC) [10]. The BiC gives a
score of the clustering and a higher BiC means better
clustering.

Once the phases are identified, statistical analysis is per-
formed on each extracted phase by an automatic fitting pro-
cedure that adjusts the first and second statistical orders

90

Output

Data

RAM

TG 2

TTY

Back

TG
MIPS

RAM
Application

Code/Data

Data

Input

RAM

TG 1

MIPS

Input
Output

Application
Code/Data

Figure 3: Simulation platforms: direct (right) and
mesh1 (left)

(see [12]) for details). The designer has to choose which
model he wants to use before analyzing the trace. We de-
veloped an independent random number generator that can
produce realizations of a wide variety of processes [12]. The
latter generator is integrated in the MPTG and the analysis
produces the adequate MPTG configuration file.

4. EXPERIMENTATIONS
Hereafter, we present experimental results. With these

results, we want to demonstrate that i) the automatic seg-
mentation of traffic traces is efficient, and ii) the accuracy
of stochastic multi-phase traffic generation is good. The
speedup factor of MPTG is of the same order as in [9] (2-
5x), and more experiments are presented in [11].

4.1 Experimental setup
We use an open source, SystemC-based, cycle-accurate

and bit-accurate simulation environment: SocLib [1]. We
use a tiny operating system for multiprocessor management
(Mutek). We present here the results on an implementa-
tion of the MPEG-layer 3 audio decoding software, further
referred to as MP3. 2 frames are decoded in the results pre-
sented here, representing 350000 memory transactions when
executed on the processor (MIPS r3000). Similar results
have been obtained for MPEG2 and JPEG 2000 applica-
tions, but are not presented here because of space limita-
tion. We use the DSPIN NoC, inherited from the research
of the LIP6 laboratory (evolution of SPIN [4]). It uses worm-
hole memorization strategy and XY routing. The processor
caches includes both data and instructions. It is composed
of 32 lines of 8 words. Aggregated throughput (further sim-
ply referred to as throughput) has been computed as the
number of flits transferred in consecutive time window of
size 100 cycles.

We denote by platform a particular physical interconnec-
tion of various IPs. We used two platforms:
• The direct platform does not use any interconnect, the
processor is directly connected to a memory holding all nec-
essary data. The latency is thus constantly equal to 1 cycle.
This platform is used for basic validation of the MPTG and
for reference trace collection as shown in Figure 1.
• The mesh1 platform is shown in Figure 3. The compo-
nents are interconnected with the DSPIN NoC. The MIPS
processor is running the application. The Back TG is used
for introducing contention over the network. It sends re-
quests to both memories RAM TG1 and RAM TG2, whereas

 0

 1

 0 50000 100000 150000 200000 250000 300000 350000

N
o
rm

a
liz

e
d
 d

e
la

y

Transaction index

(a) original trace

−1
 0
 1
 2
 3
 4
 5

 0 50000 100000 150000 200000 250000 300000 350000

C
lu

s
te

r
ID

Transaction index

(b) 3-means clustering

−1
 0
 1
 2
 3
 4
 5

 0 50000 100000 150000 200000 250000 300000 350000

C
lu

s
te

r
ID

Transaction index

(c) 4-means clustering

−1
 0
 1
 2
 3
 4
 5

 0 50000 100000 150000 200000 250000 300000 350000
C

lu
s
te

r
ID

Transaction index

(d) 5-means clustering

Figure 4: Phases discovered by our algorithm on the
MP3 traffic trace using the delay, for different phase
numbers.

the MIPS communicates with the three other memories used
for code, data, input and output streams. In order to test
the MPTG in a more realistic way, the Back TG alternates
between two phases, one with a high communication load
and another with a low one. This introduces a time-varying
contention and approximately multiplies the number of cy-
cles of the execution by 3.

4.2 Segmentation of the MP3 application
Figure 4a shows the delays of transactions D(i) as a func-

tion of the transaction index i. One can distinguish the boot
at the beginning, and then the two frames being decoded.
For each frame, several phases can be identified (for instance
a long one at the end) and two important points have to be
highlighted. Firstly, the time evolution of the traffic is not
stationary, so a stochastic fit on the whole trace would be
meaningless. Secondly, similar behaviors appear, hence a
segmentation should be done. This was already observed in
the high performance computing community [13], however
it is, to our knowledge, the first time a traffic trace is being
analyzed in this way.

We have run the phase segmentation algorithm described
in Section 3.3 for different values of k, using the delay el-
ement. The size of intervals was set to 5000 transactions.
The choice of k is a trade-off between statistical accuracy (we
need large interval for statistical estimators to converge) and
phase grain (we need many intervals in order to well iden-
tify the traffic phases). The chosen value is such a good
trade-off on the analyzed trace. Figures 4b, 4c and 4d show
the results for various number of phases. One can see that

91

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50000 100000 150000 200000 250000 300000 350000

N
o
rm

a
liz

e
d
 m

e
a
n

Transaction index

(a) Mean delay evolution

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50000 100000 150000 200000 250000 300000 350000

N
o
rm

a
liz

e
d
 m

e
a
n

Transaction index

(b) Mean size evolution

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50000 100000 150000 200000 250000 300000 350000

N
o
rm

a
liz

e
d
 m

e
a
n

Transaction index

(c) Mean command evolution

Figure 5: Evolution of the mean of different ele-
ments (delay, size, command) of the MP3 applica-
tion, computed in intervals of size L = 5000 transac-
tions.

the algorithm finds the analogy between the two frames,
and identifies phases inside each one of them. The segmen-
tation seems valid and pertinent. As the segmentation is
done with mean and variance as representative vectors, one
expects that each identified phase exhibits a stationary be-
havior, likely to be processed by a stochastic analysis.

2 3 4 5 6 7 8
Delay 85.3 76.1 76.9 126 123 109 100
Size 6.6 44.5 73.8 44.3 34.1 28.2 16.7

Command -91 -53 -23 -53 -63 -69 -80

Table 1: Bayesian Information Criterion (BiC) for
each element (rows), and various numbers of phases
(columns). Highest value per row is highlighted.

As explained in Section 3.3, we have computed Bayesian
Information Criterions (BiC) of the clustering done using
different elements (delay, size and command) and different
numbers of phases. Address sequence is not considered in
these results because the dynamics of address values is such
that the clustering fails. Table 1 shows the BiC values, each
row corresponds to an element, and each column to a num-
ber of phases. For the size and command elements, the
highest BiC value (best clustering) is achieved for k = 4,
and for the delay element it is k = 5. As the BiC is always
higher for a clustering using the delay element, we further
only use this element.

4.3 Accuracy of the traffic generation
Let us first detail the statistical analysis introduced in

Section 3.2. In order to build MPTG configuration files, we
automatically compute for each identified phase: the prob-
ability distribution function of the delay, the access proba-
bility of each memory segment, and for each segment, the
read/write probability. As we are emulating a processor and

its cache, we fixed the read transaction size to the cache
line size, and we also computed the probability distribution
function of the write transaction’s sizes.

We have performed simulations with different configura-
tions: “mips”, which is the reference simulation of the MP3
application running on the MIPS, “mptg-n” for which traf-
fic is generated with a MPTG with N phases, “dr” which
corresponds to a deterministic replay (the trace has been
recorded and is replayed), and “random” which is a con-
stant rate traffic with uniformly distributed target selection
(the rate is fixed to the mean observed rate). Each configu-
ration is run on both direct and mesh1 platforms.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 5 10 15 20

M
e

a
n

 t
h

ro
u

g
h

p
u

t

Inteval number

mips
mptg1
mptg3
mptg5

Figure 6: Evolution of the mean throughput of the
MP3 application on the direct platform. Each inter-
val is 100000 cycles long.

In order to compare a given configuration with the MIPS
reference one, we should not look at global metrics such as
the average delay or the average throughput. This would
not highlight the interest of the multi-phase approach. So,
we have defined an accuracy measure that can be computed
on each element (delay, size, command and throughput).
We compare the mean evolution of the metrics, just as rep-
resented in figure 5, for both simulations (MIPS and the
one under study). This can be done graphically as depicted
in figures 6 and 7. But, to summarize the results we de-
fined the error as the mean of absolute values of relative
differences between two mean evolutions. Let Mref (i) be
the mean evolution of some element for the reference sim-
ulation, let further M(i) be the evolution of the same ele-
ment for another simulation, and let finally n be the number
of points of both functions. The error (in percent) reads:
Err = 1

n

P
i |Mref (i)−M(i)|/Mref (i) ∗ 100 and is reported

in tables 2 and 3. As expected, the higher the phase num-
ber is, the more accurate the results are. This underlines
the importance of multi-phase traffic generation. Accuracy
is lower on the mesh1 platform because the stochastic na-
ture of traffic generation has a stronger impact. Still the
multi-phase stochastic traffic generation lies in between the
very accurate deterministic replay and the very inaccurate
random traffic.

The cycle error (cycle column is tables 2 and 3) is com-
puted as the relative difference between numbers of sim-
ulated cycles and therefore concerns the whole simulation.
The various mptg configurations (including the one with one
phase only) all have a low error on that metric, whereas the
random configuration exhibits a non-negligible one. This
result shows that MPTG provides a good emulation of the
average traffic, the delay error is thus compensated on the
whole simulation. Despite of the fact that the average rate
was used in the construction of the random the configu-
ration, the number of simulated cycles is far from the one
of the reference simulation. This emphasize the need for
advanced statistical analysis for on-chip traffic generation.

92

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 10 20 30 40 50 60

M
e

a
n

 t
h

ro
u

g
h

p
u

t

Inteval number

mips
mptg1
mptg3
mptg5

Figure 7: Evolution of the mean throughput of the
MP3 application on the mesh1 platform. Each in-
terval is 100000 cycles long.

Config. Delay Size Cmd Thput Latency Cycle
dr 0 0 0 0 0

random 31.78 34.31 6.91 13.64 0 32.1
mptg1 7.83 15.18 6.43 11.45 0 1.83
mptg3 1.97 8.34 3.28 5.58 0 1.55
mptg5 1.33 3.27 1.15 2.60 0 1.21

Table 2: Error (in percent) on various metrics with
respect to the MIPS reference simulation (direct
platform).

Figures 6 and 7 show the evolution of the throughput of
the different configurations on respectively the direct and
on the mesh1 platforms. The mptg1 is a straight line (one
phase only) on direct. On the mesh1 platform, the sort
of wave oscillation in Figure 7 is a consequence of the two
traffic phases of the Back TG introducing a time-varying
contention on the NoC. One can see that mptg3 and mptg5
configurations follow, as expected, the evolution of the ref-
erence simulation.

Config. Delay Size Cmd Thput Latency Cycle
dr 1.15 0 0 0.20 0.12 1.7

random 41.28 75.24 7.71 102.32 27.83 11.3
mptg1 18.60 14.76 6.26 12.7 10 2.83
mptg3 17.19 8.17 3.26 6.21 0.78 2.81
mptg5 14.77 3.24 1.21 5.65 0.63 2.75

Table 3: Error (in percent) on various metrics with
respect to the MIPS reference simulation (mesh1
platform).

These results show that multi-phase stochastic traffic gen-
eration is worth a try for NoC prototyping. Even though
it is not as precise as deterministic replay, the phase be-
havior of the IP is preserved, which is in our opinion a key
point for emulating the true contention on the network. The
choice between stochastic and deterministic traffic genera-
tion depends on the purpose of the study. For instance ran-
dom traffic generation is a good way to evaluate and com-
pare routing strategies and other large scale design choices,
whereas deterministic trace replay can provide a good ac-
curacy for tuning the implementation details in the routers.
We believe that the multi-phase stochastic traffic generation
is interesting as a compromise between random and deter-
ministic approaches. It combines a reasonable accuracy and
overcomes deterministic limitations. It especially provides
the designer a phase description of traffic, and a stochastic
model for each identified phase. This allows more flexibility
in the traffic generation. For instance, the parameters of
the models can be slightly changed in order to evaluate the
robustness of the NoC.

5. CONCLUSION AND FUTURE WORKS
In this paper, we have explained how traffic phases are au-

tomatically identified and synthesized in our traffic genera-
tion environment. Experimental results show that this auto-
matic clustering is meaningful and that it can be performed
on various elements of the transaction sequence. Such a fea-
ture, coupled with the advanced stochastic analysis, fitting
and synthesis procedure already available, makes our traffic
generation environment an efficient NoC prototyping tool.
Experimental results show the accuracy and the versatility
of our MPTG, highlighting some of its key features : accu-
rate replay over various interconnections, multi-phase traffic
generation, stochastic traffic analysis and generation. Fu-
ture works include the study of other applications, and the
investigation of simulation time reduction using the phase
behavior of each IP of the SoC.

6. REFERENCES
[1] Soclib simulation environment. On-line, available at

http://soclib.lip6.fr/, 2005.
[2] M. V. Biesbrouck, T. Sherwood, and B. Calder. A co-phase

matrix to guide simultaneous multithreading simulation. In
SPASS, 2004.

[3] N. Genko, D. Atienza, G. D. Micheli, J. M. Mendias,
R. Hermida, and F. Catthoor. A complete network-on-chip
emulation framework. In DATE, pages 246–251, 2005.

[4] A. Greiner and P. Guerrier. A generic architecture for
on-chip paquets-switched interconnections. In DATE, 2000.

[5] G. Hamerly, E. Perelman, and B. Calder. How to use
simpoint to pick simulation points. Sigmetrics Perform.
Eval. Rev., 31(4):25–30, 2004.

[6] K. Lahiri, S. Dey, and A. Raghunathan. Evaluation of the
traffic-performance characteristics of system-on-chip
communication architectures. In VLSID ’01, pages 29–35,
2001.

[7] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and
R. Zafalon. Analyzing on-chip communication in a MPSoC
environment. In DATE, pages 752–757, 2004.

[8] J. MacQueen. Some methods for classification and analysis
of multivariate observations. In Berkeley Symposium on
Mathematical Statistics and Probability, pages 281–297,
1967.

[9] S. Mahadevan and et al. A network traffic generator model
for fast network-on-chip simulation. In DATE, pages
780–785, 2005.

[10] D. Pelleg and A. Moore. X-means: Extending k-means
with efficient estimation of the number of clusters. In
International Conference on Machine Learning, pages
727–734, San Francisco, 2000.

[11] A. Scherrer, A. Fraboulet, and T. Risset. A generic
multi-phase on-chip traffic generation environment. In
ASAP, 2006. to appear.

[12] A. Scherrer, N. Larrieu, P. Owezarski, P. Borgnat, and
P. Abry. Non gaussian and long memory statistical
characterisations for internet traffic with anomalies.
Technical report, LIP - ENS Lyon, 2005.

[13] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and
B. Calder. Discovering and exploiting program phases.
IEEE Micro, 23(6):84–93, 2003.

[14] R. Thid, M. Millberg, and A. Jantsch. Evaluating NoC
communication backbones with simulation. In 21th IEEE
Norchip Conference, Riga, Nov. 2003.

[15] G. Varatkar and R. Marculescu. On-chip traffic modeling
and synthesis for MPEG-2 video applications. IEEE Trans.
on VLSI, 12(1):108–119, 2004.

[16] D. Wiklund, S. Sathe, and D. Liu. Network on chip
simulations for benchmarking. In IWSOC, pages 269–274,
2004.

93

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

