
Integrated Analysis of Communicating Tasks in MPSoCs

Simon Schliecker, Matthias Ivers, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig, Germany

{ schliecker | ivers | ernst } @ida.ing.tu-bs.de

ABSTRACT
Predicting timing behavior is key to efficient embedded real-time
system design and verification. Especially memory accesses and
co-processor calls over shared communication networks, basic op-
erations of every embedded application pose a challenge for precise
system analysis. Current approaches to determine end-to-end laten-
cies in parallel heterogeneous architectures either focus on system
level and allow only limited task models, or focus on activities inside
a component, abstracting system level influences by overestimations.

In this paper, we identify feedbacks of the system behavior that di-
rectly or indirectly impact local execution. To tackle these complex
interactions we present a novel technique to integrate an extended
component level scheduling analysis with refined system level ap-
proaches. Bringing the different levels of abstraction together allows
the analysis of a new class of interacting applications and architec-
tures – which could not be addressed on a single level alone.

On the component level, we investigate two scheduling behaviors
more closely, namely stalling during external requests, and allowing
context-switches to other tasks that are ready. For both, we present a
precise response time analysis. Finally, we compare the scheduling
techniques with respect to real-time requirements.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Computer Systems Organization—modeling techniques, per-
formance attributes General Terms: Performance, Reliability, Veri-
fication Keywords: real-time, multiprocessor performance analysis,
memory accesses

1. INTRODUCTION
Guaranteed end-to-end latencies are often crucial to applications in

the embedded systems domain. Formal analysis can be used to ver-
ify such performance constraints, but increasing system complexity
introduces challanging problems to such an analysis. The increasing
integration of formerly seperate components on the same chip leads
to the use of the same communication and storage infrastructure for
data accesses as for communication between tasks. Previous analysis
approaches focus either on the behavior within a component or on ab-
stracted system behavior. But the task’s dynamic data requirements
during their execution break the previously accepted seperation.

Classical response time analysis assumes memory accesses to be
part of the worst case execution time (WCET) of a task. On the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010 ...$5.00.

other hand, the memory access time is traditionally also considered
to be out of the scope of a WCET analysis – popular methods for
WCET estimation assume a given, fixed duration for the memory
access. These assumptions do not fit contemporary concurrent sys-
tem design. Deriving the response time for communicating tasks can
therefore only be achieved by coupling the response time analysis
with task and system level information.

Interconnect

Coprocessor Memory

CPU1 CPU2 MemMem

Figure 1: Multiprocessor Design Example.

Consider the simple multiprocessor architecture given in Fig 1.
Two processors are connected to a memory and a coprocessor via a
shared bus. Assume that CPU1 runs a packet processing applica-
tion that is part of a communication with hard deadlines. A control
process on CPU2 periodically transmits routing data, which is saved
in the shared memory. When the packet processing task on CPU1 is
activated, it checks this value and potentially loads other data from
the memory device. Additionally, it uses a coprocessor to speed up
the packet decoding.

transaction latency transaction latency

response time

CPU

RAM

BUS

COP

Figure 2: System-wide Scheduling Diagram.

This setup shows the analysis complexities: Memory requests gen-
erated by CPU1 and CPU2 have to pass a shared bus. This results in
variable access time that depends not only on the target and amount
of data to be transferred, but also on the current system state that is
determined by all other active tasks. This leads to a feedback timing
effect of the system level to the task’s execution, which complicates
prediction of worst case response time on the CPU1. Deriving a
static worst case memory access time a priori is only possible for a
subclass of systems, and assuming this worst case access time for
every request leads to large overestimation (see Fig 2).

288

The paper is structured as follows. We first present the neces-
sary background on timing analysis on the system and the compo-
nent level in Sec. 2. We then analyse dependencies in the system that
impact our analysis in Sec. 3. Based on this we propose a refined sys-
tem level analysis in Sec. 4. We put this approach into use with two
specific component analyses that allow coprocessor accesses during
the execution of tasks in Sec. 5. We compare the approaches in the
experiments in Sec. 6 and conclude the paper in Sec. 7.

2. RELATED WORK

2.1 System Level Analysis
System level analysis is necessary to derive timing properties over

multiple system components and to verify external timing constraints
such as end-to-end deadlines. An important property of real time
systems is the path or chain latency that is given by the worst case
latency of any event from an input via a specific chain of tasks to an
output.

The worst case response time of events along a chain can be de-
rived with a number of different methods. In holistic approaches,
such as [11] and [4], the classical single resource scheduling theory
is extended to distributed systems. These approaches deliver good re-
sults for specific system setups, but are difficult to scale to arbitrary
systems with complex dependencies.

Compositional analysis approaches [9][2] break down the analysis
complexity of complete systems into separate local analyses (compo-
nent analysis, Sec. 2.2) and integrate them using a generic description
of the traffic that can lead to interference during the processing of an
event (event streams). One such approach is presented in Sec. 2.3.

Event models are used to capture the possible patterns of task-
activating event streams in a systematic, abstract fashion. They de-
scribe the minimum ηmin(Δt) and maximum η(Δt) amount of events
in a stream that may arise in a time window of any given size Δt. For
a more compact description, they can be represented with various pa-
rameters (period, jitter, minimum distance) as is done in [2].

events
η1(Δt)

η2(Δt)

Δt

Figure 3: Different upper Bounds for Event Streams.

activation activation

finish finish

system-wide transactions

local execution

a) b)

Figure 4: Task Execution Model.

2.2 Component Level
The component analysis abstracts the local effects away from the

system level. Its analysis results include the response times (from
any input to any output port) and the output event models at all output
ports of the component.

The local worst case response time is commonly computed using
scheduling analysis as in [10] based on the worst case execution times
(WCET) of the individual tasks mapped to a resource, their internal
messaging behavior (blocking time), and scheduling effects (over-
head). In this case a detailed analysis of the tasks has to preceed the
component analysis to derive the relevant properties of the tasks. The

typical task model of an component analysis is depicted in Fig. 4a:
The task is activated by an event token which contains all required
data, executes for its worst case execution time, and emits an event
token which activates the next task of the chain.

This model can be extended to communicating tasks that perform
transactions during their execution as depicted in Fig. 4b. The de-
picted task requires three chunks of data from an external resource.
It issues a request and may only continue execution after the trans-
action was e.g. transmitted over the bus, processed on the remote
component and transmitted back to the requesting source.

Kim et al. [3] and Bletsas et al. [1] account for tasks with limited
parallelism. They perform a response time analysis of tasks with
gaps in their execution that exist due to computation on a different
resource (i.e. an ongoing transaction). For their analysis they assume
that the gap sizes are known a priori, and independent of each other.
In general, however, this is not the case as unfinished transactions by
other tasks may impose additional delays.

2.3 Classical Compositional Analysis
A framework to derive task response times and system latencies in

a multiprocessor system has been presented in [2]. This basic analy-
sis is presented in Fig. 5. The analysis can be separated into a com-
ponent and a system level. The overall analysis procedure is then as
follows:

Component level
analysis 1

Component level
analysis n

System
level
analysis

�Ein
1

�Ein
n

�Eout
1 , R

�Eout
n , R

�Eenv

system level component level

...

Figure 5: Analysis Concept.

1. Specify environmental model. As a characterization of the sys-
tems environment, the user supplies all environment input event mod-
els �Eenv to the system. All other input event models within the sys-
tem �Ein are initialized with optimistic guesses, which are iteratively
refined during the analysis procedure.

2. Distribute input event models. The system level analysis offers
event models �Ein for incoming traffic to each component.

3. Component analysis. Based on the input event models each
component analysis derives for each task mapped to the component
the local response times R and output event models �Eout. This can
be done on the basis of classical scheduling theory (see Sec. 2.2).

4. Check for convergence. On the system level, the refined output
event models are compared to the previous input event model as-
sumptions (of step 2). If all are the same, the analysis has converged.
Otherwise, the according component analysis has to be redone with
the refined inputs.

This procedure converges, as the event models become increas-
ingly more general with each iteration. The analysis is complete if
either all event streams are stable, or if an abort condition, e.g. the
violation of a timing constraint has been reached. Once the analy-
sis has converged, the local response times can be used to derive
latencies through the complete system, and the output event models
describe traffic produced by the system’s outputs.

3. SYSTEM INTERDEPENDENCIES
A major hurdle for the analysis of embedded systems is the high

interaction and integration of its different components. Consider the
multiprocessor setup in Sec. 1, where each processor has a local

289

memory, that are implicitly used by the tasks, and may also access
a memory via the interconnect through explicit instructions in the
source code. Under the assumption that all requests sent from the
same source (i.e. processor) are treated first-come-first-serve, while
the tasks on the processor itself are arbitrated with static priorities,
the execution of a task τi can be affected by various influences:

hp(i)

τi

lp(i)

interfering
load

transaction
latency

remotelocal

others

1.
2.

3.

4.

Figure 6: Dependencies in System Analysis.

1. The latency of a memory access has to be known in order to
determine the WCRT of the running task, as the memory ac-
cesses are necessary for the task to finish.

2. If higher priority tasks hp(i) share the processor with τi they
may delay the execution. A bound on the possible interference
must be given to determine the response time. Lower prior-
ity tasks lp(i) classically only have a limited influence on the
execution of τi that is captured a priori in the “blocking time”.

3. If tasks on other processors also access the memory, their im-
posed load on the interconnect and the memory influences the
latency of τi’s transactions.

4. Most critically, other task on τi’s resource may send requests
to the memory. Their interference must be bounded before a
response time analysis of τi is possible.

• Additional functional and non-functional dependencies may
exist between the tasks. For simplicity, we disregard these
edges.1

Without cyclic dependencies, an analysis is straightforward. A se-
quence of analyses can be derived to successively calculate interme-
diate results and finally the response time of τi. However, 4. does
introduce such a cyclic dependency (dotted line in Fig. 3).

4. EXTENTED SYSTEM ANALYSIS
We extend the approach presented in Sec. 2.3 to allow tasks that

interact with the environment during execution (Fig. 4b). Analysis of
these tasks additionally requires worst case latencies for their trans-
actions through the system.

In [8] a single communicating task on a component was inves-
tigated by incorporating independent transaction latencies into the
task’s control flow graph. The transactions were modelled largely un-
correlated and the question of deriving the response times of multiple
communicating tasks mapped to the same resource was left open.

For the extended analysis that is able to cope with the dependencies
in Sec. 3, the following additional steps are introduced, that replace
Step 3 in Sec. 2.3 for components with communicating tasks.

3a. Task analysis. Previously, the timing behavior of standard
tasks was sufficiently specified with the tasks worst case execution
time. For distributed tasks, the communication requirements must
additionally be derived, or specified. As much information as possi-
ble about a task is gathered in this step.

91These dependencies may only lead to reduced possible interference,
thus disregarding these edges will yield pessimistic response times.

Component level
analysis 1

Component level
analysis n

System
level
analysis

request
latency
calculation

extended
component
analysisTask analyses

Response Time
Analysis

Output Traffic
Analysis

�Ein
chain

�Ein
1

�Ein
n

�Eout
1 , R

�Eout
n , R

�Ein

�Eenv

�Eout

R

Q

S(Q)

system level component level

...

Figure 7: Analysis Concept.

3b. Derivation of latencies. A component analysis must produce
output event models and response times for all tasks mapped to it.
Both are (potentially) affected by the latency of the transactions is-
sued by a task. Thus, a description of all potential transactions Q is
compiled from the task information and sent to the system level.

On the system level, all effects that have an influence on the trans-
action are taken into account to derive the minimum (and maximum)
latencies S(Q) of the transactions. Bounds on all events that can
interfere with the transaction along the request chain (�Ein

chain) must
therefore be known.

3c. Extended response time analysis. Based on the information
on the transaction latencies, an extended scheduling analysis must be
performed to consider the delays of tasks waiting for data. Tradi-
tional scheduling analysis approaches are not valid for the communi-
cating task model.

3d. Output event model calculation. Also, the total amount of
transactions initiated from the component affects other parts of the
system. Thus, a conservative bound on the produced request traffic
must be determined. Although this also depends on the transaction
latencies, the approach presented in [5] is conservative in any case.

The convergence of the iterative process is still ensured, because
the event models are either conservatively bounded a priori, or be-
come monotonically more generic with every iteration.

The proposed approach tackles some of the dependencies sketched
in Sec. 3. Bounds on both the local and the remote interference, (2)
and (3), are offered by the system level analysis. Whenever these are
refined in the analysis procedure, the extended component analysis
must be repeated, until the analysis has converged.

This leaves the problem of analysing the influence of transaction
latencies on response time (1), and to consider the disturbance on the
transaction that is sent from the same resource (4). This is addressed
in Sec. 5.

5. EXTENDED WCRT ANALYSIS
To determine the response time of a communicating task, we as-

sume a static priority preemptive scheduler which gives the resource
to the task with the highest priority which is ready and is not blocked
by an ongoing access to a critical section. For communicating tasks,
we assume that they arrive periodically and their deadlines are smaller
than their periods. The target of a transaction is called an external
memory, but it can be a coprocessor or dedicated hardware as well.
All requests are uniform and are treated along the system in a first-
come-first served manner. With regard to this, the scheduler is ex-

290

tended to state-of-the-art behavior in Sec. 5.1 by assuming stalling of
the processor during a transaction. In Sec. 5.2, we propose a mul-
tithreaded extension, where execution is possible in parallel to the
memory requests and show the adapted response time equation.

5.1 Processor Stalling During Requests
Processors may allow tasks to perform coprocessor or memory ac-

cesses by offering a multi-cycle operation that stalls the complete
processor until the transaction has been processed by the system. The
worst case response time of a task is then not only determined by the
task’s worst case execution time plus the maximum amount of time
the task can be kept from executing due to preemptions by higher
priority tasks and blocking by lower priority tasks. A communicat-
ing task can additionally be delayed when waiting for the arrival of
requested data. We can make the following observations:

1. No context switch can occur during a transaction.
2. Whenever a request is sent, no other transaction from the same

processor can be ongoing.

Under these assumptions, the delay for each transaction can be bounded
by a conservative worst case time. No previous requests from the
same resource may be ongoing. Each transaction depends only on
currentload from other processors to the memory (and bus); for which
the approach presented in Sec. 4 offers conservative bounds. Let the
delay for any single memory request be dmem.

Delaying the tasks due to memory accesses has the same effect
on lower priority tasks as increasing the core execution time: The
task’s finishing time is increased and no other task with lower priority
may execute. The difference is that if during a transaction a higher
priority tasks becomes ready, it is blocked: A context switch is not
possible because the processor is stalled. This can lead to a brief
priority inversion for the duration of one transaction. Once a higher
priority task is activated no task with lower priority will have the
chance to execute, and thus no further blocking may occur before
the high priority task is completed. This allows us to formulate the
response time equation as follows:

Ri = Bi + (Ci + qid
mem) +

�

j∈hp(i)

ηj(Ri) · (Cj + qjd
mem) (1)

where

Ri is the response time of τi.
dmem is the maximum time for one memory access.

Bi is the maximum blocking time for τi: Bi = dmem

Ci is the worst case core execution time of τi.
qi is the maximum number of memory requests that are performed

by one invocation of τi.
hp(i) is the set of tasks with higher priority than τi.

ηj(Ri) is the maximum amount of invocations of τj in a time window
of size Ri.

In dynamic systems, as sketched in Sec. 1 not every memory re-
quest can experience a worst case system state, such as worst case
time wheel positions in TDMA or transient overloads of priority
based components. Rather, many requests in a certain amount of time
can in total only be delayed by a certain amount interference. This
overestimation can be addressed by utilizing the approach in [6] that
delivers the maximum total busy time for multiple requests in a given
time window. The total busy time is defined as the sum of all times
during which at least one transaction is started but not finished. This
can be used to ameliorate the response time equation by examining
all transaction sent by the resource together:

Ri = Bi + Ci +
�

j∈hp(i)

ηj(Ri) · (Cj) + S(Qi,hp(i), Ri) (2)

where

Qi,hp(i) is the union of all requests by τi and all higher priority tasks.

P is the set of resources involved in the processing of the trans-
actions.

SP(Qi, Ri) is the maximum total busy time for the requests Qi if it can
be guaranteed that they can be sent and received within a time
interval of size Ri under interference from other processors ac-
cessing the memory. Otherwise, it is an estimate on the small-
est amount of time for which such a guarantee can be given.

Additionally, the tasks may share critical sections that may lead
to additional blocking time. Memory accesses can be “nested” into
critical sections, but it is technically impossible the other way around.
This ensures that no new deadlocks may occur, but still allows prior-
ity inversion and thus blocking by lower priority tasks. We can map
our problem to the use of critical sections as defined in [7] as follows:

• all memory accesses are accesses to the same shared resource.
• for every task τi that performs a memory access, the time for

each access j is bounded by di,j = dmem.
• for every task τi that does not perform a memory access we

assume a “virtual” use of the shared resource with duration
di,0 = 0.

The problem is now mapped to that of nested critical sections,
some of which are shared by all tasks. Access to such critical sections
can be restricted with protocols such as Priority Inheritance Protocol
(PIP) or Priority Ceiling Protocol (PCP). Refer to [7] for the compu-
tation of the maximum blocking time Bi. This allows us to redefine
the blocking time Bi in Eq. 1 as follows

Bi is the maximum blocking time due to shared critical sections
(incl. memory accesses).

Eq. 2 shows a dependency on the knowledge of response times of
higher priority tasks (edge (2)), and must therefore be evaluated “top-
down”. To show that Eq. 2 is suitable for the iterative response time
solution, we show that it delivers a conservative workload estimation.

THEOREM 1. If Ri is a conservative estimation of the response
time, Eq. 2 delivers a conservative estimation of the maximum amount
of time that τi may be kept from being finished in a time window of
size Ri.

PROOF. τi can be kept from being finished in a time window of
size Ri only because the processor can either be stalled due to an
unfinished transaction or executing a task (including τi).

Firstly, whenever the resource is not stalled, it must execute τi or
a lower priority task or a higher priority task. τi is finished after it
has executed for Ci and has not missed its deadline. It can be kept
from executing by lower priority tasks and their requests maximally
for a time bounded by Bi. This occurs at most once, as lower priority
tasks may not execute again before τi is finished. Finally, higher pri-
ority tasks can not execute longer than their maximum core execution
time per task activation. The maximum number of task activations in
a time interval of size Ri is given by η(Ri). Thus the maximum
amount of execution that can keep τi from being finished is bounded
by

exec ≤ Bi + Ci +
�

j∈hp(i)

(ηj(Ri) · Cj) (3)

Secondly, the resource can only be stalled for the maximum amount
of time that any transaction is started but not finished by any task
that may send requests during the busy time of τi, which are τi and
higher priority tasks. Requests by lower priority task can only delay
τi if they occur inside their critical sections and are thus considered in
the blocking time. If Ri is a conservative estimation of the response

291

time, all requests must be able to finish within Ri, which is the pre-
requisite to calculate S(Qi,hp(i), Ri). Then, the following bounds
the maximum total busy time for all relevant transactions.

stall ≤ S(Qi,hp(i), Ri) (4)

When the task is neither stalled or executing nothing else can keep it
from being finished. Thus in a time window of size Ri the maximum
amount of time that i is kept from finishing is bounded by the sum of
the above.

5.2 Multithreading Requests
Stalling the processor during each memory request is not the de-

sirable behavior for high-throughput applications. A platform may
therefore allow voluntary suspension of tasks to reuse processing
time to increase processor utilization.

The modified scheduler shall behave as follows: At every point in
time, the scheduler executes the task that has the highest priority and
all data available to continue execution. In this case, after a trans-
action has been initiated, it will be executed in parallel to a task on
the resource and therefore only has a limited effect on their worst
case response times. We can assume that a transaction fully delays
the execution of the sending task, but that other tasks (also of lower
priority) are possibly allowed to execute.

Our observations here are:

1. The time for a transaction depends on the amount of transac-
tions that are previously started but not finished (”open”).

2. Transactions are processed in parallel, so that the processor
time can be used by other tasks.

3. No blocking by lower priority tasks can occur due to their
memory accesses.

4. We assume for now that all FIFOs along the request chain have
sufficient size and thus no stalling can occur.

If a pure FIFO ordering is kept along the request chain, the inter-
fering open transactions can be from tasks with higher priority, and
even from tasks with lower priority.

We formulate the response time equation for multithreaded tasks
as follows and show Eq. 5 is suitable for the iterative response time
solution, by showing that it delivers a conservative workload estima-
tion in the subsequent theorem.

Ri = Ci + S(Q,Qi, Ri) +
�

j∈hp(i)

ηj(Ri + Rj) · Cj (5)

where

Qi is the set of τi’s transactions
Q is the set of all transactions that possibly interfere with Qi that

will be discussed in Sec. 5.2.1
S(Q,Qi, Ri) is the maximum total busy time for the requests Qi if it can

be guaranteed that they can be sent and received within a time
interval of size Ri under interference from other processors ac-
cessing the memory. Otherwise, it is an estimate on the small-
est amount of time for which such a guarantee can be given.

THEOREM 2. If Ri is a conservative estimation of the response
time, Eq. 5 delivers a conservative estimation of the maximum amount
of time that τi may be kept from being finished in a time window of
size Ri.

PROOF. Under the scheduler defined above, an invocation i of τi

can either be ready or waiting. When i is ready it can either be run-
ning or kept from executing. i can be ready and kept from execut-
ing only when another invocation with higher priority is ready. In
a time interval of size Ri higher priority tasks may only be ready
for the maximum amount of computation jobs acquired in that time.
For a task τj with a (known) response time Rj this is bounded by

ηj(Ri +Rj) ·Cj . Thus, in a time interval of size Ri, τi can be ready
at most for the following amount of time.

ready ≤ Ci +
�

j∈hp(i)

ηj(Ri + Rj)Cj .

Additionally, i can be waiting for data. i can be waiting for data
no longer than the total amount of time during which any of its re-
quests is ongoing, which is bounded by S(Q,Qi, Ri). Again as in
the stalling case, Ri is a conservative estimation on the overall re-
sponse time, so that the prerequisites to calculate S() are fulfilled.

waiting ≤ S(Q,Qi, Ri)

When the task is neither ready or waiting nothing else can keep it
from being finished. Thus in a time window of size Ri the maximum
amount of time that i is kept from finishing is bounded by the sum of
the above.

With the given response time equation, transactions and execution
times are assumed to be orthogonal, so that no parallelism is assumed
with respect to τi’s response time. This appears like an overestima-
tion, but given the task model it is a realistic scenario. Fig. 8 shows a
situation where a high priority task almost fully disturbs both the ex-
ecution and the transactions of a lower priority task. Note that such
a scenario is extremely difficult to uncover by simulation.

CPU

MEM

High Priority Task

Low Priority Task

Blocked Task

Figure 8: Example Worst-Case for Multithreaded Cores.

Parallel execution is the main objective for using multithreaded
execution, but to exploit its gain in a real-time system further in-
formation about the tasks transaction distribution is required. This
would then need to be taken into account by a complex phase-aware
analysis. Both of which is beyond the scope of this paper.

5.2.1 Maximum delay for Qi

This leaves us with the problem to determine the maximum total
amount of time for the transactions Qi in a time window of size Ri:
S(Q,Qi, Ri). In general, any ongoing transaction can delay a trans-
action of Qi. If the maximum amount of interfering transactions Q
is known, we can safely assume that the total busy time is bounded
by the maximum total busy time for Qi and all transactions Q. For
this we can again use the results of [8] as in Sec. 5.1.

S(Q,Qi, Ri) = SP(Q ∪Qi, Ri) (6)

A bound on Q can be found by investigating the maximum number
of transactions per invocation of a task, and the maximum number of
the tasks invocations in the time window. For this, it may be assumed
that all tasks meet their deadline Dτ . For a task υ, the number of
invocations in a time window of size Ri is then bounded by ηυ(Ri +
Dτ). Q then calculates as follows:

Qυ = ηυ(Ri + Dτ) · qi (7)

Q = ∪υ∈hp(i)Qυ

However, the task deadlines of lower priority tasks can not be verified
at the time of analysis of τi. So the scheduler must enforce it by re-
moving any task invocation from the ready queue that has missed its
deadline. Additionally, all ongoing requests of this invocation must
be instantly aborted. This requires non-trivial hardware modifica-
tion. Alternatively, request priorities matching task priorities can be
introduced throughout the request path. Task response times can then
be determined top-down, and Qυ calculated for all tasks with higher
priority.

292

Figure 9: Various Experiments.

6. EXPERIMENTS
We have conducted a series of experiments to apply our proposed

analysis. For this, our contribution was implemented into an existing
real-time systems analysis framework [2].

The primary setup (see Fig. 9-VI) consist of 5 tasks that diversely
access a directly coupled memory which is also shared by other com-
ponents in the system. Fig. 9-I shows the response time and its
components (all values are normalized time units) of task τ3 with
a medium priority when scheduled under the assumption that the
processor stalls during ongoing requests. The load on the memory
by other components was increased (increased jitter of memory in-
terference), which inevitably increases the memory access time. This
delays the finishing of τ3, allowing more interference on the proces-
sor, which superlinearly increases the response time. In Fig. 9-II the
same setup is shown with multithreaded behavior. In no case does
this lead to a reduced worst case response time of τ3. Rather, the
additional delay by requests from lower priority tasks increases re-
sponse time of τ3.

A different view on system performance is given by the occupa-
tion of the processor. Stalling the processor during memory requests
increases processor occupation, allowing less processing time for ac-
tual tasks. Multithreading allows a more efficient usage. Fig. 9-III
shows stability of the occupation for the multithreaded case, while
the occupation of the stalling resource increases with increased mem-
ory access delays. From this we can deduce that tasks that do not
communicate can profit from multithreading as they can receive addi-
tional processing time when otherwise the processor would be stalled.

We have repeated the experiment for other tasks, namely the task
with the highest priority τ1 and the task with the lowest priority τ5,
which does not communicate at all. The relative difference to the
stalling case is shown in Fig. 9-IV. τ1 has no profit from multithread-
ing. Rather, the effect of FCFS ordering along the request chain
counters the prioritization on the resource. τ5 on the other hand can

use the gaps in the execution of the other tasks and has a 20% better
response time.

Fig. 9-V benchmarks the quality of our approach to determine the
response time for stalling resources. When the memory is under
heavy load, we can improve the response time estimate by 50% by
considering the total busy time of all requests, instead of assuming
individual worst cases.

7. CONCLUSION
In this paper, we have presented a method to determine the re-

sponse time of communicating tasks in dynamic multiprocessor sys-
tems. We use a compositional approach that breaks the analysis de-
pendencies at many points: Event models are used to describe the
traffic on the components and allow to determine the latency of co-
processor or memory requests. We receive tight bounds on the total
request latency, by combining the scope of multiple events that may
only experience worst case system state once.

We have investigated two processor behaviors: Stalling of the proces-
sor and multithreading during transactions. We presented a method
to deliver tight bounds for both, with little overestimation under the
given task model assumptions.

The experiments have shown that from a real-time perspective no
gain can be guaranteed by introducing multithreading for commu-
nicating tasks, as both execution and transaction interference may
occur during the response time. To uncover the latency hiding char-
acteristic of multithreading more detailed behavioral models of the
tasks need to be supplied.

8. REFERENCES
[1] K. Bletsas and N. Audsley. Extended analysis with reduced

pessimism for systems with limited parallelism. In RTCSA,
Hong Kong, Aug 2005. IEEE Computer Society, IEEE.

[2] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst. System level performance analysis - the SymTA/S
approach. IEE Proceedings Computers and Digital
Techniques, 152(2):148–166, March 2005.

[3] I.-G. Kim, K.-H. Choi, S.-K. Park, D.-Y. Kim, and M.-P.
Hong. Real-time scheduling of tasks that contain the external
blocking intervals. RTCSA, pages 54–59, 1995.

[4] P. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis
of mixed time/event-triggered distributed embedded systems.
In 10th International Symposium on Hardware/Software
Codesign, Estes Park, Colorado, USA, May 2002.

[5] S. Schliecker, M. Ivers, and R. Ernst. Memory access patterns
for the analysis of MPSoCs. In NewCAS 2006, Gatineau,
Canada, June 2006. IEEE.

[6] S. Schliecker, M. Ivers, J. Staschulat, and R. Ernst. A
framework for the busy time calculation of multiple correlated
events. In 6th Intl. Workshop on WCET Analysis, Dresden,
Germany, July 2006.

[7] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Transactions on Computers, 39(9), Sept. 1990.

[8] J. Staschulat, S. Schliecker, M. Ivers, and R. Ernst. Analysis of
memory latencies in multi-processor systems. In WCET
Workshop, Palma de Mallorca, Spain, July 2005.

[9] L. Thiele, F. Wandeler, and S. Chakraborty. Performance
analysis of multiprocessor DSPs: a stream-oriented component
model. Signal Processing Magazine, IEEE, 22(3):38–46, May
2005.

[10] K. Tindell, A. Burns, and A. Wellings. An extendible approach
for analysing fixed priority hard real-time systems. Journal of
Real-Time Systems, 6(2):133–152, March 1994.

[11] K. Tindell and J. Clark. Holistic schedulability analysis for
distributed hard real-time systems. Microprocessing &
Microprogramming, 50(2-3):117–134, Apr 1994.

293

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

