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Abstract 
Virtual platform (ViP), or ESL (Electronic System Level) 
simulation model, is one of the most widely renowned system level 
design techniques. In this paper, we present a case study of 
creating and applying the ViP in the development of a new hard 
disk system called Hybrid-HDD that is one of the main features in 
the Windows VISTA (R). First, we summarize how we developed 
the ViP including the levels of timing accuracy of models, 
automatic generation of models from RTL code, external 
subsystem models, etc. Then, we explain how we exploited the ViP 
in software optimization. Compared with the conventional flow of 
software development, e.g. based on the real board, the ViP gives 
a better profiling capability thereby allowing designers to find 
more chances of code optimization. Based on the simulation and 
analysis with the ViP, the software optimization could improve 
system performance by more than 50%. However, in our case 
study, we found that the current ViP technique needs further 
improvements to become a true ESL design technique.  

Categories and Subject Descriptors 
B.8.2 [Performance Analysis and Design Aids]  

General Terms:  Performance, Design 

Keywords: Virtual Platform (ViP), Embedded Software 
Optimization, Hybrid HDD (Hard Disk Drive) 

1. Introduction 
Virtual platform (ViP), or ESL (Electronic System Level) 
simulation environment, is one of the most widely renowned 
system level design techniques [1]. The conventional application 
of ViP is fast prototyping and architecture exploration. There 
have been proposed several EDA solutions of ViP development 
[4-7], modeling standards [2,3,8], and modeling methods [12-
15,18,19].  

The contribution of this paper is to report an industry case study 

of applying the ViP technique to real product development. We 
focus on two aspects: practical issues for ViP development and 
SW optimization based on the ViP. 

First, ViP development is not just assembling existing library 
components (e.g. processor model, bus model, etc.) available in 
commercial tool libraries (e.g. MaxLib of ARM ESL). Instead, it 
demands significant amount of manual works for modeling 
custom components (e.g. data path).  To make matters worse, the 
development is always conducted in a tight time-to-market 
constraint but with a limited manpower. Thus, there should be a 
practical solution to create an effective ViP efficiently within the 
given design period. We report our experience of ViP 
development in such a circumstance. 

Second, to the best of the authors’ knowledge, there have been 
few reports of applying the ViP technique to SW optimization in 
industrial designs.  Our case study shows that the ViP is 
practically beneficial as in the cases of conventional architecture 
exploration [23-26] or co-verification [16, 17], since it provides 
fast and accurate simulation with abundant visibility, i.e. profiling 
capability.  

The rest of our paper is organized as follows. Section 2 gives an 
overview of applying the ViP technique to Hybrid HDD system 
design. We present the details of ViP development in Section 3. 
In Section 4, the software optimization based on the ViP is 
explained. The lessons learned in the case study are summarized 
in Section 5. We conclude the paper in Section 6.  

2. Overview 
Target System: Hybrid HDD 
Recently, a new concept of hard disk drive (HDD), namely a 
hybrid HDD, has been proposed where a large-sized flash 
memory is attached to a legacy disk drive as a non-volatile (NV) 
cache. It has two main advantages. First, the NV cache reduces 
mechanical movement of the disk, thus enabling significant 
reduction in the power consumption of HDD. Second, by putting 
frequently accessed data into the NV cache, drastic loading time 
reduction can be achieved, since seek and rotation delay of the 
legacy HDD is no longer required; thus features like instant boot-
on is now available. Microsoft® announced their support of this 
novel type of HDD in the next version of Windows OS [20].  
Required Design Changes 
Though many of our designs of the new hybrid HDD are inherited 
from the legacy normal HDD, we still required significant 
renovations in both hardware side and software side.  On the 
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hardware side, the NV cache related data-path had to be added to 
the existing HDD controller LSI, including a controller for 
OneNAND® flash memory [21]. On the software side, firmware 
(FW) 1 had to manipulate additional tasks having more complexity, 
e.g. managing consistency of data spread over disk, SDRAM, and 
flash. 

In addition, there were two other market-driven constraints. First, 
the total performance should never be inferior to the legacy HDD 
system, even when NV cache is not utilized. Second, time-to-
market deadline was tight; it was fixed by the launch schedule of 
Windows VISTA.  

Introduction of Virtual Platform 
There were three major challenges in the development of hybrid 
HDD. 1) How to increase system performance? The hybrid disk 
should never be slower than legacy HDD. 2) How to verify 
architectural decisions? There was not much time to change the 
structure of hardware or software afterwards. 3) How to accelerate 
FW development? Time to develop FW would dominate the total 
development time.  

The virtual platform (ViP) 2 was introduced as a possible solution 
for all three challenges. Its objectives were as follows: 

 To measure system performance and analyze its 
bottlenecks; especially the bottlenecks of the FW side.  

 To find out possible optimization points from the result 
of bottleneck analysis. 

 To evaluate various architectural decisions of both 
hardware (HW) side and FW side at the early stage of 
development 

 To provide an early-access platform for FW 
development ahead of  chip fabrication 

 To exploit other advantages of ViP like co-verification 
as much as possible  

In result, we have achieved the first three objectives quite 
successfully, while last two objectives were not so satisfactory. 
We will cover these issues in later sections in detail.  

Early Software Development and Optimization  

VIP Development 

RTL Development

VIP

Real Chip

Fabrication

FW Development 

FPGAPure Emulation

 
Fig. 1 Software development process enhanced with a ViP 

Fig. 1 depicts how the conventional embedded system development 
process is enhanced with a ViP, where the newly introduced process 
(ViP Development) and its outcome (ViP) are denoted by color-
filling.  As you can see from the figure, the amount of early 
                                                                 
1 We use terms software (SW) and firmware (FW) interchangeably 

in this paper. 
2  We adopted ARM ESL’s SoCDesigner™ (also known as 

MaxSim) as for an ESL simulation engine. 

availability as a development platform is heavily dependent on the 
actual development period of both the ViP and the RTL. However, 
even when the ViP is not significantly earlier than FPGA, it can still 
accelerate SW development by assisting in optimization; owing to 
the ViP, optimization can be initiated at the early stage of 
development, which prevents huge code modification after silicon 
fabrication in the conventional flow. 

3. Virtual Platform Development 
3.1 General Issues on ViP Development  
There are three general criteria in ESL model: timing accuracy, 
simulation speed, and development time. Unfortunately, these 
criteria are not orthogonal; accurate models are slow in simulation 
and require substantial time to develop. What is worse, to be 
practically useful, a ViP is required to achieve all of these criteria 
to some degree. In our case the ViP should 1) be accurate enough 
to analyze system performance including HW-SW interaction, 2) 
be fast enough to execute whole FW for meaningful time3, and 3) 
be available earlier than real-chip environment. The following 
subsections explain our work to meet this mission. 

3.2 Creating Virtual Models 
Limiting Modeling Scope for Early Development 
The rule for rapid development was simple; do only the least of 
what you have to do. Components out of our interest, like error-
correction modules, are simply omitted. Functionalities that are 
transparent to FW are also ignored. For example, the physical and 
link layer activities of SATA communication were just replaced 
with simple timed data-copy routines in the model. 

Similarly, only selected set of registers are implemented in the 
ViP. Of course, it should be avoided that FW, running on the ViP, 
accesses an unimplemented register and malfunctions. We used 
following two approaches to prevent such case: 1) Adding #ifdef 
directives in the FW code to prevent accessing unimplemented 
registers, 2) Providing dummy registers including fixed status bits 
(e.g. CRC_OK flags that are always read as true) in the model.  
As a result, only about 30% of registers were sufficient to be 
modeled for FW execution.  
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Fig. 2 The virtual platform: top-level block diagram 

Fig.2 shows the top-level block diagram of our ViP. It contains 
the models for five major subsystems (processor, servo, buffer, 
host interface, disk interface) inside of the chip as well as those 
for four external subsystems (host, disk, flash and SDRAM). 
Though our objectives require high level of timing accuracy of 

                                                                 
3 At least, 1 second of data transfer should be simulated.  
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the ViP as a whole, we did not model all the components with full 
details. First, we classified all the components to be modeled by 
accuracy requirements. Some component should be fully cycle-
accurate, since a few cycles’ mismatch between the model and the 
RTL code will cause a significant mismatch in performance 
measurement. A typical example is the memory controller. On the 
contrary, for data-dominant components (e.g. DMA engine), only 
the throughput and latency are important. Table 1 summarizes our 
classification of components in terms of accuracy requirement. 

Table 1. Model classification by timing accuracy requirement 
Timing Accuracy 
Requirement Components 

Full Accuracy Buffer data path components4, CPU Core 
Latency-Throughput 
Compatible 

Disk Interface, Host Interface, Memory 
devices 

Untimed CPU Accessories, Buffer control path 
components5 

Second, depending on the different requirements of timing 
accuracy, we used different strategy to implement each model; we 
chose appropriate HW affinity6 from four levels listed in Table 2 
and applied corresponding implementation method.  

Table 2. Levels of HW affinity of ViP model 
HW Affinity Model Implementation Method 
Equivalent Directly generate from RTL 

Strong Mimic RTL structure; state machine, major 
control signals, pipeline… 

Weak 
(Behavioral) 

Describe functional behavior annotated with 
timing parameters 

Dummy Dummy register-map to prevent FW access 
fault 

Automatic Model Creation 
Recent technology enables automatic generation of a C/C++ 
model from HDL description [11, 22, 28]. Its advantages are 1) 
highest affinity to RTL 2) fast model creation free from human 
error, and 3) no demand for knowledge on the RTL code. 
However, it also has disadvantages; 1) not applicable to some 
blocks (e.g. analog interface blocks), 2) slower than pure ESL 
model7, and 3) the generated model has signal interfaces only8.  

                                                                 
4 Arbitrator, FIFOs, Memory Controller, … 
5  HW Data queue, Automatic memory-pointer modifiers…; zero-

delay models for these components do not affect on overall 
performance.  

6 We define HW affinity to be how much the model corresponds 
to the original RTL code. High timing accuracy comes from 
strong affinity; while it also requires vast modeling efforts. 

7 Note that this technology never generates a true (abstracted) 
ESL model. It merely provides an equivalent C/C++ description 
to the RTL design.  

8  Since most ESL models use transaction level interface (i.e. 
function calls), there must be a converter to connect models 
with RTL-like signal-interface to them. While converters for 
well-defined signal interfaces like AHB are easy to implement, 
or already provided by EDA vendors, there’s no easy way for 
custom interfaces but to create them speculatively. 

We applied this technology to create a cycle-accurate model of a 
3rd-party IP, mainly because we lacked of knowledge on its 
internals. It is notable that since this IP exploits only standard 
interfaces (e.g. AHB), it was relatively easy to create signal-
transaction interface converters for them. On the other hand, 
simulation speed was degraded around 45 % due to this single 
component.  

Modeling External Components 
To simulate the entire system, external subsystems outside of the 
target SoC also had to be modeled as in Fig. 2. As for a normal 
memory device (off-chip SDRAM and on-chip ROM also), a 
functional (un-timed) model was quite enough; its timing 
behavior is solely controlled by the memory controller which was 
modeled with full cycle-accuracy. One the other hand, a more 
sophisticated model was required for the OneNAND® which is an 
active device, but we could easily find an already-existing in-
house model for such a widely used component.9  
We took a practical approach to create a model of host device. 
That is, the host model plays the role of input-pattern generator; it 
reads a script file and, in timely manner, generates a stream of 
ATA commands to the virtual host-interface model. Please 
remind that details of SATA communication is replaced with 
simple function calls in our ViP. 
A model for disk was also simply created. Instead of accurately 
modeling all the mechanical properties of disk-heads and platters, 
we used a simple linear equations to calculate seek and rotational 
delay as in (1), where α, β, and γ are the parameters from 
empirical knowledge. 

.)(#_
)(#_

γ
βα

×=
+×=

Sectorslatencyrotational
Trackstimeseek                                   (1) 

Admittedly, above equations are too simple to reflect realistic 
disk behavior at a specific moment. However, the overall system 
performance measured by the ViP simulation fairly matched with 
the real system on the average sense.  
Summary of Modeling Practice: rule of thumbs 
Here, we summarize the rule of thumbs from our practice. 

 Limit the number of components and functionalities to 
be modeled as minimal as possible.  

 All the component models need not be cycle-accurate 
to create a cycle-accurate ViP. 

 Automatic model creation is a viable alternative at the 
expense of simulation speed and model connectivity.  

 You also have to model outside the chip; Keep them 
abstracted and exploit them as controlling knobs.  

3.3 Evaluation: Cost and Quality 
3. 3. 1 Overall evaluation 
We evaluated our virtual platform by the three general criteria: 
accuracy, speed, and cost.  

 Timing accuracy was initially measured by comparison of 
measured performance of ViP simulated to that of RTL 
simulation using short stimulus. Its result was near 99%. 
Afterwards, we compared ViP to real system with long 
stimulus, which matched 95 % on average. In other word, 

                                                                 
9  Another alternative was to use commercial Soma behavioral 

model [27] as in RTL simulation. The drawback of this 
approach was simulation speed decrement due to the linkage to 
an additional simulation engine.  
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our ViP showed enough accuracy to be used for 
performance optimization.  

 Simulation speed was 15K cycles per second.10 With this 
speed, to simulate 1 second takes about 150 minutes, and 
1 second is quite long time enough to characterize the FW 
and the HW with various test patterns.  

 The cost, or time to develop the ViP, was 2 x 6 man-
months. The ViP was available 5 months ahead of real 
chip environment, and 3 weeks ahead of FPGA.  

3.3.2 Unsuccessful Objectives 
This section analyzes why our ViP failed to satisfy some of the 
original objectives.  

As a Verification Environment 
A ViP cannot but have only limited merits as an verification 
environment. Most of all, it can not validate hardware design 
directly, since models are not equivalent to the RTL; when 
detecting a malfunction in ViP simulation, one can not sure there 
exists the same malfunction in the real system.11   
A ViP may be useful for verification if it is co-simulated with 
RTL and works as a real pattern generator including SW 
execution. However, in this case simulation speed will be 
shackled by RTL simulator. Also extensive use of signal-
transaction converters is required.. 
As an Early-Access Platform for FW Development  
To our dismay, our ViP was available only 3 weeks ahead of 
FPGA. That is not surprising, though; while the entire ViP had to 
be modeled from the scratch, most of the RTL designs were 
already there in the legacy design. 
More importantly, our ViP had a significant disadvantage as a FW 
development environment; it was too slow. For example, if an 
execution takes 1 second in a real environment, FW designers 
expect it takes within 10 ~ 100 seconds in the virtual environment, 
but can not endure 10 ~ 100 minutes since they have execute 
codes over and over at the development stage. Simulation speed 
should be the major concern for this usage. 

4. Software Optimization based on the ViP 
In our work, the main benefit of the ViP was its assists in software 
optimization. This section gives the details of our software 
optimization using the ViP. 

4.1 SW Optimization and Performance Improvements  
From the beginning of the project, we expected the FW would be 
the main bottleneck of system performance, since the new FW 
had to handle lots of complex tasks in addition to the legacy ones. 
If we had followed the conventional design flow without a ViP, 
system performance could be measured only after the fabrication 
of silicon and functional implementation of FW are completed. 
And even then, the detailed bottleneck analysis would never be an 
easy task. However, thanks to the ViP, we could start software 
optimization much earlier in the design cycle; the FW designers 
                                                                 
10 We used cycle-accurate (not ISS) ARM core model supplied by 

Maxlib, which runs at 300Kcps by itself. However, other cycle-
accurate models like detailed buffer subsystem degrades 
simulation speed, not to mention automatic models.   

11 Still, one can suspect HW/FW bugs in this case. As for our 
experience, we could spot out DMA/CPU cache coherence 
problem by inspecting ViP simulation traces.  

could optimize their code while they were still implementing 
functionalities.  
Fig. 3 shows the history of system performance improvement with 
FW optimizations (versions). In the figure, performance is 
normalized with respect to that of the first version. At each step of 
version-up, we optimized the FW codes using the analysis result 
of ViP simulation. In result, as you see in the Fig 3, the fourth 
version showed more than 50% performance improvement in read 
operations solely by FW optimization.12  
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Fig. 3 The improvement of system performance over 
firmware versions 

1.1 ViP as an Optimization Environment 

Table 3. Comparisons of FW development environments 

 
Table 3 compares various FW development environments to show 
the merits of the ViP as an optimization environment. Pure 
emulation is fast but gives little information on timing. Also all 
the register access routines have to be re-written for full FW 
execution. FPGA is a better alternative, but its timing accuracy 
may be still not satisfactory due to following reasons: 1) FPGA 
supports only limited number and frequencies of clocks13, and 2) 
memory hierarchy including on-chip memories is discrepant to 
the real design.14 On the other hand, a ViP can provide enough 
time accuracy for bottleneck analysis (either in HW or SW side). 
Furthermore, low simulation speed is not a big concern in this 

                                                                 
12 Here the amount of write performance improvement is quite 

small. This is because the relatively low write bandwidth of 
flash memory plays the bottleneck in this case.  

13 In our case, FPGA could not emulate all the different clocks in 
the target system: SATA, SDRAM, Flash, Disk, CPU, and their 
dividends.  

14 FPGA usually do not support large sized on chip memories and 
timings are not equivalent to the  real design.  
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case since many an analyses can be performed from one long 
simulation.  
More importantly, a ViP provides sufficient visibility (i.e. traces 
and profile data) for optimization. Fig. 4 depicts typical analysis 
data obtained from our ViP simulation. Fig. 4 (a) is the waveform 
view of simulation trace, which shows both HW events and SW 
function calls at the same time. This view enables to track down 
real critical paths; whether the bottleneck lies in the SW part or in 
HW.  
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Fig. 4 Sample Analysis Data from ViP simulation 

Fig. 4 (b) exemplifies the history view of execution time of 
selected SW functions. As shown in the figure, since the runtime 
of a function is not stationary but variable over time, short-term 
simulation (as in RTL simulation) or a taking snapshot of a 
function-call instance (as in logic analyzer) is not sufficient to 
capture the true nature of the function. 
Finally, Fig. 4 (c) shows a fraction of function-call trace 
information. In this view, we can drill down into each sub-
function and find out the most time-consuming parts of the code. 
Additionally, overall analysis facilities are provided: average 
execution cycles of functions, amount of runtimes of sub-
functions, average distance between functions, and so on.  
In summary, with its fair time-accuracy and abundant visibility15, 
the ViP enabled us to effectively track down the real bottlenecks 
of the system.  
4.3 Firmware Optimization Techniques 
In this section, we explain the optimization techniques we applied 
and how the ViP was helpful for them. 

Algorithmic Optimization: The most effective and fundamental 
optimization was, of course, the modification of top-level 
algorithms. Generally speaking, while no profiling method can 
directly propose a new optimized algorithm, the developers could 
find weak points of their algorithm from the information obtained 
from the ViP simulation. Also they can evaluate alternative 
algorithms effectively with it.   

As for our case, nobody could explain the disappointingly low 
performance obtained by first measurement, until the ViP 

                                                                 
15 To obtain this information, we implemented various profiling 

accessories on top of the simulator’s open interface by ourselves 
including function call tracer, and its post-processing tool.  

simulation revealed the true causes16; it was FW overhead of data 
management routines, which was ignorable in legacy HDD 
system, but now matters for flash data access. Consequently, we 
had to design a new tightly-coupled data management routine 
which includes special short-cut routines for flash data access.  

Latency Hiding: This is to overlap SW and HW execution 
instead of their sequential executions. For example, instead of 
SW’s busy waiting until the end of a HW task, CPU executes 
another task and checks the result of HW later. The ViP 
simulation can find out where those latency hidings are applicable.  
In our case, flash programming and erase operations were selected 
for this optimization. For example SW can update all the relevant 
control data, except the final confirm flag, assuming successful 
termination of those operations while the flash device is still in 
operation.  

Pipelining: This is to initiate a data-consuming HW task prior to 
the completion of corresponding data-producing HW task. The 
ViP simulation help to balance the trade-off of pipelining: 
enhancement from parallelization and degradation from resource 
conflict and complicated FW control. One exemplar application 
of our case is to initiate data transfer to the host device, while data 
transfer is still undergoing at the flash memory side.  

DMA Access: Designing our FW, there was an argue whether to 
use the DMA for a short amount of data transfer or to let CPU do 
it; both are known to have a certain amount of overhead in our 
system, while their difference was unknown in a quantitative way. 
The ViP simulation gave a direct answer to this question. 

Memory Relocation: This is to move critical parts of code and 
data from slow memory to fast one. In the conventional 
development flow, the decision of which parts goes to the fast 
memory are made from empirical knowledge. However, the ViP 
simulation helped to get a systematical solution by listing up the 
most time-consuming functions and frequently accessed data. In 
addition, the numerical information that tells exactly how much 
faster does the code run on the fast memory (e.g. on-chip SRAM) 
than on the slow memory (e.g. off-chip SDRAM). FW developers 
decided code/data location on the base of this information.  

Data Structure Modification: Data structure also affects 
performance. For example, keeping a data structure to align 
certain memory boundary can boost access speed significantly at 
the cost of memory loss.  In our example, we listed up candidate 
objects for this optimization and made up decisions using the ViP 
simulation analysis.  

Overall, the ViP played a pivotal role in the optimization process. 
If there had not been the ViP, FW developers would have spent 
indefinite time to find the reasons of performance degradation. 
Thus they could not decide which optimization techniques should 
be applied to which part of the codes. In consequence, the ViP 
have saved enormous development time in the FW optimization 
step.   

                                                                 
16 Actually, there were still HW malfunctions blamed for 

performance degradation at that time. However, ViP simulation 
projected that the result would not be satisfactory even after 
those HW bugs are fixed.  
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4.4 Hardware Modification 
The result of ViP simulation analysis was not only beneficial for 
SW optimization, but also valuable for finding HW revision 
points. As an example a FW task (a data-pattern generator), that 
was executed routinely but took significant amount of time, was 
identified and decided to be replaced by HW in the next version 
of controller LSI.  
Also, architecture exploration in classical sense was also practiced 
to design the next version of HW. That is, using the ViP, we 
could easily test how the performance is influenced with the 
change of CPU types, clock speeds, memory sizes, and so on.  

5. Lessons Learned: Requirements for future 
ESL Technology 
The summary of our experience is that (1) the ViP needs to be 
available much earlier than in the current practice if it is for an 
early-access platform, (2) the simulation speed needs to be 
significantly improved for FW development, but (3), for system 
optimization cycle accuracy should not be sacrificed. 
In our case, the availability of the ViP was not significantly 
earlier than the FPGA-based environment: only 3 weeks earlier. 
Generally speaking, creating archives of component models is not 
a complete solution, since every company has a number of custom 
HW-IPs which are continuously modified. Therefore, modeling 
methodology itself should be innovated. 
Fast simulation speed is always beneficial for any ViP usage 
model. Recent trends in ESL concentrate on creating fast 
simulators enough to execute complete SW including big OS’s 
like linux, at the cost of cycle-accuracy [9, 10, 29]. However, the 
drawback of this approach is to limit the range of applications; 
system performance optimization as in our case study becomes 
impossible.  
One possible solution for above requirements is the classical two-
step approach; first create a fast-running model then replace it 
with slow-but-accurate one later. For this approach, clean and 
robust macro building blocks for modeling (e.g. register file, data 
transfer, memory element, timing unit …) should be provided 
additional to current primitives. And there should be a simple way 
to replace the fast model with an accurate one, especially when 
the latter exploits different interfaces from the former. Also the 
burden of managing two versions must be alleviated.  
Another solution can be an FPGA emulator combined with an 
ESL simulator. That is, a part of custom RTL design is 
synthesized into an FPGA while its execution is synchronized 
with top-level ESL-simulation. The disadvantages of this 
approach are 1) it is only enabled after RTL is ready, 2) A bridge 
to convert signal level interface to transaction level is required, 
and 3) events inside the RTL are hard to capture.  Also there are 
issues like size limitation of FPGA and synchronization overhead. 

6. Conclusion  
In this paper, we presented an industrial case study of creating the 
virtual platform of a SoC and exploiting it for a real product 
development, especially for FW optimization. For the creation of 
the ViP, we applied several modeling techniques to accelerate 
modeling while maintaining a certain degree of accuracy and 
simulation speed. We took advantages of the ViP to the end of 
development steps, especially in FW optimization thereby 

improving system performance by more than 50%. Overall, ViP 
played a crucial role in the development of Hybrid HDD system.  
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