
Creation and Utilization of a Virtual Platform for Embedded
Software Optimization: An Industrial Case Study

Sungpack Hongc1, Sungjoo Yoo1, Sheayun Lee2, Sangwoo Lee3, Hye Jeong Nam4,
Bum-Seok Yoo3, Jaehyung Hwang2, Donghyun Song2, Janghwan Kim5, Jeongeun Kim5,

HoonSang Jin1, Kyu-Myung Choi1, Jeong-Taek Kong1, SooKwan Eo1

{1CAE Team, System LSI Division, 2Flash Software Group, Memory Division, 3Storage Team, System LSI Division,
4HDD Development Group, Storage Division}, Semiconductor Business, Samsung Electronics CO., LTD

5Mobile SW Platform, Software Laboratories, Corporate Technology Operations, Samsung Electronics CO., LTD
csp7.hong@samsung.com

Abstract
Virtual platform (ViP), or ESL (Electronic System Level)
simulation model, is one of the most widely renowned system level
design techniques. In this paper, we present a case study of
creating and applying the ViP in the development of a new hard
disk system called Hybrid-HDD that is one of the main features in
the Windows VISTA (R). First, we summarize how we developed
the ViP including the levels of timing accuracy of models,
automatic generation of models from RTL code, external
subsystem models, etc. Then, we explain how we exploited the ViP
in software optimization. Compared with the conventional flow of
software development, e.g. based on the real board, the ViP gives
a better profiling capability thereby allowing designers to find
more chances of code optimization. Based on the simulation and
analysis with the ViP, the software optimization could improve
system performance by more than 50%. However, in our case
study, we found that the current ViP technique needs further
improvements to become a true ESL design technique.

Categories and Subject Descriptors
B.8.2 [Performance Analysis and Design Aids]

General Terms: Performance, Design

Keywords: Virtual Platform (ViP), Embedded Software
Optimization, Hybrid HDD (Hard Disk Drive)

1. Introduction
Virtual platform (ViP), or ESL (Electronic System Level)
simulation environment, is one of the most widely renowned
system level design techniques [1]. The conventional application
of ViP is fast prototyping and architecture exploration. There
have been proposed several EDA solutions of ViP development
[4-7], modeling standards [2,3,8], and modeling methods [12-
15,18,19].

The contribution of this paper is to report an industry case study

of applying the ViP technique to real product development. We
focus on two aspects: practical issues for ViP development and
SW optimization based on the ViP.

First, ViP development is not just assembling existing library
components (e.g. processor model, bus model, etc.) available in
commercial tool libraries (e.g. MaxLib of ARM ESL). Instead, it
demands significant amount of manual works for modeling
custom components (e.g. data path). To make matters worse, the
development is always conducted in a tight time-to-market
constraint but with a limited manpower. Thus, there should be a
practical solution to create an effective ViP efficiently within the
given design period. We report our experience of ViP
development in such a circumstance.

Second, to the best of the authors’ knowledge, there have been
few reports of applying the ViP technique to SW optimization in
industrial designs. Our case study shows that the ViP is
practically beneficial as in the cases of conventional architecture
exploration [23-26] or co-verification [16, 17], since it provides
fast and accurate simulation with abundant visibility, i.e. profiling
capability.

The rest of our paper is organized as follows. Section 2 gives an
overview of applying the ViP technique to Hybrid HDD system
design. We present the details of ViP development in Section 3.
In Section 4, the software optimization based on the ViP is
explained. The lessons learned in the case study are summarized
in Section 5. We conclude the paper in Section 6.

2. Overview
Target System: Hybrid HDD
Recently, a new concept of hard disk drive (HDD), namely a
hybrid HDD, has been proposed where a large-sized flash
memory is attached to a legacy disk drive as a non-volatile (NV)
cache. It has two main advantages. First, the NV cache reduces
mechanical movement of the disk, thus enabling significant
reduction in the power consumption of HDD. Second, by putting
frequently accessed data into the NV cache, drastic loading time
reduction can be achieved, since seek and rotation delay of the
legacy HDD is no longer required; thus features like instant boot-
on is now available. Microsoft® announced their support of this
novel type of HDD in the next version of Windows OS [20].
Required Design Changes
Though many of our designs of the new hybrid HDD are inherited
from the legacy normal HDD, we still required significant
renovations in both hardware side and software side. On the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS'06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-370-0/06/0010...$5.00.

235

hardware side, the NV cache related data-path had to be added to
the existing HDD controller LSI, including a controller for
OneNAND® flash memory [21]. On the software side, firmware
(FW) 1 had to manipulate additional tasks having more complexity,
e.g. managing consistency of data spread over disk, SDRAM, and
flash.

In addition, there were two other market-driven constraints. First,
the total performance should never be inferior to the legacy HDD
system, even when NV cache is not utilized. Second, time-to-
market deadline was tight; it was fixed by the launch schedule of
Windows VISTA.

Introduction of Virtual Platform
There were three major challenges in the development of hybrid
HDD. 1) How to increase system performance? The hybrid disk
should never be slower than legacy HDD. 2) How to verify
architectural decisions? There was not much time to change the
structure of hardware or software afterwards. 3) How to accelerate
FW development? Time to develop FW would dominate the total
development time.

The virtual platform (ViP) 2 was introduced as a possible solution
for all three challenges. Its objectives were as follows:

 To measure system performance and analyze its
bottlenecks; especially the bottlenecks of the FW side.

 To find out possible optimization points from the result
of bottleneck analysis.

 To evaluate various architectural decisions of both
hardware (HW) side and FW side at the early stage of
development

 To provide an early-access platform for FW
development ahead of chip fabrication

 To exploit other advantages of ViP like co-verification
as much as possible

In result, we have achieved the first three objectives quite
successfully, while last two objectives were not so satisfactory.
We will cover these issues in later sections in detail.

Early Software Development and Optimization

VIP Development

RTL Development

VIP

Real Chip

Fabrication

FW Development

FPGAPure Emulation

Fig. 1 Software development process enhanced with a ViP

Fig. 1 depicts how the conventional embedded system development
process is enhanced with a ViP, where the newly introduced process
(ViP Development) and its outcome (ViP) are denoted by color-
filling. As you can see from the figure, the amount of early

1 We use terms software (SW) and firmware (FW) interchangeably

in this paper.
2 We adopted ARM ESL’s SoCDesigner™ (also known as

MaxSim) as for an ESL simulation engine.

availability as a development platform is heavily dependent on the
actual development period of both the ViP and the RTL. However,
even when the ViP is not significantly earlier than FPGA, it can still
accelerate SW development by assisting in optimization; owing to
the ViP, optimization can be initiated at the early stage of
development, which prevents huge code modification after silicon
fabrication in the conventional flow.

3. Virtual Platform Development
3.1 General Issues on ViP Development
There are three general criteria in ESL model: timing accuracy,
simulation speed, and development time. Unfortunately, these
criteria are not orthogonal; accurate models are slow in simulation
and require substantial time to develop. What is worse, to be
practically useful, a ViP is required to achieve all of these criteria
to some degree. In our case the ViP should 1) be accurate enough
to analyze system performance including HW-SW interaction, 2)
be fast enough to execute whole FW for meaningful time3, and 3)
be available earlier than real-chip environment. The following
subsections explain our work to meet this mission.

3.2 Creating Virtual Models
Limiting Modeling Scope for Early Development
The rule for rapid development was simple; do only the least of
what you have to do. Components out of our interest, like error-
correction modules, are simply omitted. Functionalities that are
transparent to FW are also ignored. For example, the physical and
link layer activities of SATA communication were just replaced
with simple timed data-copy routines in the model.

Similarly, only selected set of registers are implemented in the
ViP. Of course, it should be avoided that FW, running on the ViP,
accesses an unimplemented register and malfunctions. We used
following two approaches to prevent such case: 1) Adding #ifdef
directives in the FW code to prevent accessing unimplemented
registers, 2) Providing dummy registers including fixed status bits
(e.g. CRC_OK flags that are always read as true) in the model.
As a result, only about 30% of registers were sufficient to be
modeled for FW execution.

Timing Accuracy

H o s t
M o d e l D is k

M o d e l

P ro c e s s o r

Ta rg e t
F irm w a re

Te s t
Sc e n a rio

IF IFB u f f e r
Su b s ys te m

F la s h
M e m o ry M o d e l

SD RAM
M e m o ry M o d e l

D a ta
Re p o s ito ry

Ex te rn a l
D e b u g g e r

Se rvo
s u b s ys te m

Fig. 2 The virtual platform: top-level block diagram

Fig.2 shows the top-level block diagram of our ViP. It contains
the models for five major subsystems (processor, servo, buffer,
host interface, disk interface) inside of the chip as well as those
for four external subsystems (host, disk, flash and SDRAM).
Though our objectives require high level of timing accuracy of

3 At least, 1 second of data transfer should be simulated.

236

the ViP as a whole, we did not model all the components with full
details. First, we classified all the components to be modeled by
accuracy requirements. Some component should be fully cycle-
accurate, since a few cycles’ mismatch between the model and the
RTL code will cause a significant mismatch in performance
measurement. A typical example is the memory controller. On the
contrary, for data-dominant components (e.g. DMA engine), only
the throughput and latency are important. Table 1 summarizes our
classification of components in terms of accuracy requirement.

Table 1. Model classification by timing accuracy requirement
Timing Accuracy
Requirement Components

Full Accuracy Buffer data path components4, CPU Core
Latency-Throughput
Compatible

Disk Interface, Host Interface, Memory
devices

Untimed CPU Accessories, Buffer control path
components5

Second, depending on the different requirements of timing
accuracy, we used different strategy to implement each model; we
chose appropriate HW affinity6 from four levels listed in Table 2
and applied corresponding implementation method.

Table 2. Levels of HW affinity of ViP model
HW Affinity Model Implementation Method
Equivalent Directly generate from RTL

Strong Mimic RTL structure; state machine, major
control signals, pipeline…

Weak
(Behavioral)

Describe functional behavior annotated with
timing parameters

Dummy Dummy register-map to prevent FW access
fault

Automatic Model Creation
Recent technology enables automatic generation of a C/C++
model from HDL description [11, 22, 28]. Its advantages are 1)
highest affinity to RTL 2) fast model creation free from human
error, and 3) no demand for knowledge on the RTL code.
However, it also has disadvantages; 1) not applicable to some
blocks (e.g. analog interface blocks), 2) slower than pure ESL
model7, and 3) the generated model has signal interfaces only8.

4 Arbitrator, FIFOs, Memory Controller, …
5 HW Data queue, Automatic memory-pointer modifiers…; zero-

delay models for these components do not affect on overall
performance.

6 We define HW affinity to be how much the model corresponds
to the original RTL code. High timing accuracy comes from
strong affinity; while it also requires vast modeling efforts.

7 Note that this technology never generates a true (abstracted)
ESL model. It merely provides an equivalent C/C++ description
to the RTL design.

8 Since most ESL models use transaction level interface (i.e.
function calls), there must be a converter to connect models
with RTL-like signal-interface to them. While converters for
well-defined signal interfaces like AHB are easy to implement,
or already provided by EDA vendors, there’s no easy way for
custom interfaces but to create them speculatively.

We applied this technology to create a cycle-accurate model of a
3rd-party IP, mainly because we lacked of knowledge on its
internals. It is notable that since this IP exploits only standard
interfaces (e.g. AHB), it was relatively easy to create signal-
transaction interface converters for them. On the other hand,
simulation speed was degraded around 45 % due to this single
component.

Modeling External Components
To simulate the entire system, external subsystems outside of the
target SoC also had to be modeled as in Fig. 2. As for a normal
memory device (off-chip SDRAM and on-chip ROM also), a
functional (un-timed) model was quite enough; its timing
behavior is solely controlled by the memory controller which was
modeled with full cycle-accuracy. One the other hand, a more
sophisticated model was required for the OneNAND® which is an
active device, but we could easily find an already-existing in-
house model for such a widely used component.9
We took a practical approach to create a model of host device.
That is, the host model plays the role of input-pattern generator; it
reads a script file and, in timely manner, generates a stream of
ATA commands to the virtual host-interface model. Please
remind that details of SATA communication is replaced with
simple function calls in our ViP.
A model for disk was also simply created. Instead of accurately
modeling all the mechanical properties of disk-heads and platters,
we used a simple linear equations to calculate seek and rotational
delay as in (1), where α, β, and γ are the parameters from
empirical knowledge.

.)(#_
)(#_

γ
βα

×=
+×=

Sectorslatencyrotational
Trackstimeseek (1)

Admittedly, above equations are too simple to reflect realistic
disk behavior at a specific moment. However, the overall system
performance measured by the ViP simulation fairly matched with
the real system on the average sense.
Summary of Modeling Practice: rule of thumbs
Here, we summarize the rule of thumbs from our practice.

 Limit the number of components and functionalities to
be modeled as minimal as possible.

 All the component models need not be cycle-accurate
to create a cycle-accurate ViP.

 Automatic model creation is a viable alternative at the
expense of simulation speed and model connectivity.

 You also have to model outside the chip; Keep them
abstracted and exploit them as controlling knobs.

3.3 Evaluation: Cost and Quality
3. 3. 1 Overall evaluation
We evaluated our virtual platform by the three general criteria:
accuracy, speed, and cost.

 Timing accuracy was initially measured by comparison of
measured performance of ViP simulated to that of RTL
simulation using short stimulus. Its result was near 99%.
Afterwards, we compared ViP to real system with long
stimulus, which matched 95 % on average. In other word,

9 Another alternative was to use commercial Soma behavioral

model [27] as in RTL simulation. The drawback of this
approach was simulation speed decrement due to the linkage to
an additional simulation engine.

237

our ViP showed enough accuracy to be used for
performance optimization.

 Simulation speed was 15K cycles per second.10 With this
speed, to simulate 1 second takes about 150 minutes, and
1 second is quite long time enough to characterize the FW
and the HW with various test patterns.

 The cost, or time to develop the ViP, was 2 x 6 man-
months. The ViP was available 5 months ahead of real
chip environment, and 3 weeks ahead of FPGA.

3.3.2 Unsuccessful Objectives
This section analyzes why our ViP failed to satisfy some of the
original objectives.

As a Verification Environment
A ViP cannot but have only limited merits as an verification
environment. Most of all, it can not validate hardware design
directly, since models are not equivalent to the RTL; when
detecting a malfunction in ViP simulation, one can not sure there
exists the same malfunction in the real system.11
A ViP may be useful for verification if it is co-simulated with
RTL and works as a real pattern generator including SW
execution. However, in this case simulation speed will be
shackled by RTL simulator. Also extensive use of signal-
transaction converters is required..
As an Early-Access Platform for FW Development
To our dismay, our ViP was available only 3 weeks ahead of
FPGA. That is not surprising, though; while the entire ViP had to
be modeled from the scratch, most of the RTL designs were
already there in the legacy design.
More importantly, our ViP had a significant disadvantage as a FW
development environment; it was too slow. For example, if an
execution takes 1 second in a real environment, FW designers
expect it takes within 10 ~ 100 seconds in the virtual environment,
but can not endure 10 ~ 100 minutes since they have execute
codes over and over at the development stage. Simulation speed
should be the major concern for this usage.

4. Software Optimization based on the ViP
In our work, the main benefit of the ViP was its assists in software
optimization. This section gives the details of our software
optimization using the ViP.

4.1 SW Optimization and Performance Improvements
From the beginning of the project, we expected the FW would be
the main bottleneck of system performance, since the new FW
had to handle lots of complex tasks in addition to the legacy ones.
If we had followed the conventional design flow without a ViP,
system performance could be measured only after the fabrication
of silicon and functional implementation of FW are completed.
And even then, the detailed bottleneck analysis would never be an
easy task. However, thanks to the ViP, we could start software
optimization much earlier in the design cycle; the FW designers

10 We used cycle-accurate (not ISS) ARM core model supplied by

Maxlib, which runs at 300Kcps by itself. However, other cycle-
accurate models like detailed buffer subsystem degrades
simulation speed, not to mention automatic models.

11 Still, one can suspect HW/FW bugs in this case. As for our
experience, we could spot out DMA/CPU cache coherence
problem by inspecting ViP simulation traces.

could optimize their code while they were still implementing
functionalities.
Fig. 3 shows the history of system performance improvement with
FW optimizations (versions). In the figure, performance is
normalized with respect to that of the first version. At each step of
version-up, we optimized the FW codes using the analysis result
of ViP simulation. In result, as you see in the Fig 3, the fourth
version showed more than 50% performance improvement in read
operations solely by FW optimization.12

0

0.5

1

1.5

2

1 2 3 4 Version #

Read
Write

Normalized performance

Fig. 3 The improvement of system performance over
firmware versions

1.1 ViP as an Optimization Environment

Table 3. Comparisons of FW development environments

Table 3 compares various FW development environments to show
the merits of the ViP as an optimization environment. Pure
emulation is fast but gives little information on timing. Also all
the register access routines have to be re-written for full FW
execution. FPGA is a better alternative, but its timing accuracy
may be still not satisfactory due to following reasons: 1) FPGA
supports only limited number and frequencies of clocks13, and 2)
memory hierarchy including on-chip memories is discrepant to
the real design.14 On the other hand, a ViP can provide enough
time accuracy for bottleneck analysis (either in HW or SW side).
Furthermore, low simulation speed is not a big concern in this

12 Here the amount of write performance improvement is quite

small. This is because the relatively low write bandwidth of
flash memory plays the bottleneck in this case.

13 In our case, FPGA could not emulate all the different clocks in
the target system: SATA, SDRAM, Flash, Disk, CPU, and their
dividends.

14 FPGA usually do not support large sized on chip memories and
timings are not equivalent to the real design.

238

case since many an analyses can be performed from one long
simulation.
More importantly, a ViP provides sufficient visibility (i.e. traces
and profile data) for optimization. Fig. 4 depicts typical analysis
data obtained from our ViP simulation. Fig. 4 (a) is the waveform
view of simulation trace, which shows both HW events and SW
function calls at the same time. This view enables to track down
real critical paths; whether the bottleneck lies in the SW part or in
HW.
Control Signal

Data Path #1

Data Path #2

Function No.

(a) Simulation Trace

0

100

200

300

400

500

600

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

(b) Function execution history
Activation #

Execution time

Fun1

Fun3

Fun2

(c) Function Call Trace

Control Signal

Data Path #1

Data Path #2

Function No.

(a) Simulation Trace

0

100

200

300

400

500

600

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

(b) Function execution history
Activation #

Execution time

Fun1

Fun3

Fun2

(c) Function Call Trace
Fig. 4 Sample Analysis Data from ViP simulation

Fig. 4 (b) exemplifies the history view of execution time of
selected SW functions. As shown in the figure, since the runtime
of a function is not stationary but variable over time, short-term
simulation (as in RTL simulation) or a taking snapshot of a
function-call instance (as in logic analyzer) is not sufficient to
capture the true nature of the function.
Finally, Fig. 4 (c) shows a fraction of function-call trace
information. In this view, we can drill down into each sub-
function and find out the most time-consuming parts of the code.
Additionally, overall analysis facilities are provided: average
execution cycles of functions, amount of runtimes of sub-
functions, average distance between functions, and so on.
In summary, with its fair time-accuracy and abundant visibility15,
the ViP enabled us to effectively track down the real bottlenecks
of the system.
4.3 Firmware Optimization Techniques
In this section, we explain the optimization techniques we applied
and how the ViP was helpful for them.

Algorithmic Optimization: The most effective and fundamental
optimization was, of course, the modification of top-level
algorithms. Generally speaking, while no profiling method can
directly propose a new optimized algorithm, the developers could
find weak points of their algorithm from the information obtained
from the ViP simulation. Also they can evaluate alternative
algorithms effectively with it.

As for our case, nobody could explain the disappointingly low
performance obtained by first measurement, until the ViP

15 To obtain this information, we implemented various profiling

accessories on top of the simulator’s open interface by ourselves
including function call tracer, and its post-processing tool.

simulation revealed the true causes16; it was FW overhead of data
management routines, which was ignorable in legacy HDD
system, but now matters for flash data access. Consequently, we
had to design a new tightly-coupled data management routine
which includes special short-cut routines for flash data access.

Latency Hiding: This is to overlap SW and HW execution
instead of their sequential executions. For example, instead of
SW’s busy waiting until the end of a HW task, CPU executes
another task and checks the result of HW later. The ViP
simulation can find out where those latency hidings are applicable.
In our case, flash programming and erase operations were selected
for this optimization. For example SW can update all the relevant
control data, except the final confirm flag, assuming successful
termination of those operations while the flash device is still in
operation.

Pipelining: This is to initiate a data-consuming HW task prior to
the completion of corresponding data-producing HW task. The
ViP simulation help to balance the trade-off of pipelining:
enhancement from parallelization and degradation from resource
conflict and complicated FW control. One exemplar application
of our case is to initiate data transfer to the host device, while data
transfer is still undergoing at the flash memory side.

DMA Access: Designing our FW, there was an argue whether to
use the DMA for a short amount of data transfer or to let CPU do
it; both are known to have a certain amount of overhead in our
system, while their difference was unknown in a quantitative way.
The ViP simulation gave a direct answer to this question.

Memory Relocation: This is to move critical parts of code and
data from slow memory to fast one. In the conventional
development flow, the decision of which parts goes to the fast
memory are made from empirical knowledge. However, the ViP
simulation helped to get a systematical solution by listing up the
most time-consuming functions and frequently accessed data. In
addition, the numerical information that tells exactly how much
faster does the code run on the fast memory (e.g. on-chip SRAM)
than on the slow memory (e.g. off-chip SDRAM). FW developers
decided code/data location on the base of this information.

Data Structure Modification: Data structure also affects
performance. For example, keeping a data structure to align
certain memory boundary can boost access speed significantly at
the cost of memory loss. In our example, we listed up candidate
objects for this optimization and made up decisions using the ViP
simulation analysis.

Overall, the ViP played a pivotal role in the optimization process.
If there had not been the ViP, FW developers would have spent
indefinite time to find the reasons of performance degradation.
Thus they could not decide which optimization techniques should
be applied to which part of the codes. In consequence, the ViP
have saved enormous development time in the FW optimization
step.

16 Actually, there were still HW malfunctions blamed for

performance degradation at that time. However, ViP simulation
projected that the result would not be satisfactory even after
those HW bugs are fixed.

239

4.4 Hardware Modification
The result of ViP simulation analysis was not only beneficial for
SW optimization, but also valuable for finding HW revision
points. As an example a FW task (a data-pattern generator), that
was executed routinely but took significant amount of time, was
identified and decided to be replaced by HW in the next version
of controller LSI.
Also, architecture exploration in classical sense was also practiced
to design the next version of HW. That is, using the ViP, we
could easily test how the performance is influenced with the
change of CPU types, clock speeds, memory sizes, and so on.

5. Lessons Learned: Requirements for future
ESL Technology
The summary of our experience is that (1) the ViP needs to be
available much earlier than in the current practice if it is for an
early-access platform, (2) the simulation speed needs to be
significantly improved for FW development, but (3), for system
optimization cycle accuracy should not be sacrificed.
In our case, the availability of the ViP was not significantly
earlier than the FPGA-based environment: only 3 weeks earlier.
Generally speaking, creating archives of component models is not
a complete solution, since every company has a number of custom
HW-IPs which are continuously modified. Therefore, modeling
methodology itself should be innovated.
Fast simulation speed is always beneficial for any ViP usage
model. Recent trends in ESL concentrate on creating fast
simulators enough to execute complete SW including big OS’s
like linux, at the cost of cycle-accuracy [9, 10, 29]. However, the
drawback of this approach is to limit the range of applications;
system performance optimization as in our case study becomes
impossible.
One possible solution for above requirements is the classical two-
step approach; first create a fast-running model then replace it
with slow-but-accurate one later. For this approach, clean and
robust macro building blocks for modeling (e.g. register file, data
transfer, memory element, timing unit …) should be provided
additional to current primitives. And there should be a simple way
to replace the fast model with an accurate one, especially when
the latter exploits different interfaces from the former. Also the
burden of managing two versions must be alleviated.
Another solution can be an FPGA emulator combined with an
ESL simulator. That is, a part of custom RTL design is
synthesized into an FPGA while its execution is synchronized
with top-level ESL-simulation. The disadvantages of this
approach are 1) it is only enabled after RTL is ready, 2) A bridge
to convert signal level interface to transaction level is required,
and 3) events inside the RTL are hard to capture. Also there are
issues like size limitation of FPGA and synchronization overhead.

6. Conclusion
In this paper, we presented an industrial case study of creating the
virtual platform of a SoC and exploiting it for a real product
development, especially for FW optimization. For the creation of
the ViP, we applied several modeling techniques to accelerate
modeling while maintaining a certain degree of accuracy and
simulation speed. We took advantages of the ViP to the end of
development steps, especially in FW optimization thereby

improving system performance by more than 50%. Overall, ViP
played a crucial role in the development of Hybrid HDD system.

7. REFERENCES
[1] “System-Level IC Design Accelerates SoC Delivery”, Nikkei

Electronics ASIA, Feb. 2005.
[2] SystemC White Paper, http://www.systemc.org
[3] A. Haverinen, et al., “SystemC based SoC Communication Modeling

for the OCP protocol”, http://www.ocpip.org/, Oct. 2002.
[4] ARM-ESL SocDesigner, http://www.arm.com
[5] ConvergenSC, http://www.coware.com
[6] Magillem, http://www.prosilo.com/products/magillem
[7] Cocentric System Studio, http://www.synopsys.com/products/

cocentric_studio
[8] J. A. Colgan, et al., Advancing Transaction Level Modeling (TLM):

Linking the OSCI and OCP-IP Worlds at Transaction Level,
http://www.opensystems-publishing.com/whitepapers

[9] Real Time System Model, http://www.arm.com/products/
DevTools/RealTimeSystem Model1176.html

[10] Platform development kits, http://www.virtio.com
[11] CoFluent Studio, http://www.cofluentdesign.com
[12] J. A. Rawson, “Hardware/Software Co-Simulation”, Proc. Design

Automation Conference, pp. 439–440, 1994.
[13] R. Klein, “Miami: a hardware software co-simulation environment”,

Proc. International Workshop on Rapid System Prototyping, 1996.
[14] A. Nohl, et al., “A universal technique for fast and flexible

instruction-set architecture simulation”, Proc. Design Automation
Conference, 2002.

[15] S. Yoo, et al., “Building Fast and Accurate SW Simulation Models
based on SoC Hardware Abstraction Layer and Simulation
Environment Abstraction Layer”, Proc. Design Automation and Test
in Europe, 2003.

[16] L. Séméria, A. Ghosh, "Methodology for Hardware/Software Co-
verification in C/C++," Proc. Asia and South Pacific Design
Automation Conference, pp. 405-408, Jan. 2000.

[17] M. Bradley, K. Xie, “Hardware/Software Co-Verification with RTOS
Application Code”, http://www.techonline.com/community/
tech_tipic/21082

[18] M. Hassan, et al., “RTK-Spec TRON: A Simulation Model of an
ITRON Based RTOS Kernel in SystemC”, Proc. DATE, March 2005.

[19] R. Siegmund, D. M¨uller, “SystemCSV : An Extension of SystemC
for Mixed Multi-Level Communication Modeling and Interface-
Based System Design”, Proc. DATE, 2001.

[20] Microsoft, WinHEC 2005 Conference Tracks,
http://www.microsoft.com

[21] Samsung, OneNAND product information, http://www. samsung.com
[22] Tenison, vtoc product information, http://www.tenison.com
[23] H.Jang, et al., “High-level system modeling and architecture

exploration with SystemC on a network SoC: S3C2510 case study”,
Proc. DATE, March 2004.

[24] S.Brini, et al., “A flexible virtual platform for computational and
communication architecture exploration of DMT VDSL modems”,
Proc. DATE, March 2003.

[25] G. Hadjiyiannis, et al., “A methodology for accurate performance
evaluation in architecture exploration”, Proc. DAC, June 1999

[26] S. Pasricha, et al., “Using TLM for exploring bus-based SoC
communication architectures”, Proc. ASAP, July 2005

[27] MMAV, http://www.denali.com/products_mmav.html
[28] Carbon, http://www.carbondesigns.com
[29] Virtual Platform Designer , http://www.coware.com

240

