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ABSTRACT
The lack of memory safety in many popular programming
languages, including C and C++, has been a cause for great
concern in the realm of software reliability, verification, and
more recently, system security. Despite their limitations, the
flexibility, performance, and ease of use of these languages
have made them the choice of most embedded software de-
velopers. Researchers have proposed various techniques to
enhance programs for memory safety; however, they are all
subject to severe performance penalties, making their use im-
practical in most scenarios. In this paper, we present archi-
tectural enhancements to enable efficient, memory-safe exe-
cution of software on embedded processors. The key insight
behind our approach is to extend embedded processors with
hardware that significantly accelerates the execution of the
additional computations involved in memory-safe execution.
Specifically, we design custom instructions to perform vari-
ous kinds of memory-safety checks and augment the instruc-
tion set of a state-of-the-art extensible processor (Xtensa from
Tensilica, Inc.) to implement them. We demonstrate the ap-
plication of the proposed architectural enhancements using
CCured, an existing tool for type-safe retrofitting of C pro-
grams. The tool uses a type-inferencing engine that is built
around strong type-safety theory and is provably safe. Simu-
lations of memory-safe versions of popular embedded bench-
marks on a cycle-accurate simulator modeling a typical em-
bedded system configuration indicate an average performance
improvement of 2.3×, and a maximum of 4.6×, when using
the proposed architecture. These enhancements entail mini-
mal (less than 10%) hardware overhead to the base processor.
Our approach is completely automated, and applicable to any
C program, making it a promising and practical approach for
addressing the growing security and reliability concerns in em-
bedded software.
Categories and Subject Descriptors: B.8 [Hardware]:
Performance and Reliability
General Terms: Performance
Keywords: Extensible processors, memory safety, type safety

1. INTRODUCTION
The design of the C programming language in the 1970s

sacrificed type and memory safety in the interest of speed,
flexibility, and memory usage. This resulted in a language
which imparts a fine granularity of control over data repre-
sentation, memory management, etc., but is intrinsically un-
safe and susceptible to memory access errors, if this control
is used without caution. However, for developers, the fea-
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tures and ease of use of C/C++ often outweigh their lack of
memory safety mechanisms. Hence, they continue to be the
languages of choice for a wide range of software. This has
motivated research on techniques to address these limitations
without requiring too much effort on part of the developer.

A memory access error is defined as a read or write of a
memory location, through dereference of a pointer or sub-
scripted array, that resides outside the scope of the referent.
The scope of a referent is restricted both spatially and tem-
porally – i.e., an access derived from the referent is valid only
for a definite range of memory locations and between definite
program points during execution. Violation of the spatial
scope results in errors such as writing past the end of an ar-
ray, reading uninitialized memory, null pointer dereference,
etc. Violation of the temporal scope is manifested in the form
of accesses to memory chunks that have been deallocated, ei-
ther implicitly or explicitly. Other forms of memory errors
include memory leaks (losing a pointer to a memory location
and hence rendering it inaccessible by the program), misuse
of casts, type mismatch between run-time and static type of
variables, etc.

The abundance of pointers and NULL-terminated strings
in C programs facilitates the occurrence of memory errors.
Complex pointer arithmetic is frequently the cause of off-by-
one errors. Many C library functions (e.g., strcpy) rely on
the NULL-terminator of strings to determine the number of
iterations of loops that traverse them, resulting in an out-of-
bounds access if the terminator is not present. The ANSI C
standard allows a program to increment a pointer to point
to a memory location past the end of an array to test for
the end of the allocated buffer. With many out-of-bounds
pointers prevalent in programs, it is easy for a programmer to
dereference them in error.

Memory-safety violations can be very subtle and difficult
to catch. In the best case, they expose themselves by leading
to a program crash during testing. The more insidious bugs
may be manifested only in rare, hard-to-reproduce cases or
may appear along complex program paths that obscure the
correlation between the error and its source. However, their
impact is not limited to program crashes. The absence of
memory safety is a leading cause of security vulnerabilities in
C programs. Buffer overflow attacks, that exploit these weak-
nesses, have emerged as one of the most common causes of
security violations. An analysis of the advisories published
by CERT [1] over a three month period, Jan.-Mar. 2006, in-
dicates that 23 of the 67 vulnerabilities were pertaining to
buffer overflows.

While most studies for enhancing memory safety and secu-
rity have been performed in the context of general-purpose
computers, embedded systems, which are used to perform a
wide range of critical functions, represent an equally if not
more significant platform. Technological advances in the field
of embedded computing systems have increased their capa-
bilities manifold, resulting in their pervasive use. Embedded
software content has been growing rapidly in order to keep
up with end-user functionality and performance requirements.
Increasing complexity of software, together with shorter de-
sign cycles, implies that several bugs and vulnerabilities go un-
detected during the software design process. The addition of
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features such as network connectivity and extensibility (abil-
ity to extend installed software or download new software)
causes security concerns for embedded systems to assume sig-
nificant dimensions [2].

1.1 Paper Overview and Contributions
In this paper, we present architectural enhancements for

efficient, memory-safe execution of programs on embedded
processors. We augment Xtensa LX, a state-of-the-art con-
figurable and extensible processor core from Tensilica, Inc. [3],
with custom hardware that accelerates a wide range of memory-
safety checks. Unlike the traditional use of custom instruc-
tions to accelerate application-specific hot spots, the proposed
use of custom instructions is broader in scope since the need
for memory safety transcends application domains.

We consider the CCured [4] framework, which automati-
cally analyzes and transforms C programs into memory-safe
versions. CCured is based on a strong type-inference the-
ory and produces C programs that are provably safe. As an
embodiment of the proposed concepts, we have implemented
a suite of custom instructions, called XCHECK, that efficiently
implements the computations involved in the dynamic checks
used in CCured. We have developed a tool that takes any
program generated by the CCured tool, and modifies it to use
the proposed custom instructions for memory-safety checks.
We also show that the area overhead of the additional hard-
ware is minimal (an increase of around 10% in the processor
core without caches). To the best of our knowledge, this is the
first work that proposes comprehensive hardware support for
memory-safe execution of software on embedded processors.

The remainder of this paper is organized as follows. We
present a survey of relevant past work in Section 2. Section 3
describes preliminaries of memory safety checks and Section 4
details the architectural modifications proposed for the same.
We present our experimental methodology and results in Sec-
tion 5 and conclude in Section 6.

2. RELATED WORK
Software-based memory-safety techniques can be broadly

classified into two categories - static analysis and dynamic
checking. Static analysis tools usually formulate the memory-
safety checking problem as a constraint satisfaction problem
which is then solved using generic or domain-specific meth-
ods. Constraints are generated using data-flow analysis which
ranges from simple (context-insensitive, flow-independent) to
extremely complex (inter-procedural, context-sensitive, flow-
sensitive). Some of the recent static analysis techniques are
described in [5–7]. An important advantage of static tech-
niques is that bugs can be caught before the code is deployed,
thus eliminating the execution time overhead resulting from
run-time checks. However, they do not guarantee complete-
ness, suffer from a large number of false positives and do not
scale to larger programs.

Dynamic techniques instrument the program (source code,
object code or executable) to perform memory-safety checks
at runtime. One of the earliest tools in this category is Pu-
rify [8] which uses object code insertion to check for mem-
ory leaks and access errors. In [9], the authors introduced
an extended pointer representation known as safe pointer,
to incorporate attributes such as size, storage class, lifetime
etc., within the pointer data type. These attributes are used
to perform range checking when dereferencing the pointer or
performing pointer arithmetic. The advantage of dynamic ap-
proaches is that all values (pointer offsets, buffer lengths) and
addresses are known at runtime and only feasible program
paths are considered. The biggest drawback is the perfor-
mance penalty entailed by the checks, which reduces most of
these tools to debugging aids.

The security risks faced by unsafe C software have inspired
many countermeasures aimed at preventing buffer overflows.
Since the objective is narrower, many techniques restrict them-
selves to a subset of buffers (e.g., stack buffers, strings) or
known vulnerabilities [10–12], sacrificing code coverage and
security for performance.

Recently, a promising direction was demonstrated by CCured
[4,13], a hybrid technique that employs static type-inferencing

and run-time checking to create a type-safe version of a C pro-
gram. Static analysis reduces the need for run-time checks in
some parts of programs, thereby reducing the associated over-
heads. Cyclone [14], a dialect of C, with syntax similar to C,
also uses similar principles of combining static and dynamic
techniques. We base our work on CCured, since it is prov-
ably safe and provides an automated mechanism to convert
regular C programs to their CCured version. We discovered
that although CCured’s static analysis reduces the number of
inserted checks, resulting in substantial performance improve-
ments over traditional run-time techniques, it still causes a
significant performance loss even for medium-sized programs,
leaving much room for improvement. These overheads restrict
its applicability, and may preclude its use in embedded sys-
tems that are performance-critical or contain processors with
limited computational capability.

We are not aware of any research on comprehensive hard-
ware support for efficient, memory-safe software execution.
However, researchers have proposed architectural features to
detect security violations that could result from lack of mem-
ory safety. Hardware support for the prevention of stack over-
flows was proposed in [15]. Hardware-based run-time moni-
toring techniques to detect security violations were proposed
in [16–18]. These techniques do not guarantee memory-safe
program execution – rather, they focus on specific side-effects
such as control-flow violations. The closest related work to
ours is the work of Patil et al. [19], who propose the use of
a second dedicated processor to perform bounds checks for
memory accesses. Our work addresses the overhead of mem-
ory safety through a different approach – the addition of a
small amount of hardware in the form of custom instructions
– which, we believe, is more suited to the domain of resource-
constrained embedded systems.

3. BACKGROUND
A program’s execution is considered memory-safe if it vali-

dates each memory access that is made through a pointer or
array, before the access occurs, and prevents it if determined to
be invalid, possibly terminating the program and outputting
the location and source of error. In this section, we briefly
explain how memory safety is achieved in the context of the
CCured framework.

CCured is built on top of a source-to-source translation
framework. The core of CCured is composed of an inferencing
engine which analyzes the source code and inferences the class
of each pointer depending on its use, and the operators ap-
plied to it. The class of a pointer determines a set of properties
or invariants that must be satisfied before it is dereferenced.
CCured uses a combination of static analysis and dynamic
checks to ensure that these invariants are satisfied. It inserts
calls to checking functions or macros at program locations
where the use of a pointer cannot be statically inferred to be
safe. The representation of some pointers is also changed to
include additional data that are used in the dynamic checks.
There are four classes of pointers:

• SAFE: These pointers are not subject to any pointer arith-
metic or casts in the program. They are represented
using the standard C representation of one word, and
require minimal checking.

• SEQ (SEQuence): These include pointers that are used
in pointer arithmetic operations but are not subject to
arbitrary casts. Their representation is enhanced to
include meta-data (start and end of allocated region),
hence they require more storage space than regular point-
ers. They are also more expensive to use, since each
dereference may be accompanied by a bounds-check.

• FSEQ (Forward SEQuence): Some SEQ pointers can be
statically inferred to move only forward during the entire
program execution. These are placed under a separate
class FSEQ which permits them to have lighter-weight
checks than SEQ pointers.

• WILD: These are pointers whose type and size cannot be
inferred statically. The representation for these point-
ers is augmented by storing the start address of the al-
located region and designating fields to store run-time
type information such as number of words allocated, and
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Figure 1: Memory layout of different classes of pointers

a bitmap specifying whether each word in the allocated
region is itself a pointer. The compiler inserts code to
automatically update this information at run-time.

The memory layout for different classes of pointers is de-
picted in Fig. 1. The checks that need to be inserted for each
pointer dereference/operation depends on the pointer’s class.
The run-time overhead depends on the number of pointer de-
references that need to be dynamically verified, and the dis-
tribution of the pointers across the aforementioned classes.

4. ARCHITECTURAL SUPPORT FOR MEM-
ORY SAFETY

In this section, we provide an overview of our approach for
reducing the execution time overheads incurred by memory-
safety checking, detail the proposed architectural enhance-
ments, and describe the software flow that is used to automat-
ically enhance programs for efficient, memory-safe execution.

4.1 Overview of Proposed Approach
Fig. 2 presents an overview of the proposed approach. We

augment the base processor core with a group of custom in-
structions, known as XCHECK instructions, to efficiently per-
form a range of checks involved in memory-safe execution.
The shaded box next to the base processor represents the addi-
tional hardware. The Xtensa LX processor allows designers to
add not only logic to the datapath, but also include additional
pipelines, define their own execution units, load/store units,
ports, etc. The hardware that implements custom instruc-
tions is described in Tensilica’s proprietary language, TIE [3].
Ideally, XCHECK instructions should be designed to perform
the same checking as software checking functions and raise a
software exception in case of a violation. However, there is no
easy way for custom instructions to access the processor status
register in Xtensa. Therefore, we add a new 4-bit custom reg-
ister, called EXCP (EXCePtion), to the processor, which is set
by XCHECK instructions to specified error values. This register
is exported through an output port and fed back to the pro-
cessor as an external interrupt. Thus, the processor receives
an interrupt whenever an access violation is detected, and the
value of the interrupt indicates the kind of error encountered.
The following sections describe the design of XCHECK instruc-
tions, and the software flow used to generate memory-safe
programs, in greater detail.

4.2 Architectural Details
At the core of the proposed architecture are the single-cycle

XCHECK instructions that perform various kinds of memory-
safety checks. The custom instructions are designed to exactly
emulate the functionality of checks used in CCured, in order to
preserve the memory safety guaranteed by its type-inferencing
engine. However, the interface to an instruction may differ
from that of the corresponding checking routine depending
on the implementation. Some software checks have a one-to-
one correspondence with a single XCHECK instruction, while
others have to be broken down into a sequence of instructions
due to the constraints imposed by the processor architecture
and compiler.

Table 1 describes the custom instructions used to perform
memory safety checks. For each instruction, the table lists
the instruction name and usage, its function, and the class
of pointers that it applies to. SAFE pointers are subject to
three main checks – xcheck null (ensure that a pointer is not
null when it is dereferenced or used to compute the address
of a sub-object it points to), xcheck retptr (verify that the
address of a local variable is not returned by a function) and
xcheck storeptr (described below). SEQ pointers are accom-
panied with bounds checks whenever they are dereferenced or
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Figure 2: Overview of proposed approach for efficient
memory-safe execution

cast to SAFE pointers. The checking instruction takes care of
various special cases such as permitting the pointer to be cast
to arbitrary integers, allowing access of empty structures, etc.
FSEQ pointers use similar bounds checks except comparison is
performed only against an upper bound. The xcheck align
instruction ensures that the pointer stays aligned with the
boundaries of the allocated region after casting.

As mentioned earlier, WILD pointers are accompanied with a
tagged area which contains a bit for each word in the allocated
region, denoting whether it is a pointer or not. To maintain
consistency of this area, WILD pointer tags are updated each
time they are read or written to using XCHECK instructions
(described in the last three rows of Table 1). Due to space
limitations, we do not go into the details of all the above
checks and their usage in application programs. Instead, we
walk through one instance of unsafe execution and the corre-
sponding XCHECK instruction employed to prevent it, in Figs. 3
and 4.
Example: A common source of unsoundness is when the ad-
dress of a local variable is returned by a function or stored into
a pointer residing in the heap, global data space or a higher
stack frame. Fig. 3(a) shows a code snippet of a program,
store.c with such an error. The stack layout at the marked
program points is shown in Fig. 3(b). At points A and B, the
stack contains the frames of only foo() and both foo() and
bar(), respectively. bar() is passed a parameter val and the
address of an integer pointer, ptr. It assigns ptr to point to
the address of an appropriate integer array depending on the
value stored in val. However, the arrays evens[] and odds[]
are declared on the stack frame of bar(), and after it returns,
this space is deallocated and becomes an invalid target for a
pointer. Now, arr points to garbage values and its use after
point C will lead to unexpected program behavior.
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Table 1: XCHECK custom instructions for memory safety checks

Instruction Function/comments Class
xcheck null rp Ensure pointer is not null. rp = pointer. SAFE
xcheck retptr rp,rsp,rtop Ensure that a function does not assign the address of a local variable to a

returned pointer. rp = returned pointer, rsp = stack pointer, rtop = top of
current stack frame.

SAFE

xcheck storeptr rwhere,rsp,rp Ensure that a function does not assign the address of a local variable to a
global or heap location. rwhere = address of the pointer written to, rsp =
stack pointer, rp = pointer that is copied.

SAFE

xcheck seq00 re,rp

xcheck seq01 rb,re,rp,n
xcheck seq11 rb,re,rp,n
xcheck seq10 rb,re,rp,n

Check if a SEQ pointer is within bounds. rp = pointer, rb, re = base, end of
allocated region, n = table constant for size. These instructions are mutually
exclusive.

SEQ

xcheck fseq0 re,rp,n
xcheck fseq1 re,rp,n

Check if an FSEQ pointer is within bounds. rp = pointer, re = end of allocated
region, n = table constant for size. These instructions are mutually exclusive.

FSEQ

xcheck seq2fseq rb,rp Check when a SEQ pointer is cast to FSEQ pointer. rb = base of allocated
region, rp = pointer.

FSEQ

xcheck align re,rp,rsz Check if pointer is aligned with the end of allocated region. rp = pointer, re =
end of allocated region, rsz = size of the type accessed.

(F)SEQ

xcheck fetchlen rb,rp,rlen Fetch size of the area pointed to by a WILD pointer into rlen. rp = pointer,
re = end of allocated region.

WILD

xcheck wildrd1 rb,rp,rwords

xcheck wildrd2 rp

Check tags when dereferencing a WILD pointer. rp = pointer, rb = base of
allocated region, rwords = number of words in allocated region.

WILD

xcheck wildwr1 rb,rp,rwords

xcheck wildwr2 rcond
xcheck wildwr3; xcheck wildwr4

Set tags when writing a WILD pointer. rp = pointer, rb = base of allocated
region, rwords = number of words in allocated region. The last two instructions
are executed if xcheck wildwr2 returns rcond = 1.

WILD

B

A

C

void bar(int val, int** ptr){

}

int
int
switch(val){

evens[]={2,4,6,8};
odds[]={1,3,5,7};

}

arr;

do_something(arr);
bar(val,&arr);
int*

}

...

void foo(int val){ 

(a)

   case 1:
   *ptr = evens;
   break;
   case 2:
   ...

����
����
����

����
����
����

f
o
o

arr

SP ����
����
����

����
����
����

����
����
����
����

����
����
����
����

arr

evens

odds

SP

f
o
o

b
a
r

����
����
����

����
����
����

arr

SP

f
o
o

program stack

A B C

deallocated
ptr. to

memory

(b)

Figure 3: (a) Code snippet from an example program
store.c performing an invalid pointer write, and (b)
stack layout at different program points in the execu-
tion of store.c

Fig. 4(a) shows the CCured version of store.c. A variable
declaration, int volatile first local is added at the entry
of function bar() to mark the top of its stack frame. Addi-
tionally, a call to a check function, CHECK STOREPTR, shown in
Fig. 4(b) is inserted before ptr is written. CHECK STOREPTR
uses some compiler-specific approximations to validate an as-
signment of the form *where=p. It comprises four condition-
als, each of which is illustrated in Fig. 4(c). C1 refers to the
case when where is less than and within a pre-specified dis-
tance of p; therefore both where and p are addresses in the
program stack, and the store of an address in a pointer lower
in the stack is permitted. C2 is the case when *where is in

the current stack frame and any store to it is permitted. C3
is a special case since assigning pointers to addresses above
the frame pointer of main() (which store command line ar-
guments), as denoted by MainBase, is permitted. An error
occurs in case C4, when *where resides in the heap/global
space and p is in the stack.

Fig. 4(d) shows the TIE code for the custom instruction,
xcheck storeptr. The instruction uses three register inputs,
one custom register input (MAINBASE) and sets the exception
register EXCP to 1 in case of a violation. It uses the actual
stack pointer SP for address comparisons and eliminates all
approximations made in the software check. The instruction
flags an exception if both p and *where lie on the program
stack but where > p, or if p lies in the stack area but *where
belongs to the heap/global space. The instruction is more
accurate than the original CCured software implementation
and speeds up execution by adding hardware to carry out the
comparisons in parallel in a single cycle. �

One major limitation of TIE instructions is that they permit
a maximum of three input/output operands passed through
general-purpose registers. This prohibits implementation of
even simple checking routines as a single instruction if they
take more than three arguments. In addition to this, some
software checking functions are too complex functionally to
be implemented as a single instruction. We use several tech-
niques to handle such cases:

• Decomposition: A simple function of the form fn(x,y,
z,b1,b2) where b1,b2 are Boolean parameters, whose
values are statically known, can be decomposed into four
instructions for each of the combinations: (b1,b2)=(0,0),
(0,1),(1,0),(1,1). The four instructions are designed
for these special cases. Also, they are mutually exclusive
and can thus share hardware among themselves.

• Specialization: An extension of the above technique is
when a parameter takes a limited number of values (but
more than just two). In such cases, we designed in-
structions that are specialized versions of checking rou-
tines, i.e., they assume fixed values for one or more pa-
rameters. TIE permits storing a table of constants in
hardware, which can then be accessed by instructions,
in addition to the three register operands. One example
found in our tests were functions such as fn(x,y,z,size),
where the argument size was usually sizeof(datatype).
The sizes of standard data types are fixed and known a
priori. Whenever the checking routine is called with a
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void void** where,CHECK_STOREPTR(
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int volatile first_local;
int evens[]={2,4,6,8};
int odds[]={1,3,5,7};

   case 1:
   CHECK_STOREPTR
   &first_local);

   *ptr = evens;
   break;
   case 2:
   ...

}

void bar(

}

int val, int** 

switch(val){

p

where

(a)

SP

stack heap globals free

where

|| (m2&&m4)));

(d)(c)
}

{in MAINBASE,out EXCP}{
{in AR* where,in AR SP,in AR* p}
operation XCHECK_STOREPTR
state MAINBASE 32
state EXCP 8 /*bit width*/

assign m1=(where<SP &&
where>MAINBASE);

assign m2=(p<SP && p>MAINBASE);
assign m3=(where>p);
assign m4 = (where>SP);
assign EXCP=(p && ((m1&&m2&&m3) 

(b)

if((p−where)<0x100000U)
return;

return;
if(p){

if(FrameTop−where)<0x100000U)

int delta=(FrameTop−p)>>20; 
if(p >= MainBase)

return;
if(delta==0 || delta==−1)

fail();
}

}

C1

C2

C3

C4

C1 C2 C3 C4

Decreasing
memory

p

ptr){

(ptr, evens,

where p

address

Figure 4: (a) Code snippet from example program store.c augmented with CCured checks, (b) checking
routine, (c) illustration of various cases handled by the checking routine, and (d) XCHECK instruction code in
TIE language

constant value for the size parameter that matches one
of the specialized cases, it is replaced by the correspond-
ing TIE instruction. Otherwise, the check is left as is. In
general, our framework permits transparent intermixing
of optimized and original versions of checking routines.

• Serialization: Sometimes, functions have to be broken
down serially into a sequence of instructions. If the re-
sulting instructions are not completely disjoint in func-
tionality, they have to share parameters, either through
explicitly declared program variables or through addi-
tional custom registers. TIE instructions cannot be used
directly to alter the control flow of a program, i.e., they
cannot access the program counter. Therefore, control
flow has to be added to the sequence of instructions in
an indirect manner. For example, a function that per-
forms a complex computation to generate a value v1 and
a condition c1 for writing v1 to a memory location, can
be implemented as two serial instructions, I1 and I2,
where I1 computes v1 and writes it to a custom reg-
ister and I2 computes the condition and implements a
conditional store based on it.

The translation of software checking functions to custom
instructions is done manually. However, this requires only
a one-time effort. Xtensa provides a software interface for
custom instructions which permits any program to use these
checks. Hence, custom instructions and TIE states can be
accessed from regular C or assembly code.

4.3 Software Flow
The software flow used to generate memory-safe programs

for execution on the proposed architecture is presented in
Fig. 2. A regular C program is converted to its memory-
safe version using CCured, which is then passed through our
transformation tool, which instantiates custom instruction in-
vocation in the program. The resulting optimized memory-
safe program is compiled and linked with a custom instruction
library to produce the final executable, which is run on the
enhanced processor.

CCured also changes the interfaces to many standard C
library (glibc) functions and provides wrappers to call them.
This is because it changes pointer representation for the FSEQ,
SEQ and WILD pointers and interfaces of functions that take
these as arguments needs to be modified. The wrapper-code
along with other changes to header files in the glibc library
were ported to the Xtensa processor in order to enable CCured
versions of programs to compile with the Xtensa compiler and
run on it.

5. EXPERIMENTAL RESULTS
In this section, we report the performance of memory-safe

programs on the Xtensa processor with and without the pro-
posed architectural enhancements. We also report the area
overheads entailed in implementing the proposed custom hard-
ware. We selected applications from the Olden [20], Media-
Bench [21] and MiBench [22] benchmark suites. The first suite
comprises relatively smaller programs and was used for test-
ing CCured in [4]. The latter two were selected because they
are representative of typical embedded processing workloads.

Table 2: Benchmarks used for evaluation and their
characteristics

Name LOC Checks Distribution *
SAFE SEQ FSEQ WILD

matxmult 622 23 71 2 27 0 Y
adpcm 642 35 74 0 26 0
susan 13.1k 1302 74 10 16 0
em3d 975 66 72 1 26 0
dijkstra 782 41 91 1 8 0
g721 3.6k 409 60 2 24 14
epic 6.2k 798 65 1 34 0 Y
health 2.2k 286 35 1 12 52

Table 2 lists these benchmarks and some of their charac-
teristics - number of lines of code (LOC) in safety-enhanced
code in column 2, number of calls to checking functions in
their CCured versions (column 3) and distribution of pointers
(columns 4-7). Column 8 is marked “Y” if manual changes
were required to the code at any stage. The program matx-
mult required modifications due to an error by the CCured
tool, which did not account for changes in pointer representa-
tions at one point. epic required changes in the original source
code as it was found to have an off-by-one error.

5.1 Performance Estimation
All the benchmarks were processed through the software

flow described in the previous section and executed on a cycle-
accurate simulator for the Xtensa processor. Our base pro-
cessor configuration comprises a core running at 304 MHz,
with 512MB system RAM and 16kB each of instruction and
data caches. Fig. 5(a) presents a comparison between the
execution time overheads for the benchmarks enhanced with
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Figure 5: (a) Performance impact of using XCHECK instructions (a) for various safety-enhanced programs, and
(b) for em3d with varying input size

software memory-safety checking routines, i.e., running on the
base processor without the proposed enhancements (marked
orig), and the same programs running on the base processor
with custom instructions for memory-safety checking (marked
XCHECK). The maximum improvement is obtained for the
benchmark susan, where the overhead is reduced from 8.63×
to 1.87×, an improvement by a factor of 4.6. On an average,
performance is improved by about 2.3×. We tested the in-
put independence of our architecture by varying inputs across
all benchmarks. The performance comparison for a particu-
lar benchmark, em3d, with increasing input size is shown in
Fig. 5(b).

The above results demonstrate that the proposed architec-
tural enhancements are highly effective in reducing the perfor-
mance penalty for safe execution in a wide range of embedded
software. As a result, we hope that they will enable a broader
adoption of memory-safety techniques in embedded systems.

5.2 Area Estimation
The TIE instructions were designed to maximize sharing

of hardware and reuse of states between different instructions
and thus minimize the area overhead. Calls to checking rou-
tines are usually interleaved with regular code. Therefore,
hardware sharing does not lead to excessive resource con-
tention (and corresponding pipeline stalls) between XCHECK
instructions. The instructions were designed iteratively to
permit area reduction without affecting performance. The
area estimates were obtained from the TIE compiler.

The area of the proposed architectural enhancements, im-
plemented without any hardware sharing between custom in-
structions was estimated to be 22,000 gates. The hardware-
shared version was estimated to require 11,023 gates, which,
when compared to the base processor core (without caches),
amounts to an area overhead of around 10%. In the context
of a full system-on-chip, the area overhead would be much
lower. We believe that this overhead is quite acceptable for
most embedded systems.

6. CONCLUSIONS
In this paper, we presented architectural enhancements to

an extensible embedded processor to speed up the execution
of memory-safe programs. Our enhancements comprised cus-
tom instructions for memory access checking that were incor-
porated into the processor. We based our work on an exist-
ing, provably safe, type-inferencing engine. We showed that
the proposed enhancements result in notable speedups (up to
4.6X, average of 2.3X) in the execution of memory-safe pro-
grams. The hardware overhead of our modifications over the
existing processor core is quite minimal. Our framework is
completely automated and can be applied to a wide range of
embedded software programs.
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