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ABSTRACT
Many embedded systems exhibit temporally and behaviorally
disjoint behavior slices. When such behaviors are captured
by state machines, the current design flow will capture it as a
union of all the behavior slices, and map it using traditional
state assignment followed by logic synthesis. Such imple-
mentations costs are proportional to the union of all the
behavior slices (in area, energy and delay). We propose to
use self-modifying finite automata (SMFA), that have been
studied from complexity-theoretic perspective, for express-
ing and implementing such adaptive behaviors in embedded
systems. Towards this end, we present an implementation
architecture for SMFAs. We compare the area, time and en-
ergy costs of SMFA implementations with the classical logic
space (FSM) implementations for four adaptive behaviors.

Categories and Subject Descriptors: I.6.5 [Modeling
methodologies]: Model Development

General Terms: Design, Theory

Keywords: SMFA, FSM, Reconfigurability, Architecture

1. INTRODUCTION
Many embedded systems have components with intrinsic

dynamically variable behavior (a planetary rover designed
to respond to a variety of terrains and conditions) or are
adaptive in order to optimize some aspect of the system
performance (many wireless protocols). If these behaviors
carry state, the need for a reconfigurable FSM arises. A re-
configurable FSM implementation however should have the
following, desirable “continuity” property. The original be-
havior is specified within a state space, the space of the state
transition diagram. The behavior level evolution (reconfig-
urability) occurs in this state space. For a ε change in the
state space (addition of a new state), the δ change in the
implementation space should also be bounded. The classi-
cal implementation space, logic space, does not satisfy this
continuity property. We refer to the next state and out-
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put combinational logic function architecture as logic space.
The design flow maps the state space to logic space through
state assignment. This logic space implementation is then
minimized through multi-level logic synthesis tools such as
SIS [6]. We will denote by L(f) the logic space transfor-
mation (through state assignment and logic synthesis) of a
state space behavior f . An incremental reconfiguration of
f in state space may add or delete a transition; or add or
delete a state. Let us denote such ε-neighborhoods of f by
f +Δ. The main problem with logic space implementations
is that L(f +Δ) may not be in any δ-neighborhood of L(f),
a requirement for continuity. In other words, a small, incre-
mental change in state space (a small reconfiguration) may
result in a cataclysmic change in logic space implementation
(a complete context switch on configuration).

The other extreme is to implement the reconfigurable FSM
as a lookup table of all the transitions rules. This table how-
ever needs to be associative (content addressable memory,
CAM). The cost (delay and energy specifically) of such an
implementation is likely to be exorbitantly expensive. The
self modifying finite automata (SMFA) offer an in-between
solution. They offer the reconfiguration flexibility without
abrupt configuration context switches, and yet have imple-
mentation costs closer to the logic space FSM implementa-
tions rather than state space implementations (as transition
rules lookup table). SMFAs [4], [5] were proposed more as
a complexity-theoretic abstraction. They do however pro-
vide an excellent specification framework for reconfigurable,
adaptive finite state machines in embedded environments.
In this paper, We propose an implementation architecture
for SMFAs. We evaluate the implementation costs of four
dynamically variable behaviors with respect to logic space
implementations, state space implementations, and SMFA
implementations for both ASIC and FPGA platforms.

The rest of this paper is organized as follows. Section
2 discusses related work on reconfigurable state machines.
Section 3 presents the definition of SMFA with a few exam-
ples. The SMFA implementation architecture is described
in Section 4. Section 5 presents all the experimental data
on area, time and energy of both ASIC and FPGA imple-
mentations. Finally, Section 6 concludes the paper.

2. BACKGROUND & RELATED WORK
Self-modifying code has been of interest to computer sci-

entists from the beginning of computer programming era. It
was especially relevant in the old days of limited resources
when self-modifying code allowed a program to run in lim-
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ited amount of memory through self-modification. It has
also been used as a software obfuscation technique [1]. Over
time, though operating systems have come to frown upon
self-modifying code and have made it increasingly difficult
by making the text memory space non-writeable.

The question of whether there were to be any advantages
with reconfigurable automata was a natural extension of self-
modifying code. Rubinstein & Shutt [4], [5] were one of the
first ones to develop an automata-theoretic model of finite
automata that can modify their own structure during com-
putation. They show that the power of first order, one reg-
ister SMFA is somewhere in between a push-down automata
and context-sensitive languages. Neto [3] develops a similar
notion for push-down automata (PDA).

There have not been many attempts at implementations
of self modifying finite automata. Koster and Teich [7] de-
scribe a model for reconfigurable finite state machine. Their
methodology is very much grounded in the existing state
machines, however. They introduce additional states in the
FSM for reconfiguration. There is no discussion of the be-
haviors that can be captured.

3. SELF MODIFYING FINITE AUTOMATA

3.1 SMFA
Self modifying finite automata (SMFA) [4], [5] was intro-

duced to explore the complexity hierarchy between regu-
lar and context-free languages (corresponding to determin-
istic or nondeterministic finite automata, DFA or NFA, and
push-down automata, PDA). To that end, it is an exercise
in how to specify minimal modifications from a base DFA
or NFA. Recall that a base DFA is more or less what dig-
ital design community labels as FSM. A DFA is defined as
M = (Σ, Q, S, F, δ) where Σ is the input alphabet, Q is the
state set, S ∈ Q is the start state, F ⊆ Q is the set of
final states, and δ is a set of transitions from (Q × Σ) to
Q. Note that the notion of output does not exist in a DFA.
The acceptance (characteristic function of a set) is the main
computation issue which is captured by the set of final states
F .
Name Space for Dynamic State Addition and Dele-
tion: An SMFA is allowed to self-modify its state set and
transition rules. How are the new states to be created to
be specified? This is not an issue of just a new name space.
A more relevant aspect is the ability to specify the rela-
tionships between these new states themselves. State name
registers are associated with a DFA towards this end. A
single register gives the weakest variation of DFA (least self-
modification). This state name register has two functions in
its interface: new and old. new[r] applied to Register r (just
new[0] for a single register SMFA, or just new in this default
case) generates a new name (with some implicit enumera-
tion scheme for the name space) and stores it in that register.
The simplest enumeration scheme could be a cyclic counter
of some k bits for a k-bit register r. These state name space
registers are assumed to retain their last name as well which
is returned with the control interface old[r]. Hence the set
of actions that occur on the control command new applied
to Register r are: old[r] ← new[r]; new[r] ← new value.
Self-modifying transition: A self-modifying transition

has the form p
x/a→ q specifying a transition from state p

on input x to state q. The a is a modification action. In

general, these modification actions can be add or delete on
either a state or a transition. Let us focus on the action
of adding a transition. Such a transition would have form

p
x/add s

x′
→t→ q. A zero-th order transition does not have a

modification action. A first order transition adds a transi-
tion that is zero-th order. In general, a transition is nth
order if it adds a (n−1)st order transition. The added tran-
sition is not limited to using states in the fixed state set Q0.
It can refer to newly created states through one of the state
name space registers such as new[0] or new[3] or old[0]. For
instance, the following are valid first-order transition rules:

p
x/add s

x′
→new[0]→ q, p

x/add old[0]
x′
→new[0]→ q. When it is clear

that the SMFA under discussion has only one state name
register, we will often abbreviate new[0] and old[0] into new
and old respectively.
Self Modification Actions: A self modifier in a transi-
tion can either add a transition, or delete a transition, or
delete a state. The delete state action can be specified as
delete old[r]. These state deletion actions are useful from
implementation perspective since they reduce the number of
bits required for a state name register r.

Definition 1 (SMFA). An SMFA is a quintuple M =
(Σ, Q0, S, F, δ0, r) where Q0 and δ0 specify the base set of
states and transitions and r is the number of state name
registers. The transitions in δ0 are self-modifying kind. An
SMFA is said to be nth order if there exists an nth order
transition in δ0 and there is no (n+1)st or higher order tran-
sition in δ0. Note that a zero-th order, zero-register SMFA
is a base finite state automaton.

A first-order, 1-register SMFA is the least variation from
the fixed FSM to incorporate self-modification. In this pa-
per, by default, we will refer to a first-order, 1-register SMFA
by the term SMFA.

3.2 Four Example Behaviors
We describe the four adaptive behaviors used to evaluate

different implementation architectures. The first two are
taken from the original paper on SMFAs [5].

The first SMFA to be illustrated formally is for a language
known not to be regular (the canonical aibi language used
in pumping lemma). The language is {aibi|i > 0}. The
SMFA for this language is shown in Figure 1. The start
state is S. The final accepting state is qf . When the state
machine is in S, it transitions on empty string λ to State A.

This transition adds a new rule new
λ→ qf . Figure 2 shows

the state machine at this stage. Let us trace the evolution
of this machine on input aabb. The first a creates a link
between a newly created state new and the old state on a b
(Figure 3). It is preparing to enforce a matching b for this a
at a later stage. When the second a comes along, yet another
new state linking into the old orphaned piece on b is created
(Figure 4). At this point, a new link from qx into the last
new state on λ is also added due to λ following aa (adding
this rule due to the transition between A and qx). Now, it
is ensured that the only way to get from qx to qf is with
string bb. Note that this language has an adaptive behavior
wherein new states are added in stack order (LIFO).

The second adaptive behavior we describe is for a lan-
guage that is known not to be context-free (even a push-
down automata cannot accept it). The language is {ww|w ∈
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S A qx q

λ /add
λ

λ/add qx old
λ

new q
f

a /add new old
b

f

Figure 1: SMFA for Language {aibi|i > 0}

S A qx q

λ /add
λ

λ/add qx old
λ

new q
f

a /add new old
b

f

new

λ

Figure 2: SMFA for Language {aibi|i > 0} in State A

S A qx q

λ /add
λ

λ/add qx old
λ

new q
f

a /add new old
b

f

λ

new old
b

Figure 3: SMFA for Language {aibi|i > 0} Right Af-
ter Reading a

{a, b}∗}. The trick is remembering enough information about
w so that the second w can be matched against it. Once
again, the SMFA for this language is given in Figure 5. The
start state is S′. The main activities (of adding on adaptive
FSM) occur in State S. We will illustrate this SMFA with
the example of input string abab where w = ab. Consider
this SMFA when input a has been read. First on λ pre-
ceding a, the transition from S′ to S occurs adding a new
state with a transition from qx on λ. The first a on the self-
transition within S adds a new transition to a new state
from the old one on a (from the identical subsequent copy
of w). Figure 6 shows the SMFA at this point. The next
b (having read ab) also self-transitions within S and adds
another new state that requires a b to transition. The λ
following ab leads to the transition between S and qx which
also completes the SMFA by adding a transition from new
(now old) to qf on λ. This final SMFA is shown in Figure 7.
Note that the new states are created in FIFO order for this
language.

S A qx q

λ /add
λ

λ/add qx old
λ

new q
f

a /add new old
b

f

λ

old
b

new oldb

λ

01

Figure 4: SMFA for Language {aibi|i > 0} Right Af-
ter Reading aa

S’ S qx q

λ /add
λ

λ/add
λ

a /add
a

f

qx new

old q
f

old new

b old new
b

/add

Figure 5: SMFA for Language {ww|w ∈ {a, b}∗}

The third behavior that we implemented deals with an
adaptive network protocol for wireless sensor networks called
SPIN [2]. It is actually a family of protocols. We developed
the following SPIN energy driven adaptivity protocol.

Consider a sensor that has a choice of two protocols to pro-
cess its data, A1 and A2. Each of these protocols/algorithms
is implemented along six different energy consumption points.
The sensor keeps track of its current availability (in its en-
ergy source, a battery). We have quantized the battery en-
ergy level into 6 levels E1, E2, . . . E6. We will use a sim-
plified version of energy management system with respect
to only one activity A associated with a sensor subsystem
SA. In general, though, SA could be an image processing
system for vision. In such a stereo vision system, one action
A1 could be to construct a stereo image from left and right
black and white cameras, and the other action A2 could be
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Figure 6: SMFA for ww with w = ab Right after
Reading a

S’ S qx q
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f
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f

old new
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λ
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Figure 7: SMFA for ww with w = ab Right after
Reading ab

E6

P62

P61

P52 P42 P32 P22 P12

P51 P41 P31 P21 P11

E5 E4 E3 E2 E1
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C2A2

C1 C1 C1 C1 C1A1 A1 A1 A1 A1

A2 A2 A2 A2 A2C2 C2 C2 C2 C2

energyDrop energyDrop energyDrop energyDrop energyDrop

Figure 8: Transition Diagram for Six Energy Level
SPIN Protocol

old[0] base
old[1] base

(7) add c1
c2(8) add 

base new[1](6) add 

P61 P62base

energyDrop/

C1

A1

A2

C2

Register 0 Register 1

(5) add base new[0]

(1) del base old[0]
(2) del base old[1]
(3) del 
(4) del 

old[0] base
old[1] base

a1/prot1

a2/prot2

Figure 9: Initial Version of SMFA Implemented
SPIN Protocol

to construct the stereo image from left color camera and
right black and white camera. A request for one algorithm
is denoted by A1 and for the other algorithm by A2. All the
possible energy management states with respect to system
SA are shown in Figure 8. On energy sensing signal Ener-
gyDrop, the energy management system transitions from E6

full state to E5, from E5 to E4 and so on. When a request
for service A1 comes along, depending on the current en-
ergy state Ei, Pi1 version of the algorithm is instantiated.
C1 and C2 indicate completion signals for the corresponding
algorithms.

Note, however, that the system SA needs to exhibit be-
havior corresponding to exactly one of the energy states E1,
E2, E3, E4, E5, and E6. The system SA designed along the
lines of Figure 8 incorporates the union of behaviors over
all energy states: P11 ∪ P12 ∪ P21 ∪ P22 ∪ P31 ∪ P32 ∪ P41 ∪
P42∪P51∪P52∪P61∪P62. In reality, though only one of the
behaviors Pi1 ∪Pi2 is instantiated. A self-modifying version
of full behavior from Figure 8 is shown in Figure 9. This
is represented as a self modifying finite automata (SMFA).
We note here that the state base corresponds to any of the
Ei states. It self-modifies itself to morph into a different
behavior on a transition on energyDrop. This transition in-
cludes many self-modification steps to create new states and
transitions, and to delete some old states and transitions.

In the beginning, the state machine processes data through
P61 and P62. When the energy level drops, the sensor
deletes states P61 and P62 and adds states P51 and P52
into the state machine. Note from Figure 9, that this behav-
ior needs two state name registers: Register 0 to keep track
of Algorithm 1 state names P61, P51, P41, P31, P21, P11 and
Register 1 to keep track of Algorithm 2 state names. After
the drop down in energy state to level E5, the state machine
is transformed in to the one shown in Figure 20. The size
of this self-modifying behavior is closer to a single behavior
slice instead of the full behavior proportional to the number
of energy states.

All of the three behaviors described until now have deter-
ministic adaptation: all the adaptive transitions are known
in advance. The fourth behavior is chosen for the unex-
pected nature of its adaptation. It is derived from a paper
by Wickramsinghe and Alahakoon [8] on adaptive agent ar-
chitecture. They propose four types of states (behavior),
inherited – which captures the known fixed behavior mod-
ule, training – these states are designed for the agent to be
trained to learn the new behaviors, experience – to capture
the trained data, and unexpected – to capture the unex-
pected part of the behavior. A traffic light example that
illustrates these learning concepts from the viewpoint of a
pedestrian is also presented. We developed our own exam-
ple of a traffic light controller that adapts itself to either
ambient responses such as weather and/or pedestrian and
automobile behavior.

Figure 10 shows such a traffic controller state machine.
The machine contains a counter. The controller has four
modes of operation, Sunny Mode: Red light stays for 5 pe-
riods and then Green light stays for 5 periods, Busy Mode:
Red light stays for 2 periods and then Green light stays for 8
periods, Rainy Mode: Red light stays for 5 periods and then
Green light stays for 3 periods and then yellow light stays
for 2 periods, and Snow Blinking Mode: Red light stays for 1
period and then no light for 1 period. The controller adapts
itself between these modes.
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Red Green

YellowDark

Rainy/

count=3Snow/

count=1
count=1

Rainy/count=5

Sunny/count=5

Busy/

count=2

count=2

Sunny/

count=5

Busy/count=8

Figure 10: FSM for Adaptive Traffic Controller

Red Green

YellowDark

Snow/

count=1/

RuleD

Rainy/count=5/ruleA

Sunny/count=5/

ruleB

Busy/

count=2/

RuleC

Figure 11: SMFA for Adaptive Traffic Controller

In the fixed FSM in Figure 10, which is the union of all
these modes, all transitions are explicitly expressed. In the
SMFA version in Figure 11, only four transitions are ex-
pressed. When it’s sunny day, when the counter counts to
five, the machine goes from Red to Green. At the same time,
Rule C applies which adds a transition from Green to Red
and the condition is 5 periods count. Moreover, a self-delete
rule is set for this transition. It means that the transition
will be be executed once.

In the rainy day mode when the counter counts to five, the
machine goes from Red to Green. At the same time, Rule A
applies which adds 1. a transition from Green to Red and
the condition is 5 periods count. 2. a transition from Yellow
to Red and the condition is 2 periods count. Self-delete rules
are set for these transitions. It means that each transition
will be be executed once. These rules are as follows: Rule
A: Add Green (’(count=3)) Yellow + Rule: Self-delete; Add
Yellow (’(count=2)) Red + Rule: Self-delete. Rule B: Add
Green (’(count=8)) Red + Rule: Self-delete. Rule C: Add
Green (’(count=5)) Red + Rule: Self-delete. Rule D: Add
Dark (’(count=1)) Red + Rule: Self-delete.

Base behavior

new[0]

t 0

new[0]
t

new[0]
t
21

Adaptive bahavior 1

new[1]

t 3

new[1]
t 4

s0

s1

s2

s3

Adaptive
behavior 2

Figure 12: Example SMFA Behavior Specification

3.3 Behavior Specification with SMFA
In this section, we hone our intuition about what types

of adaptive behaviors are specifiable with an SMFA. Let us
imagine the scenarios and supporting mechanisms leading
to reconfiguration. For a given SMFA M = (Σ, Q0, S, F, δ0)
we refer to the FSM induced by the base state set Q0 and
the transitions in δ0 with their modification actions removed
as the base FA (finite automata), base(M).

The base behavior for M is to stay within base(M). Fig-
ure 12 illustrates an example SMFA. The base behavior
is captured in states s0, s1, s2, and s3. When a window
for adaptive behavior appears, and note that this window
would be with respect to existing transitions entirely within
base(M) or Q0, some new states and transitions can be
added. The block labeled “adaptive behavior 1” shows one
such instantiation. Note that the added transition to serve
as the first transition to take M out of the base behav-
ior would have the form si → new[l] or si → old[l] where
si ∈ Q0. The transition to add such an added transition is
its trigger transition. The trigger transition will capture sys-
tem conditions under which reconfiguration needs to start.
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These triggers can be either state dependent, or input depen-
dent, or (si, x) dependent. A consistent trigger transition

for adaptive behavior 1 could be s1
x01/add s1

x11→ new[0]→ s2. If
only one state name register is available, the only possible
way to stay within an execution path completely contained
within adaptive behavior 1 is to create added transitions
that link to each other through common states accessible
through old[0] and new[0]. The example state transition
graph of Figure 12 can be created with the first-order tran-

sition s1
x02/add old[0]

x12→ new[0]→ s2. Note that in Figure 12 we
have annotated new[0]ti to show the time at which the value
of new[0] was bound to the Register 0. We have assumed
that t0 < t1 < t2. Then finally the SMFA can exit the adap-

tive behavior through a transition s2
x03/add old[0]

x13→ s5→ s5.
Adaptive behavior 2 is triggered similarly. However, if

two adaptive behaviors were to interact, the only way a
cross-transition between the two of them can be specified
(with respect to the states that have not yet been created)
is to use at least two registers. That is the role of multi-
ple state name registers: to cross-fertilize adaptive behav-
iors. Otherwise each adaptive “connected component”(such
as Adaptive behavior 1 in Figure 12) is limited to source its
context from the base behavior and must exit into the base
behavior as well. With two name registers though, we can
create a cross-connected-component shown in dashed line
in Figure 12. The trigger transition for adaptive behavior

2 could be s0
x20/add s1

x30→ new[1]→ s1. The sustaining transi-

tion could be captured as s0
x21/add s1

x30→ new[1]→ s3. Finally,
the cross-fertilization transition between adaptive behavior

2 and adaptive behavior 1 is given by s3
x22/add old[1]

x31→ old[0]→
s5.

new[0] new[0] new[0]

new[0]new[0]new[0]

t t t

t t t

0 1 2

210

(b) Stack

(a) FIFO

Figure 13: State Creation versus Firing Order

A few other points worth noting here have to do with
the relative ordering of transition rule addition and firing
(instantiation).

1. For a single state name register SMFA, the adaptive
behavior can only grow by creating transitions that
point from new to old or from old to new. Con-
sider the example of Figure 13 (a). The time order
of state creation is left to right t0 < t1 < t2. The
modification rule here has the form old[0] → new[0].
State new[0]t0 would have been created with a tran-
sition from one of the base states in Q0. Hence the
only entry point for this adaptive behavior is new[0]t0 .
Once new[0]t0 is entered, the entire behavior new[0]t0 ,
new[0]t1 , new[0]t2 has to be traversed (like each in-

struction in a basic block has to be executed once the
control flow drops into it). The order of instantiation
is the same as order of generation (creation) or these
transitions can be stored in a first-in first-out (FIFO)
queue.

2. Transitions in Figure 13 (b) are also added in left to
right order as new[0]t0 , new[0]t1 , new[0]t2 . However,
they are linked with a modification rule of the form
new[0] → old[0]. Hence the entry point into this be-
havior is new[0]t2 . The states are traversed in a reverse
order of their creation. These transitions can be stored
in a stack.

3. Cases where there is another entry point into a sin-
gle adaptive behavior (such as another modification
adds1 → new[0]t1 . At the time of creation though,
new[0]t1 will be referred to by old[0]) can also be han-
dled as follows. The base state machine can also gen-
erate a value for the FIFO head pointer to account for
the multiple entry points. For stack behavior, a stack
pointer could be initialized by the trigger transition.

4. Note that these are temporal locality characteristics
of the adaptive behavior (stack or FIFO). Branching
with multiple registers makes these locality sets more
complicated (diverse) necessitating the need for stack
and FIFO pointer output.

T

NT

00 01 10 11

T T

T

NT NT

NT

Figure 14: Saturating Counter per Branch in His-
tory Table

3.4 Example SMFA
We illustrate an example SMFA with some of the proper-

ties from the previous discussion. Consider dynamic branch
prediction in computer architecture. A branch instruction’s
behavior (in terms of taken (T ) or not taken (NT )) is cap-
tured in a history table. Each entry of the table is a small
saturating counter state machine as shown in Figure 14
which is updated with respect to the input T/NT . The
example counter is a 2-bit saturating counter. Sometimes,
it may be desirable to maintain only 1-bit counter (when it
is a forward going branch not inside a loop), and sometimes
even a 3-bit counter might be needed when the branch has
significant hysteresis. This choice of the counter size could
be one of the adaptive behaviors. The other key parameter
in dynamic branch prediction scheme is the set of bits used
to hash into the branch prediction/history table. Invariably,
the history table size is significantly smaller (say 1024 en-
tries) than the address space (say 32-bits). An easy hash
function is to take least significant 10 bits (for 1024 entry
table) from the program counter (PC). However, there are
collisions which can pollute the prediction table and reduce
its accuracy. Such pollutions on context switch are more
difficult to handle. A simple adaptive strategy may be to
concatenate some (k) of the most significant bits with 10−k
least significant bits. A simplistic adaptive strategy may be
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to associate the number of most significant bits that are con-
catenated with the nesting level of a branch. The intuition
behind such a strategy is that a deeply nested branch would
have been instantiated many times, and hence aliasing would
be minimal. Let a branch at top level have nesting level 0, a
branch inside one nested loop level 1, and so on. One adap-
tive function may be to concatenate 3 − l most significant
bits of PC for a branch at nesting level l. This is the sec-
ond adaptive behavior. The trigger for the second behavior
is branch nesting level (which we assume can be estimated
within the microarchitecture dynamically). The trigger for
the first behavior is the branch offset. If it is negative sig-
nifying a loop, the counter is 2 or 3 bit counter based on
nesting level. A nesting level higher than 3 could lead to
2-bit counter, else a 3-bit counter is used. Note that branch
prediction table is looked up in the first pipeline stage along
with the instruction fetch. We do know the nesting level
without looking at the instruction and hence the second be-
havior hash function can be adapted appropriately. For the
first behavior, the adaptation (the counter size) only needs
to occur after looking up the current prediction (state of he
counter). By that time, the instruction would have been
fetched and the offset sign can be determined. The two
adaptive behaviors also interact, since the primary trigger
for the first behavior is offset sign, but a secondary trigger
is the trigger for the second behavior.

Branch prediction base behavior

2−bit saturating counters
10 LSB hash function

hash
function

l=1,2,3

3−bit
counter

1−bit
counter

l=1,2,3

offset
+ve

Figure 15: Adaptive Behaviors in Branch Prediction

Figure 15 demonstrates these adaptive behaviors for dy-
namic branch prediction informally. The space of adapta-
tion is the number of counter bits and PC derived hash func-
tion. The base behavior with respect to these parameters is
2-bit saturating counters and a hash function extracting 10
least significant bits of PC. The second adaptive behavior is
the left-most transition going out of base behavior envelope.
The trigger event is the value of nesting level (l = 1, 2, 3). In
the state hash function, the (3 − l + 1) most significant bits
of PC are concatenated with 7 least significant bits to give
the 10-bit hashed value. The second trigger transition going
out of base behavior is also based on the event set l = 1, 2, 3.
This leads to the adaptive state 3-bit counter which modifies
the saturating counter to count with 3-bits, and also outputs
the T/NT token by interpreting the 3-bits suitably. Note

Logic space
base state machine

Stack
Lookup Table

FIFO
Lookup Table

CAM
Lookup Table

i/p

next state

o/p

current state

4−1
Mux

Transition
Creation/Deletion
Engine

add rule(index, type)
delete rule(index, type)

Figure 16: SMFA implementation Architecture

that adaptive behavior 2 could also lead to adaptive behavior
1 as in the transition from hash function to 3-bit counter.
Another component of adaptive behavior 1 is triggered by
a positive branch offset leading to the adaptive state 1-bit
counter.

4. SMFA IMPLEMENTATION ARCHITEC-
TURE

4.1 Implementation Architecture
Recall that logic space implementations are fast and en-

ergy efficient for a given behavior. The lookup table state
space implementations, on the other hand, are easily and
continuously reconfigurable. An ideal implementation ar-
chitecture for SMFA should retain the best of both worlds.
The base state machine may be implemented as a logic space
state machine. The adaptive behavior could be mapped
to a lookup table of transitions. Furthermore, the access
time and energy for the lookup tables could be reduced sig-
nificantly if a CAM (content addressable) lookup can be
avoided. As we discussed in Section 3, many applications
create and/delete state sets in a regular pattern based on
the locality characteristics of the SMFA. The two most com-
monly occurring locality sets in a single-register SMFA (one
under consideration) are stack and FIFO. This argues that
state lookup tables be supported for all three disciplines:
CAM, stack, and FIFO.

Figure 16 shows an implementation architecture for SMFA
driven by these considerations. The base state machine is
implemented in logic space. The adaptive behaviors are clas-
sified into either stack, FIFO, or general CAM locality sets,
and are implemented in a lookup table with stack, FIFO, or
general CAM organization respectively. The Transition Cre-
ation/Deletion Engine (TCDE) is the block responsible for
adding and deleting a transition to the appropriate lookup
table (stack, FIFO or CAM). Recall that since we have as-
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n0, λ qf

n1,  b,      n0

n2,  b,      n1

qx, λ, n2

Figure 26: Stack Lookup Table for Language
{aibi|i > 0}

sumed a first-order SMFA, the added rules themselves can-
not add any new transition rules. Hence all the additions
will be activated from the base transitions in δ0 which are
implemented in the logic space base FSM. This base FSM
is enhanced to generate a control signal to the TCDE add
rule. This tells TCDE to copy a rule from its own memory
into the corresponding lookup table. The type parameter
of add rule indicates the specific lookup table (stack, FIFO
or CAM) to which a new rule needs to be added. The rule
itself is specified as an index (a parameter of add rule) into
a predetermined ordering of all the new rules. Note that
TCDE writes the corresponding rule into a stack at the stack
pointer location (head). Similarly, a FIFO advances its tail
pointer to reflect the new rule addition.

It is worth noting that both the rule and state deletion
capabilities are crucial for an efficient SMFA implementa-
tion. If the behavior schedule always works with some k
states in its working set, whereas it does need n > k states
for the behavior specification, by deleting the states not in
the working set on the basis of some trigger event, we can
keep the CAM size of rename space size proportional to k
or log k.
TCDE: The transition addition and deletion engine (TCDE)
is the heart such an implementation. We describe TCDE
along with the stack lookup table blocks within the context
of the language {aibi|i > 0} described in Section 3. The
user specifies the base state machine, and a template for the
new rules to be added in a format. The following BLIF like
format description will be adequate for {aibi|i > 0}.

lambda s A add, type 0

a A A add, type 1

lambda A qx add, type 2

.type 0: new lambda qf

.type 1: new b old

.type 2: qx lambda old

The top three lines describe the base automata of Figure 1
which will be implemented in the “Logic space base state
machine” block of Figure 16. The last two columns in these
lines indicate whether an add or delete self-modification
action is associated with this transition. If the last two
columns are empty, then the transition is taken to be a clas-
sical transition. The last column specifies a template for the
modification in terms of enumerated types. These templates
are expanded in a later type section. For instance, the line
with .type 0 specifies to TCDE what kind of rule needs to

be added. The keyword new indicates that TCDE should
use its internal name space counter to generate a new state
name. The fact that all instances of new occur in the first
column of the type template, and all instances of old oc-
cur in the last column of this template, suffices to conclude
that this SMFA has stack locality. TCDE adds these rules
to the stack lookup table as shown in Figure 26. When the
SMFA is in state shown in Figure 2, only the first rule at
the bottom would have been added. All the four rules shown
would have been added after reading aa as in Figure 4. At
this point, the base automata is in State qx. On input λ
and current state qx, the base automata does not fire. The
stack lookup table however has a match. Note that the
stack lookup table only matches against the rule at the top
pointed to by the stack pointer. After this match, this rule
is popped, and stack pointer points to the rule (n2, b, n1).
The current state now is n2, and on input b, once again the
stack lookup table fires and pops this rule, and so on until
the rule at the bottom of the stack forces the SMFA into
the state qf . Note that the state name registers/counters
are embedded inside the TCDE as well.

All the four blocks (logic space base FSM, stack, FIFO
and CAM lookup tables) interpret the current state cs along
with the input x to see if one of the rules owned by them
fires. If it does, they drive the next state ns and the output
y. A multiplexer then selects the output and next state of
the block with a firing rule. Note that the time complexity
of lookup in the stack and FIFO lookup tables is constant
with respect to the number of entries in these tables. This is
not the case for the CAM lookup table. The time required
to search n entries to determine a firing rule will be a func-
tion of n. It will be proportional to n for a one-comparator
implementation.

5. EXPERIMENTAL RESULTS
In this section, we present the experimental setup and re-

sults. The four adaptive behaviors described in the previous
section, {aibi|i > 0}, {ww|w ∈ {a, b}∗}, SPIN energy driven
FSM, and adaptive traffic controller were implemented in
fixed FSM, SMFA, and lookup table styles both as an ASIC
and FPGA based system. These implementation styles are
compared with respect to area, time and energy/power. Due
to the coding complexity, fixed FSM of ww5 is not available.

The designs were written in Verilog Code. They were
simulated by ModelSim 6.0d. After the simulation, the de-
signs were imported into Cadence BuildGates Physically
Knowledgeable Synthesis(PKS) to generate the schematic
and draft layout using Cadence GSCLib Library. This is a
0.18μ technology. The frequency, energy and area data are
reported from PKS. For the FPGA implementation data,
these designs were imported into Xilinx ISE 6.1i environ-
ment. The frequency and LUT data are based on Virtex II
Pro device xc2vp2 with speed grade -7.

Note that {aibi|i > 0} and {ww|w ∈ {a, b}∗} are not
regular languages. Hence, a comparable FSM does not ex-
ist. However, if they were to be accepted by an FSM, that
fixed FSM would have to be a union of all possible dynamic
(adaptive) behaviors. For instance, for {aibi|i > 0} such a
fixed FSM, if restricted to strings of length 4 would form the
regular expression {ab, aabb} which can be accepted by an
FSM. This has been our strategy. Specifically, we have im-
plemented input length limited versions of these languages
as follows. The language {aibi|i > 0} was implemented for
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three different upper bounds on the string lengths: ab3 im-
plies strings of length upto 6, ab4 implies strings of length
upto 8, ab5 implies strings of length upto 10. Similarly, ww3
means that |w| ≤ 3, ww4 means that |w| ≤ 4, and ww5
means that |w| ≤ 5. The implementation architecture fol-
lows the schema presented in Figure 16. However, some lan-
guage specific optimizations might have also been applied.
Energy in these results stands for the energy-adaptive SPIN
protocol implementation.

Figure 17 presents the data on the area of ASIC imple-
mentations of these behaviors. ASIC SMFA has 30% lower
area than the fixed FSM on average, and 728% lower area
than the lookup table implementation on average (over all
the behaviors). Figure 18 reports the data on time/speed
of ASIC implementations. The SMFA can be clocked at
16.47% higher frequency than a fixed FSM implementation,
and 43% higher clock frequency than a lookup table im-
plementation on average. Finally, the energy/power con-
sumption of these behaviors is compiled in Figure 19. The
power advantage of SMFA over lookup table implementa-
tion is 1313% on average! It however has 16% higher power
than a fixed FSM implementation.

Figure 21 presents the data on the 4-LUT counts of FPGA
implementations of these behaviors. The 4-LUT count for
SMFA is 97% lower than that of a fixed FSM implementa-
tion and 230% lower than a lookup table implementation
on average. Figure 22 reports the data on delay of these
FPGA implementations. The clock frequency of SMFA is
4.6% higher than a fixed FSM implementation, and 22.3%
higher than a lookup table implementation. Also note here
that some frequencies exceed 500MHz in these graphs, which
is the minimum frequency obtained during synthesis. If it
is higher than the board speed, the design can only run at
board speed.

The adaptive traffic controller was only implemented in
ASIC. Figures 23, 24, and 25 show the area, delay, and
power comparison of SMFA, memory and fixed FSM imple-
mentations respectively. The memory version is slow, power
consuming and occupies more area. Fixed FSM and SMFA
have similar speed and power consumption. SMFA’s area is
smaller than the fixed FSM area.

Note that as the sizes of these behaviors grows (such as
|w| in ww), the fixed FSM size grows non-linearly (super-
linearly). Hence, for larger instances the area, speed, and
power advantage of SMFA with respect to fixed FSM is
likely to be even higher. The lookup table implementation
is clearly inferior to an SMFA implementation with respect
to all the attributes.

6. CONCLUSIONS
We took a theoretical automata, SMFA, proposed else-

where, and developed an implementation architecture for
it. The main goal behind adopting SMFA is its ability to
specify adaptive finite state behaviors very nicely. With
reconfigurable state machine behavior, a concise yet use-
ful specification language is one of the biggest issues. Such
an automata implementation is very useful in the design of
reconfigurable embedded systems. We implemented three
adaptive behaviors in SMFA, fixed FSM, and lookup table
(memory) schemas both in ASIC and on an FPGA. We ob-
serve an area advantage for SMFA over fixed FSM of over
97% in an FPGA and about 30% in an ASIC. The speed ad-
vantage of SMFA over a fixed FSM is about 5% in FPGA and

16% in ASIC. SMFA implementations dominate the lookup
table implementations by significantly larger margins. The
SMFA advantage over fixed FSM implementations is likely
to be even larger for larger instances of adaptive behaviors.
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