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ABSTRACT
The continuing miniaturization of technology coupled with
wireless networks has made it feasible to physically embed
sensor network systems into the environment. Sensor net
processors are tasked with the job of handling a disparate
set of interrupt driven activity, from networks to timers to
the sensors themselves. In this paper, we demonstrate the
advantages of a tiny multi-threaded microcontroller design
which targets embedded applications that need to respond
to events at high speed. While multi-threading is typically
used to improve resource utilization, in the embedded space
it can provide zero-cycle context switching and interrupt ser-
vice threads (IST), enabling complex programmable control
in latency constrained environments. To explore the advan-
tages of multi-threading on these embedded problems, we
have implemented in hardware a family of controllers sup-
porting eight dynamically interleaved threads and executing
the AVR instruction set. This allows us to carefully quan-
tify the effects of threading on interrupt latency, code size,
overall processor throughput, cycle time, and design area for
complete designs with different numbers of threads.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance and Reliability—perfor-
mance analysis and design aids; B.5 [Hardware]: Register-
Transfer-Level Implementation

General Terms
Performance, Design

Keywords
multi-threading, embedded architecture

1. INTRODUCTION
The continuing miniaturization of technology enables small

systems to be innocuously embedded into our physical en-
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vironment. Such systems open the possibility of early de-
tection of structural failure, tracking microclimates in for-
est canopies, and observing migratory patterns of any num-
ber of species [16, 11, 29]. In an ideal world, these tiny
digital systems would be operating a wireless network, han-
dling sensor readings, controlling electro-statically-activated
devices, processing software updates, and performing dis-
tributed computations. To handle all of these functions at
the required throughput, we argue for the use of dynamic
multi-threading at all levels of the microcontroller design.

At first this concept may seem counterintuitive as most
multi-threaded architectures were developed to better-exploit
an abundance of resources [25], something that these sys-
tems most certainly do not have. Indeed, because most
modern hardware-threaded systems are superscalar designs
with support for speculative or even out-of-order execution,
a very common belief is that adding hardware support for
threading will increase complexity more than is sensible in
the microcontroller space. Only by carefully quantifying
both the circuit-level overhead of multi-threading and the
software-level advantages of its application can we truly un-
derstand the tradeoffs involved in embedded multi-threaded
systems.

This paper presents the architecture and implementation
details of our multi-threaded microcontroller designed with
these concerns in mind. Our design, JackKnife, aims to
show that threading can be a winning design point in this
space, providing a synthesizable, multi-threaded, pipelined
microcontroller supporting the AVR instruction set. Jack-
Knife is highly modular and customizable, supporting the
inclusion of custom peripherals via an extensible bus archi-
tecture. The current implementation supports up to 8 dy-
namically interleaved threads, each with independent pro-
cessor contexts. The performance of our implementation
in 0.15µm TSMC process synthesizes at over 400MHz. We
show at least an order of magnitude increase in performance
over currently available AVR designs which, for many in-
structions, require multiple cycles per instruction and have
a maximum clock frequency of 20MHz.

We show that a practical embedded multi-threaded de-
sign is possible (even for an ISA as complex as AVR) and
through a detailed hardware-software implementation study
we demonstrate that:

• zero-cycle context switching enables extremely low la-
tency interrupt response which could then be exploited
to decrease the required frequency.

• for a fully synthesizable design (including control and
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datapaths), the area overhead to implement multi-
threading is minimal – only 20% per added thread.

• not only does the latency response improve, multi-
threaded interrupt code actually requires both less to-
tal storage (50% on average) and less total instructions
executed (50% on average) than unthreaded code

If supported as a first class design constraint at all levels,
threading and pipelining the AVR does not add significantly
to the complexity or area of the design. The major com-
plexity comes in supporting true zero-cycle interrupts and
in the interaction between in-flight interrupts and schedule-
effecting instructions. However, by implementing the con-
trol using the pyPBS control synthesis tool, the complexity
exposed to the designer is kept to a minimum. The remain-
der of this paper is organized as follows: Section 2 discusses
the motivation for and contributions of this work. Section 3
describes the architectural features of the processor core per-
taining to interleaving, pipeline structure, scheduling, inter-
rupts and synchronization. The memory architecture is pre-
sented in Section 4 with specifics on instruction fetch, the
register file, and the extensible bus (I/O). Section 5 outlines
implementation details with discussion of multi-threading
effects and synthesis results. Prior art in the field of multi-
threading is presented in Section 6. Finally, we summarize
our findings in Section 7.

2. MOTIVATION
The availability of small electronic sensors and embedded

computing platforms has already provided the means for
exploring new areas in network sensors. In general, sensor
systems tend to be small in size, data-intensive, diverse in
design and use, and exhibit limited physical parallelism [8].
These systems must meet size, reliability, and longevity re-
quirements [11], while providing communication and sensor
interfaces, data processing and storage, low-latency response
times, and power management. Existing network sensor ar-
chitectures have been built around commercially available
microcontroller devices such as the AVR microcontroller [8],
the Hitachi SH1[11, 29], and the ARM7 [12].

While traditional embedded systems and sensor nets share
many similarities (power and cost constraints, small amounts
of storage, etc.), a sensor net processor is called on to be
truly general purpose. In particular, sensor net processors
juggle many different interrupt driven tasks, from timers to
sensors to the network. As interrupts are one of the most
common tasks, they need to be handled efficiently. Unfortu-
nately, in a single threaded design, managing the complexity
of program execution becomes difficult, and the bookkeep-
ing work of transferring control between processes consumes
significant time and space.

Figure 1 highlights the prologue and epilogue code seg-
ments for an instruction service routine on single threaded
AVR microcontroller. While the size of these segments can
vary, the routine presented is not atypical. Such save/return
code segments can dominate the execution, resulting in in-
efficient use of resources. Each added instruction affects,
not only, the program footprint, but also execution latency;
and the added delay serves to further constrain the rate at
which the system can process events. While Figure 1 mo-
tivates the need for a more efficient interrupt management
method, a quantitative analysis of this problem is presented
in Section 5.

0x921F  ; PUSH R1
0x920F  ; PUSH R0
0xB60F  ; IN 63 R0
0x920F  ; PUSH R0
0x2411  ; EOR R1 R1
0x932F  ; PUSH R18
0x933F  ; PUSH R19
0x934F  ; PUSH R20
0x935F  ; PUSH R21
0x936F  ; PUSH R22
0x937F  ; PUSH R23
0x938F  ; PUSH R24
0x939F  ; PUSH R25
0x93AF  ; PUSH R26
0x93BF  ; PUSH R27
0x93EF  ; PUSH R30
0x93FF  ; PUSH R31

0x91FF  ; POP R31
0x91EF  ; POP R30
0x91BF  ; POP R27
0x91AF  ; POP R26
0x919F  ; POP R25
0x918F  ; POP R24
0x917F  ; POP R23
0x916F  ; POP R22
0x915F  ; POP R21
0x914F  ; POP R20
0x913F  ; POP R19
0x912F  ; POP R18
0x900F  ; POP R0
0xBE0F  ; OUT 63 R0
0x900F  ; POP R0
0x901F  ; POP R1
0x9518  ; RETI

0x9180  ; LDS R24 2102
0x0836  ; ---
0x2388  ; AND R24 R24
0xF049  ; BRBS 9 1
0xE080  ; LDI 0 R24
0x940E  ; CALL 2750
0x0ABE  ; ---

0x9B81  ; SBIS 16 1
0xC005  ; RJMP 5
0x9180  ; LDS R24 2095
0x082F  ; ---
0x2388  ; AND R24 R24
0xF009  ; BRBS 1 1
0xCF81  ; RJMP 3969

Prologue Epilogue

Figure 1: Assembly code from an AVR interrupt
service routine highlighting the overhead of prologue
and epilogue code segments.

In traditional microcontrollers, software developers can-
not be shielded from the fact that interrupts are typically
both complex to program and slow to respond. While the
peripheral sets of modern microcontrollers continue to ex-
pand, support for the growing complexity of interrupt pro-
cessing does not. These devices are typically limited to, at
most, one fast-interrupt source. This imposes limitations
on embedded software, requiring the overhead of a task-
manager or similar OS-level component [8, 16, 15].

The main idea behind this paper is to explore the effec-
tiveness of multi-threading in the embedded space. While
the case for interrupt service threads has been made before,
no one to date has conducted a careful study of embedded
multi-threading that quantified the ramifications from the
circuit level all the way to the software layers. A multi-
threaded design will only make sense if the software gains
are thoroughly weighed against the hardware overheads. To
flush out the important tradeoffs we have fully implemented
a family of threaded processors which are binary compati-
ble with the Atmel AVR instruction set. We quantify the
area and timing ramifications of our design, and more im-
portantly we demonstrate how it scales with the number of
hardware threads. However, before we get to our results
we need to present the details of our micro-architecture and
describe the ways which made multi-threading work in this
extremely resource constrained environment.

3. PROCESSOR ARCHITECTURE
JackKnife models its architecture after that of the AVR,

providing advanced capabilities while maintaining simplic-
ity and software compatibility. Figure 2 provides a func-
tional overview of the processor architecture, illustrating
the division of the six pipeline stages. A memory-mapped
infrastructure is used throughout the design, reducing de-
sign complexity by providing a uniform interface to system
peripherals and memory. By supporting interleaved multi-
threading, JackKnife provides implicit sharing of data path
resources for increased throughput and low-latency response
to dynamic events. Extensions to the original AVR pipeline
result in over an order of magnitude increase in clock rate,
further increasing system throughput. Additionally, Jack-
Knife includes a custom scheduler, dynamic interrupt han-
dling, and a novel synchronization construction.
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Figure 2: Functional overview of the JackKnife core components, including the division of the 6 pipeline
stages.

3.1 Dynamic Interleaving
In an interleaved pipeline, instructions are selected from a

different thread every cycle. This strategy provides implicit
data path sharing and removes data dependencies between
consecutive instructions, alleviating many costly stall condi-
tions and providing better utilization of processor resources.
Dynamic interleaving allows the scheduler to dynamically
select a thread for execution based on resource availability
and thread readiness. The JackKnife architecture focuses on
flexibility of design and system responsiveness, selecting ac-
tive threads on a round-robin basis and scheduling interrupt
services threads (IST) on the next cycle.

JackKnife supports concurrent execution of any number
of threads up to the current design limit of eight. Inter-
leaved processors, like the Tera MTA, often suffer from per-
formance degradation when the number of executing threads
drops below some threshold. We have escaped this draw-
back through limited use of forwarding which typically re-
duces data-dependent stalls to a single cycle. The ability to
execute single-threaded code with only slight performance
degradation allows the system to respond to randomness
typically exhibited in many embedded environments. While
we do not directly address the need for greater than 8 con-
current threads, we expect that software-level threads could

be mapped onto hardware-level threads to provide addi-
tional design flexibility.

3.2 Pipeline
JackKnife employs a six stage pipeline with extended func-

tionality for per-stage flush and stall conditions. The event-
driven nature of embedded systems means that control flow
will change often and unexpectedly; a successful system
should minimize the overhead of these transitions. The AVR
architecture utilizes a dynamic pipeline which executes in-
structions in anywhere from one to four cycles, depending on
instruction complexity. JackKnife inherits this dynamic be-
havior, but provides single-cycle support for a much greater
number of instructions than the AVR.

Dynamic multi-threaded execution forces increases in pipeline
complexity, requiring additional logic for recognizing data
and control hazards. Managing the control logic, and all
of the states needed to handle the interactions of data path
stalls, flushes, interrupts, and multiple threads, can get quickly
out of hand. One of the problems is that the semantics of
an instruction stream should hold no matter how it is inter-
leaved with streams from other threads. A typical state ma-
chine approach to building such a controller can quickly ex-
plode into an unmanageable number of states. The other op-
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tion is to hand build a control structure that can effectively
handle a particular instance of the design. This however is
against our design goal of creating a configurable and ex-
tensible design (for instance, this would make changing the
number of threads handled by the architecture at a hard-
ware level very difficult). To tackle this problem we have
used instruction tagging in conjunction with a novel pipeline
specification methodology based around the control specifi-
cation language pyPBS [9]. The non-deterministic automata
(NFA) technique allows efficient controllers to be realized
with minimum design effort and implementation overhead.
A complete description of the methodology and synthesis
language are available in [10] and [9].

3.3 Scheduler
Supporting multiple concurrent streams of execution and

zero-latency interrupt response requires a custom scheduler
capable of balancing system requirements. The JackKnife
scheduler is a best-effort, round-robin scheduler targeted at
maintaining balanced execution among threads. A round-
robin scheduling policy is utilized based on the last dis-
patched thread, the pool of active threads, and the state
of interrupts.

Scheduling can quickly become a complex process, ac-
counting for many aspects of the system state. The Jack-
Knife scheduler is designed with simplicity in mind, operat-
ing on a minimal set of inputs. Configuration is handled via
a bank of active registers which maintain thread state and
a 7-bit counter for delayed de-scheduling. The density of
the AVR instruction set precludes the possibility for adding
custom instructions for frequently used atomic operations,
such as releasing a synchronization lock and de-scheduling
a thread. Such scenarios result in race conditions, mak-
ing system execution unpredictable. Delayed de-scheduling
provides a solution to these issues, by allowing a thread to
inform the scheduler about the number of instructions it
needs to execute before being deactivated.

The addition of multi-threading to a single-threaded sys-
tem poses some issues in term of thread support. Thread
initialization is particularly challenging, as each processor
context has no direct access to any other. To facilitate
this process, the scheduler provides initialization registers
which are used when a thread has yet to execute. Mod-
ification of the execution history flags and target instruc-
tion address allow any thread to change the execution flow
of any other. The ability to (re)start threads at arbitrary
code segments is similar to software-level threading tech-
niques like POSIX and Java, where execution begins at a
specified function/method. While these operations are uni-
versally allowed, we expect that protected thread execution
and other complex scheduling can be accomplished at the
software level.

System execution always begins in thread zero which en-
ters program code at the beginning of memory. This thread
is effectively used to bootstrap the initialization of other
threads. Shared memory provides an easily-used commu-
nication channel for information passing between threads.
This is of particular importance during thread initialization,
where an appropriate address for the stack pointer must be
established to avoid memory corruption. On acceptance of
an interrupt, the scheduler overrides the round-robin policy,
scheduling the interrupt at the soonest possible time.

3.4 Interrupts
Efficient use of system resources often necessitates the

use of interrupt-driven execution models. Atmel’s AVR de-
vices support up to 35 interrupts, servicing a variety of pe-
ripherals and inputs. JackKnife provides 31 customizable,
priority-based interrupt sources, allowing for the inclusion
of a broad range of peripherals. Compatibility with AVR
devices is maintained by executing interrupt routines out of
a common jump vector located at the beginning of program
memory. Code migration from AVR is as simple as assigning
service threads to each interrupt source. This assignment is
dynamic and configured in a set of memory-mapped control
registers within the interrupt unit.

With clock speeds reaching 20MHz and minimum inter-
rupt response times of 4 clock cycles, interrupt latency for
commercially available AVRs is at least 250ns. The AVR
architecture provides no hardware support for fast interrupt
context switching, adding additional delay to ISR response
times. AVR interrupt routines typically require prologue
and epilogue as long as 17 instructions (Section 5.2), result-
ing in delays easily reaching 1µs. In contrast, JackKnife can
achieve interrupt response times of several nanoseconds by
providing zero-cycle context switching, priority scheduling,
and dedicated instruction service threads (IST) [3, 21, 13, 2].
ISTs allow user code to be executed immediately, without
the overhead of prologue and epilogue code. This alone has
shown a nearly 50% improvement in execution time (Sec-
tion 5.2).

Guaranteeing correct program execution requires that in-
terrupt services save and restore system state prior to and
following execution of interrupt routines. To enable cor-
rect program flow, interrupts trigger an implicit stack push
with the servicing thread’s current instruction address. This
makes thread initialization important for ISTs as well as nor-
mal process threads to avoid corrupting memory. Interrupt
routines typically conclude with a return instruction, caus-
ing execution flow to return to a pre-interrupt state. An
IST has no meaningful previous execution point and there-
fore should de-schedule itself to avoid rampant execution.

While ISTs offer immediate response to interrupt events,
the time to complete an interrupt routine is highly influ-
enced by the number of concurrently running threads. Worst
case execution times can be determined based on the max-
imum number of supported hardware threads. At the soft-
ware level, the current scheduler provides the option of cus-
tom, or even dynamic, allocation of system resources to ex-
ecuting interrupts. For instance, a high priority interrupt
could de-schedule all competing threads upon entry. At the
hardware level, a priority scheduler could provide the same
advantages with reduced software overhead.

3.5 Synchronization
Processor throughput is maximized when parallel pro-

cesses have no inter-dependencies. However, it is often the
case that several threads of execution require some combina-
tion of synchronization, communication, and data sharing.
The distribution of tasks among threads makes this even
more important, as it is inevitable that a coherent view
of the system is needed at times. While communication
and data sharing are implicitly supported by the shared
memory architecture, synchronization requires specialized
support to guarantee race-free execution [19, 5]. This sup-
port is frequently seen through a variety of implementations
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Figure 3: Functional overview of the JackKnife scheduler.

ranging from flagged memory [26, 20, 1] to dedicated in-
structions [26, 17]. Some of these methods aim to provide
primitive constructs such as spin-locks [7, 14], while others
provide more elaborate solutions.

Though there exist any number of suitable solutions, many
of these techniques require custom instructions or architec-
tural modifications that are at odds with our design goals
for maintaining compatibility with existing tools and soft-
ware. Instead, we have taken an approach that builds on the
extensible nature of the I/O system to implement a config-
urable synchronization module that offers a variable number
of dedicated synchronization locks. The module is a small
memory with special handling of read and write requests.
Obtaining one of the synchronization locks is done by per-
forming a read request to the I/O address associated with
the lock. Read requests generate an atomic test-and-set in
the synchronization unit, setting the lock and returning one
if the lock was previously free, and zero otherwise – effec-
tively a ‘try’ operation. Locks are cleared by writing zero to
the lock address.

By combining spin-locks (using the synchronization regis-
ters) with explicit scheduler control, it is possible to create
more complex forms of synchronization with less overhead.
Figure 4 illustrates a meeting point where all but the last
thread to enter, de-schedule themselves. The final thread to
enter then restarts all threads simultaneously. This exam-
ple makes use of delayed de-scheduling to deactivate threads
and release the synchronization lock, avoiding an otherwise
potential race condition. As threads progressively deacti-
vate themselves, processor resources are dynamically real-
located to running threads, resulting in reduced overhead
and faster completion – an obvious improvement over spin-
waiting. Figure 5 demonstrates a turnstile in which threads
are allowed to execute in the critical region in single-file.
De-scheduling all competing threads upon entry of the criti-
cal region reduces contention for resources and also removes
any overhead otherwise incurred by spin-waiting.

4. MEMORY ARCHITECTURE
JackKnife implements unique contexts for all of its 8 hard-

ware threads. Each context consists of a 32-byte register file,
status register, program counter, and stack pointer. The
memory architecture of JackKnife equivalently models that
of the AVR, allowing for seamless code migration from exist-
ing devices. In the AVR architecture, much of the program-
ming complexity is masked by providing a uniform interface
to peripherals and memory. This allows our controller to
handle a large number of different on-chip structures with-
out requiring specialized design. Memory-mapping serves
to reduce complexity stemming from otherwise necessary
custom instructions and component interconnect. From an
implementation standpoint, this methodology reduces the
overhead of adding custom peripherals (such as our syn-
chronization module) and control elements since interfacing
requires no additional hardware.

A robust set of memory access instructions add flexibility
to the AVR architecture by providing multiple ways to ef-
ficiently access both data and I/O memory. These instruc-
tions allow direct and indirect access with pre-decrement,
post-increment, and displacement capabilities, as well as bit
manipulation for some I/O registers. All AVR peripherals
are accessible via memory-mapped I/O registers at addresses
32 - 255. Though no commercially available AVR devices use
even half of this space, JackKnife allows for remapping of
data memory to facilitate larger I/O memory space. While
functionally disparate, I/O and data memory appear as a
single contiguous memory that can be partitioned in any
number of ways. This flexibility allows for straightforward
customization of both on-board peripherals and memory for
meeting area and functionality constraints.

The remainder of this section describes the instruction
fetch and cache methodology employed in JackKnife, the
register file implementation strategy, and the extensible bus
architecture.
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meet ing po int (void ) {
// Spin−wait on sync lock zero
while ( !SYNC0 ) ;

// Check i f any other threads are running
i f ( (ACTIVE & THREAD GROUP MASK)

== THREAD ID MASK)
// Wake a l l threads in group
ACTIVE = THREAD GROUP MASK;

else
// Delayed s l e ep a f t e r 1 ins t ruc t ion
∗ ( ( char ∗) (ACTIVE0 + THREAD ID)) = 3 ;

// Release sync lock
SYNC0 = 0 ;

// End meeting point
}

Figure 4: Thread Meeting Point

t u r n s t i l e (void ) {
// Spin−wait on sync lock zero
while ( !SYNC0 ) ;

// Store s ta tu s of threads
unsigned char thread status backup = ACTIVE;

// Sleep a l l other threads in group
ACTIVE = (ACTIVE & ˜THREAD GROUP MASK)

| THREAD THIS ;

/∗ Cr i t i c a l code segment ∗/

// Restore thread runnable s ta tu s
ACTIVE = thread status backup ;

// Release the sync lock
SYNC0 = 0 ;

}

Figure 5: Thread Turnstile

4.1 Instruction Fetch
Many available microcontroller devices provide embedded

memories for both program and data. Some devices, such as
ARM, use a bootstrapping technique to move program code
from non-volatile memory to volatile memory before begin-
ning execution of the main program. JackKnife employs a
hardware-level bootstrapping process to move program code
to fast instruction memory. With multi-threading, one of
the concerns is always the increased pressure on instruction
fetch. Many of the embedded applications we target are very
small, on the order of hundreds of bytes, and can be pulled
completely on-chip. The ability to do single cycle access to
all of memory greatly improves processor throughput when
compared to the penalties incurred from instruction cache
implementations and external memory accesses. In a final
production design, a vast majority of the code can be stored
in ROM, and a software patch memory can insure that lim-
ited software updates and bug-fixes will still be possible.

4.2 Register File
The AVR architecture provides 32 8-bit general purpose

registers with support for some 16-bit operations. JackKnife
implements the 8 processor contexts as a pair-wise con-
tiguous memory. Pairing registers provides 16-bit aligned
data access with minimal overhead for outputting 8-bit data.
Rather than implement independent register files for each
thread, a uniform memory can be optimized for speed, area,
and locality with data path components. Utilizing the thread
identifier as part of the register file address provides a straight-
forward method for accessing and updating data with very
little added complexity. Rather than add complex forward-
ing paths, the register file provides transparent updates, ef-
fectively forwarding data for consecutive instructions. This
further opens space for optimizations in the non-uniform
distribution of registers to threads, and could potentially be
of use in reducing the size of the register file.

4.3 Extensible Bus
As previously mentioned, the embedded domain contains

many different applications that require varying types of in-
terfaces. Because the peripheral set of a commercial (COTS)
device is fixed, families of devices are typically offered with
varying peripheral sets and memory sizes. It is often the case
that these predetermined peripheral sets are not well suited

to a particular design – included peripherals are unnecessary
or do not implement the desired functionality. As a synthe-
sizable design, JackKnife provides the ability to customize
system peripherals for a given application.

Central to this capability is an extensible bus architecture
that links the processor core to both data and I/O mem-
ory. Peripheral expansion can be easily accomplished while
maintaining compatibility with existing AVR devices by im-
plementing memory-mapped control registers in unused re-
gions of the AVR I/O space. The decision to fully support a
memory-mapped infrastructure allows integration complex-
ity to be masked, and provides a uniform interface to all
system components. Peripheral modules are self-contained,
making them interchangeable and infinitely customizable.
In addition to memory-mapped access, JackKnife provides
access to its prioritized interrupt unit, allowing peripher-
als to request immediate servicing via one of 31 customiz-
able interrupt sources. All peripheral modules adhere to
a common bus policy in which write requests are specified
as single-cycle operations and basic read requests are two-
cycle operations, consisting of one cycle for address output
and one cycle for data consumption. Though not advisable,
the JackKnife memory controller supports the use of mem-
ory wait signals for slow memory devices. By maintaining
a tight communication protocol, we aim to increase perfor-
mance by reducing the number of required stall cycles.

5. IMPLEMENTATION AND SYNTHESIS RE-
SULTS

Now that we have described the architecture in a fair
amount of detail, we describe the performance and area im-
pact as determined through synthesis, and the observed ef-
fects of multi-threading on both execution and interrupt re-
sponse time. The JackKnife implementation contains roughly
4250 lines of synthesizable Verilog HDL. Data path compo-
nents are all written in Verilog, while sequential controllers
are specified using the pyPBS language and compiled into
synthesizable Verilog.

5.1 Synthesis Results
Synopsys Design Compiler was used to synthesize sev-

eral versions of the JackKnife implementation. Design Ware
components are used throughout the implementation, pro-
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Figure 6: System-level overview of the JackKnife core and peripheral set.

viding tested and optimized components. A 0.15µm TSMC
standard cell library is used for target mapping of all com-
ponents. All components, including memories, are imple-
mented in standard cells, resulting in substantially larger
area and power cost than would be incurred by full-custom
implementation of memory components. The TSMC cells
are characteristic of typical standard cells in the technol-
ogy. Conservative wiring and wire-delay models were used
for performance calculations.

As we have argued throughout this paper, a multi-threaded
architecture would ease the programming burden of those
controlling multi-tasking embedded systems, but this can
only be justified if it does not increase the size and delay
of the design significantly. To show the effect of multi-
threading we have synthesized a single-threaded design along
with multi-threaded designs with support for 2 to 8 differ-
ent hardware contexts. We should point out that all of our
synthesized designs run at more than 20 times higher fre-
quency than the current best commercial AVR processors,
which run at 20MHz.

The small context size of the AVR allows addition of mul-
tiple contexts at a significantly reduced cost when compared
to that of a 32-bit machine. Figure 7 compares the area and
clock speed trade-offs of implementing the entire JackKnife
core with 1 through 8 threads. The area scales nicely with
nearly a 3.5x increase from the single-thread implementa-
tion to that with 8 threads. The effective area difference
between implementations consists of the size of added hard-
ware contexts, consisting of 37 bytes of memory and sup-
porting logic. The trade-off for multi-threading in general
is shown to be minimal, with added logic complexity shown
mainly in scheduling and control logic.

The clock speed is shown to remain constant across all
designs with variances in design optimization accounting
for any differences in maximum clock frequency. Currently,
critical paths exist through the multiplication unit. This
stems from single-cycle support for fractional, unsigned with
signed multiplication – an operation that takes 2 cycle on
the original AVR. The obscurity of such an instruction pro-
vides motivation for pipelining the multiplication unit in
future implementations. While power concerns are clearly
at least as important as performance, we should point out
that all the performance we can extract from the machine
at this stage in its design will give us slack to exploit in a
full custom power optimized implementation.
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Figure 7: A plot of the Area of the JackKnife core
(µm2) and the Operating Frequency (MHz) as a
function of the number of number hardware con-
texts supported.

To understand how the different parts of the processor
are scaling with the number of contexts, Figure 8 shows the
individual breakdown among processor components as they
contribute to the total design area. As we have mentioned
in the past, the addition of a context should increase the size
of the register file and other context registers linearly, and
impact some of the control and scheduling logic. At 61% of
the 8-threaded design, the register file clearly dominates the
total area. This is in part due to the standard cell imple-
mentation; it is important to note that the use of modern
memory structures can reduce this area by as much as a fac-
tor of 12. Fabricated implementations would take advantage
of modern memory structures through the use of a memory
compiler, increasing performance further while significantly
reducing area costs.

Looking past the size of the hardware contexts, Figure 8
shows other key components as well. The size of the decode
logic remains constant across all implementations, while the
control grows only slightly. This is due to a common control
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Figure 8: Area breakdown by component. As we
vary the number of hardware thread contexts, this
shows how each of the components of JackKnife
scales in terms of required area.
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Figure 9: Constrained Optimization. This figure
shows the effect of area optimized synthesis versus
performance optimized synthesis.

hierarchy that is present in all implementations [10]. For
single-threaded implementations, the scheduler consists of
the program counter register and supporting logic. The area
balance attributed to the core corresponds to the functional
units and supporting glue logic. While the logic complexity
of the pipeline and functional units remain constant across
all designs, switching between hardware contexts comes at
some expense.

Results shown thus far were synthesized using timing con-
straints as the primary implementation target. Figure 9
shows the synthesis trade-off for implementations targeted
at area rather than performance. While the implementation
targeting area is shown to be less than 90% of the size of
the version strictly targeted for performance, the resulting
performance cost is 2.5x. Again, the total area cost of the
implementation would be greatly reduced by use of mem-
ory structures versus standard cells. Overall, our microcon-
troller design scales well with the number of threads and,
even at 167MHz outperforms other designs in its class.
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Figure 10: A plot of the CPI and ratio of dis-
patched to committed instructions executing a
Reed-Solomon encoding algorithm.

5.2 Effect of Multi-threading
While clock speeds in excess of 400MHz provide a strong

basis for our argument, they fail to convey true machine per-
formance without some measure of the pipeline efficiency.
In order to provide this measure, we simulated the Jack-
Knife design for several test applications and characterized
the performance in terms of average clocks per instruction,
interrupt bandwidth, and efficiency in terms of the ratio of
committed to dispatched instructions. Figure 10 plots the
CPI and pipeline efficiency ratio as determined by running
a Reed-Solomon encoding algorithm on 1 to 8 threads, with
each thread running an independent encoding job. CPI is
clearly reduced by the use of multi-threading where run-
ning more than 4 threads in parallel is shown to provide a
30% improvement compared to single-threaded execution.
The committed to dispatched instruction efficiency measure
shows that execution with more than 4 threads negates any
waste associated with flushed in-flight instructions arising
from control flow changes. In terms of power, this result
is interesting as it signifies that the processor is performing
100% of its scheduled instructions, thereby making efficient
use of power.

While typical CPI varies depending on the application
source code, commercial AVR devices require more than one
cycle to execute the majority of the instruction set. AVR
devices specify a maximum CPI of 1, but like most proces-
sors, can’t achieve this under typical execution – some in-
structions require as many as 4 clock cycles to complete and
reported averages are in the range of 1.8. While the Jack-
Knife core also has a peak CPI of 1, it typically executes at
1.16 when running more than 4 threads.

A side effect of multi-threading and the use of ISTs is the
resulting advantages in terms of interrupt routine size and
execution performance. By utilizing ISTs, interrupt rou-
tines can avoid the overhead associated with backing up
and restoring machine state – prologue and epilogue code
segments. The prologue and epilogue cannot be avoided
for systems with a large number of pre-emptive interrupts
however. In such systems, the eight thread limit requires
that several interrupt sources map to a common thread. To
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Figure 11: The sizes (instructions) of the interrupt service routines from three different AVR applications,
showing the break down of prologue, epilogue, and user instructions.
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Figure 12: A comparison of execution time (ns) for running the surveyed interrupt routines in a single-
threaded implementation (non-IST) versus a multi-threaded implementation employing the use of interrupt
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this end, JackKnife offers a great deal of flexibility in thread
mapping, allowing the software designer to make intelligent
decisions based on system requirements.

We have used a set of microcontroller applications from
other domains in an attempt to characterize the amount of
interrupt handling code. Figure 11 surveys interrupt routine
sizes for three applications: a hard disk-based MP3 player
with LCD display, USB, serial, and push button interfaces;
a timer and power relay controller with LCD, serial, and
push button interfaces; and an automotive engine monitor
with ADC, serial, and VFD interfaces. The information
gathered reveals that typically 50% of the instructions in
an ISR are overhead. Replacing standard interrupt routines
with dedicated ISTs results in an average 50% decrease in
both code size and execution time as shown in Figure 12.

In the end, the major concern is the impact of multi-
threading on interrupt performance. We have argued that
multi-threading benefits the designer by alleviating overhead
while allowing greater bandwidth for interfacing with the
external world. We have shown that the use of ISTs re-

sults in savings in code size and execution time, however we
have not shown how multi-threading effects interrupt per-
formance. Figure 13 attempts to capture the improvements
in execution time resulting from modifying a typical ISR to
run as an IST. It further demonstrates the average runtime
of such a routine when run in parallel with at least 4 other
copies. It is important to stress that all incoming interrupts
are executed with single cycle response times. Running this
routine in parallel on all 8 threads provides nearly 20MHz
interrupt bandwidth – a 2x increase over single-threaded op-
eration.

6. RELATED WORK
As we have described, the idea of hardware support for

multi-threading is central to our design. There is a great deal
of prior work from both academia and industry on multi-
threading, and while a full description of all related work is
not possible here, we briefly describe several related schemes
as they relate to our synthesizable design.

Prior work in the area of multi-threaded architecture has
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Figure 13: Comparison of execution time (ns) of
a typical interrupt routine when coded for single-
threaded execution, as an IST, and the average time
for running multiple copies of the routine in parallel,
with single-cycle response times.

primarily addressed the high-performance market, with de-
signs targeting highly parallel large-scale applications. The
Dynamic Instruction Stream Computer (DISC) [18] showed
that dynamic interleaving is a viable solution to achieving
better resource utilization in modern processors. The is-
sues of synchronization, interrupt handling, and memory
architecture were identified as key areas in efficient multi-
threaded architectures, and approaches were presented. In-
terleaved multi-threading is capable of filling the vertical
waste [27, 25] that occurs in conventional pipelined proces-
sor designs, but shows little advantage when utilizing more
than four threads [25].

Multi-threading provides higher bandwidth than conven-
tional processors, requiring instruction fetch and issue archi-
tectures capable of saturating the pipeline at all times [24].
Novel approaches to thread utilization [28] provide a mech-
anism for speculative execution, reducing the overhead of
branch mispredictions. Speculative caching techniques [22]
reduce the latency in instruction fetching, providing as much
as a 28% improvement in performance. Novel approaches to
exception handling [30] parallel the methodology employed
in ISTs, removing unnecessary program serialization and al-
lowing software techniques to achieve performance on par
with sophisticated hardware.

The Komodo project [3, 21, 13, 2] has been developing
a Java based microcontroller targeting real-time applica-
tions. Real-time support is guaranteed for three of the
four hardware contexts, with non-real-time tasks sharing
the fourth context during periods of high interrupt activity.
Real-time scheduling techniques [6] bound worst case exe-
cution for multi-threaded processors, providing the capabil-
ity to perform static scheduling for real-time applications.
Alternatively, non-deterministic elements of the processor
can be eliminated, providing predictable timing at the ex-
pense of performance. The Java microcontroller excludes
cache elements and utilizes scheduling algorithms targeting
shared execution, simulations of which show a 28% speed
increase [3] in certain tasks when used to control an au-
tonomous guided vehicle.

The Tera MTA [23, 4, 1, 27] is one of the more successful
architectures in implementing interleaved multi-threading

(IMT). Tera MTA supports multi-CPU systems where each
processor can handle up to 128 concurrent threads. The
architecture is optimized for execution of a large number
of threads with compiler support for VLIW instructions
and dependency lookahead information. Execution of small
numbers of threads results in performance degradation, while
only slight performance improvement is seen for variations
in larger numbers of threads [20]. Single-threaded execu-
tion is impractical given that each thread may only have a
single instruction in the pipeline at a time. Interrupts are
supported through polling in a dedicated thread rather than
supporting a preemptive interrupt architecture.

While there is a large base of theoretical work in the area
of multi-threading, few physical implementations have been
realized. Our work describes the architecture of a synthe-
sizable threaded and pipelined AVR compatible microcon-
troller that has been mapped to standard-cell. Because this
design is extensible through a simple memory mapped I/O
interface, it can be easily combined on-chip with a variety
of sensors to control and coordinate operation.

7. CONCLUSIONS
Many embedded applications require tight size and flex-

ibility without sacrificing high levels of performance and
interrupt bandwidth. Our multi-threaded microcontroller,
JackKnife, aims to provide these features with capabilities
for low-latency event handling, higher performance, and cus-
tomization. Supporting interrupt service threads (IST) with
zero-cycle context switching and reduced ISR overhead pro-
vides response times on the order of nanoseconds with typ-
ically 50% reduction in execution time.

We have shown that multi-threading in the embedded
space, even in a pipelined machine with complex synchro-
nization and I/O handling, is feasible and can be done with
minimal overhead. Standard cell synthesis under a variety
of constraints has shown that our design scales well in both
performance and area, offering a range of implementations
targeting power, size, and performance. From the extensible
and open nature of our design, and due to the availability
of mature compilers and software systems for the AVR in-
structions set, we believe that our design will open the op-
portunity to create integrated solutions not possible with off
the shelf components.
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