
Adaptive Object Code Compression

John Gilbert
Compiler Design Research Group

School of Computer Science and Statistics
Trinity College Dublin

gilberj@cs.tcd.ie

David M Abrahamson
Compiler Design Research Group

School of Computer Science and Statistics
Trinity College Dublin

david.abrahamson@cs.tcd.ie

ABSTRACT
Previous object code compression schemes have employed
static and semiadaptive compression algorithms to reduce
the size of instruction memory in embedded systems. The
suggestion by a number of researchers that adaptive com-
pression techniques are unlikely to yield satisfactory results
for code compression has resulted in virtually no investiga-
tion of their application to that domain. This paper presents
a new adaptive approach to code compression which oper-
ates at the granularity of a program’s cache lines, where
the context for compression is determined by an analysis of
control flow in the code being compressed. We introduce
a novel data structure, the compulsory miss tree, that is
used to identify a partial order in which compulsory misses
will have occurred in an instruction cache whenever a cache
miss occurs. This tree is used as a basis for dynamically
building and maintaining an LZW dictionary for compres-
sion/decompression of individual instruction cache lines. We
applied our technique to eight benchmarks taken from the
MiBench and MediaBench suites, which were compiled with
size optimization and subsequently compacted using a link-
time optimizer prior to compression. Results from our ex-
periments demonstrate object code size elimination averag-
ing between 7.7% and 18.3% of the original linked code size,
depending on the cache line length under inspection.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Data
compaction and compression—program representation; C.3
[Special-purpose and Application-based
Systems]: Real-time and embedded systems

General Terms
Algorithms, Experimentation

Keywords
Code compaction, code compression, code size reduction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

1. INTRODUCTION
Object code compression is a technique used to reduce

the cost of embedded systems. Its benefits include a reduc-
tion in the quantity of physical memory required for system
implementation, and an associated reduction in system level
power consumption due to the decreased bandwidth require-
ments for accessing external memory where compressed code
is stored.

Compression is not generally applied to the code in a pro-
gram as a whole. If it were, we would need to decompress the
entire program at load-time resulting in no memory size sav-
ing. For this reason, and given that control passes from one
part of a program’s code to another while it executes, previ-
ous work has allowed decompression from arbitrary branch
targets or instruction cache line boundaries in the code at
run-time [2].

The majority of the schemes developed to date have com-
pressed either individual instructions, fixed-size cache lines,
or short variable-length instruction sequences which do not
extend beyond the boundary of a basic block. Most of the
schemes developed at this granularity have employed static
or semiadaptive compression algorithms. Adaptive algo-
rithms have been rejected for use due to the pervasive belief
that they are mismatched for use with the small units of
code which must be decompressed at run-time [12, 15, 16,
17, 19, 25, 26].

In this work we exploit the observation that decompres-
sion from arbitrary branch targets is not required, it is suf-
ficient to be able to start decompression from each branch
target as it is encountered during execution of the program.
Using this knowledge we identify additional context to adap-
tively build a model for use when compressing, and decom-
pressing, instruction code. Our approach works at the gran-
ularity of fixed-length program cache lines, determining the
context for coding by object code control flow analysis. Our
work presents a replacement compression technique for use
in an architecture of the type described by Wolfe [25], re-
ferred to as a Compressed Code RISC Processor.

The remainder of this paper is structured as follows: first,
we review the classification of data compression algorithms
and present the Huffman and LZW algorithms. Then we
summarize the Compressed Code RISC Processor architec-
ture suggested by Wolfe. This is followed by a description of
employing LZW rather than Huffman coding in Wolfe’s ar-
chitecture. Next a review is made of some elementary topics
from compiler design, specifically the immediate dominance
relation between blocks in a control flow graph. With the
prerequisite background reviewed, we present a new data

282

structure termed the compulsory miss tree and describe its
use in constructing an improved LZW-based compression
technique. Finally, we relate our work to that already de-
scribed in the literature, present our experimental results,
identify future work in the area and draw our conclusions.

2. DATA COMPRESSION
Data compression techniques may be classified according

to a number of facets which include their fidelity, model type
and adaptivity. The fidelity of a scheme is either lossless or
lossy. Lossless algorithms allow the original data be recon-
structed perfectly after being compressed and subsequently
decompressed. This contrasts with lossy algorithms which
allow for some loss of precision or entire omission of fine de-
tail in the input as part of the compression process in return
for improved size reduction.

Models are described as either statistical or dictionary-
based. In a statistical model the probability of each input
symbol occurring is determined. This allows an allocation
of variable-length binary codes to each symbol in the in-
put, such that symbols with a high probability of occurrence
are given short codes while less likely symbols are given
longer ones. Dictionary-based models operate by moving
commonly occurring sequences of symbols from the input
to a dictionary (table). Each occurrence of one of these
sequences may then be replaced by a shorter code word in-
dexing the appropriate dictionary entry.

There are three adaptivity classifications: semiadaptive,
static and adaptive. In a semiadaptive scheme the data to be
compressed are first analysed in their entirety, an appropri-
ate model is then built, and finally the data is encoded. The
model is stored as part of the encoded data, as it is required
by the decompressor to reverse the encoding. Static schemes
are similar to this, but a representative selection of data is
used to build a fixed model which is hard-coded into com-
pressors and decompressors. This has the advantage that no
model must be explicitly stored with the compressed data,
but the disadvantage that poor compression will result if the
model is not representative of data presented for compres-
sion. Finally, adaptive techniques commence coding with an
empty (or statically determined) initial model, and update
this model as the coding of each successive input symbol
occurs. When decoding compressed data, the same initial
model used for compression is constructed and is appropri-
ately updated as each symbol is recovered. This not only
removes the need for the model to be explicitly transmitted
or stored with the encoded data, but also facilitates tailoring
the model to the particular data being compressed.

When compressing object code it is imperative that the
original data can be recovered without loss, a requirement
also shared by text-compression applications where lossy
algorithms have no place. Many object code compression
schemes have borrowed methodology from the text compres-
sion community using a variety of statistical and dictionary-
based techniques [3]. With regards to adaptivity however,
focus has remained on static and semiadaptive techniques,
and little attention has been paid to the class of adaptive
algorithms. This is a direct result of allowing decompression
commence at arbitrary branch targets or instruction cache
line boundaries in the object code being compressed. To
allow decompression begin at these positions requires that
the adaptive model be reset before compressing/decompress-
ing each block. Given the short length of these blocks the

Symbol Frequency Huffman code
a 5 1
b 3 00
c 1 01

a,c,a,b,a,a,b,a,b �→ 1,01,1,00,1,1,00,1,00

Figure 1: Example of Huffman coding: Huffman
code; original data; and Huffman coded data

Index
Phrase

(LZW code)
0 a
1 b
2 uninit
. .
. .

2n uninit

(Initial dictionary)

a,a,b,a,a,b,a �→ 0,0,1,2,4
(Original data �→ coded data)

Index
Phrase

(LZW code)
0 a
1 b
2 a, a
3 a, b
4 b, a
5 a, a, b
6 uninit
. .
. .

2n uninit

(Dictionary after coding)

Figure 2: Example of LZW compression showing
dictionary adaptation

model could not adapt sufficiently to give rise to compres-
sion, leading to a widely held belief that adaptive techniques
are inherently mismatched with the requirements of object
code compression [12, 15, 16, 17, 19, 25, 26].

2.1 Huffman coding
To construct a Huffman code the data to be compressed

are analysed and a count of the frequency of occurrence of
each symbol in the input alphabet

P
(for example, each byte

or word) is determined. Using this information, variable-
length binary codes are assigned to input symbols so that
those appearing frequently are given short codes while those
appearing infrequently are allocated longer ones [3]. These
variable-length codes are constructed so that the prefix-
property holds, that is, no code is a prefix of any other
code. When compressing data the original symbols are re-
placed by their corresponding Huffman codes and stored in
the output. The output also contains a table containing the
mapping from Huffman codes to the input alphabet symbols
for use by the decoding algorithm. Hence Huffman coding
is an example of a lossless, statistical, semiadaptive tech-
nique. Decoding occurs by sequentially matching Huffman
codes to the encoded data and outputting the corresponding
symbols. A simple example of Huffman coding is presented
in Figure 1.

2.2 LZW
LZW [24] is a popular text-compression algorithm. It

is classified as lossless, dictionary-based and adaptive. A
piece of LZW-coded data is comprised of a sequence of fixed-
length n-bit indices into a dictionary of 2n phrases, which
is constructed in the following way. Initially the dictionary
contains only the individual symbols in the input alphabetP

(say the bytes 0..255). The dictionary is then searched for
the longest phrase which is a prefix of the input data. The
index for this phrase is output in the compressed encoding,

283

M
a
in

m
em

o
ry

Compressed

instruction

cache lines

Uncompressed data Data cache

Processor

Unaware of

instruction cache

compression

Code-expanding instruction cache

Huffman coding table

Line address table

Custom cache refill logic Uncompressed cache lines

Figure 3: Architecture of Wolfe’s Compressed Code RISC Processor

and a new entry, consisting of the phrase just matched con-
catenated with the following input symbol, is inserted into
the dictionary. Coding continues in this fashion, restart-
ing at the next unmatched symbol in the input. When the
entire dictionary is full no more entries can be added and
the remaining input data is coded using the dynamically-
constructed dictionary.

Decompression of LZW coded data starts with the same
initial dictionary that was used for compression. Each code-
word to be decompressed is used as an index to the dictio-
nary and its corresponding phrase is output to the decom-
pressed stream. Then the first symbol from the phrase in the
dictionary indexed by the next codeword in the compressed
stream is appended to the phrase just decompressed, and
this sequence is then inserted as a new entry in the dictio-
nary. In this way, the decompressor maintains the same dic-
tionary as that generated during compression. The dynam-
ically constructed LZW dictionary encodes a history of pre-
viously encountered phrases in the input stream and gives
rise to compression when a single code (dictionary index) is
output in place of multiple symbols from the input stream
during coding. An example of LZW coding is presented in
Figure 2, where the initial dictionary is shown on the top
left, the data to be coded and the dictionary indices for its
encoded form are shown on the bottom left and the final
dictionary resulting from coding is shown on the right of
the figure.

3. COMPRESSED CODE RISC
PROCESSOR

Wolfe introduced the Compressed Code RISC Processor
(CCRP) [25], an architecture where a standard RISC core
is augmented with a code-expanding instruction cache (see
Figure 3). Individual fixed-length cache lines are compressed
to variable-length blocks using Huffman coding and stored
in main memory. On a cache miss, the compressed cache
line is loaded from memory, decompressed and placed in the
cache by custom cache refill logic. As the location used by
the processor for the requested cache line will differ from its
compressed-form location in memory, due to the difference
in size between the compressed and uncompressed forms of

the program, the compressed cache line address in memory
is looked up in a so called line address table. Once the cache
line has been placed in the cache, the requested instruction
is extracted and returned to the processor as if the data had
never been compressed. Thus the decompression mechanism
is entirely transparent to the processor.

The line address table (LAT) may be naively encoded
using one entry for every cache line in the program. The en-
try contains the location, in main memory, where the com-
pressed version of each cache line is located. In a system
where cache lines are 32 bytes long and addresses are 32
bits long, 32 bits of storage for every 32 bytes of instruction
data are required—that is, an increase of 12.5% over the
original program size (assuming compressed cache lines are
byte-aligned). A better encoding can be derived by allow-
ing a single LAT entry represent the mapping for a number
of cache lines using a simple delta coding scheme. Using a
delta coding approach, a base address is stored for the first
line and offsets are added to this to obtain the address for
contiguous lines with higher addresses in compressed mem-
ory. For the same setup as before, Wolfe’s encoding requires
a LAT storage overhead of about 3.5% over the original pro-
gram’s code size, when eight cache lines are represented by
each LAT entry.

4. ADAPTIVE COMPRESSION OF
INSTRUCTION CACHE LINES

The architecture presented by Wolfe requires the Huff-
man coding table be stored alongside the compressed pro-
gram in memory, or alternatively a static table determined
by profiling a number of ‘representative’ sample programs
may be hard coded into the cache refill logic. The distribu-
tion of instruction set usage in embedded applications varies
widely from program to program [10], which suggests that
the static approach to compression might be improved upon
with a semiadaptive or adaptive technique when applied to
a specific application. Given the requirement of explicitly
storing the compression model for semiadaptive algorithms
alongside the encoded data, we now give consideration to
adaptive techniques which address these issues.

284

4.1 LZW for cache lines
We propose replacing the Huffman coding technique em-

ployed by Wolfe’s CCRP with an LZW-based scheme. In-
stead of storing a static or semiadaptive Huffman coding ta-
ble in the decompression unit we compute at compression-
time an LZW dictionary which will be appropriately ini-
tialized and adaptively maintained at run-time during the
execution of the program.

As a starting point, we investigate the simple idea of com-
pressing each cache line individually using the LZW algo-
rithm. Before coding each cache line, the LZW dictionary
contains initial entries for the alphabet

P
of unique bytes

0..255. The cache line is then coded, padded to provide
byte alignment, and stored in memory. As before, a LAT
table is used to locate compressed code in memory. At run-
time, whenever a cache miss occurs the LZW dictionary is
reset, the compressed code is located in memory using the
LAT, and the cache line is decompressed and placed in the
instruction cache.

Results from the application of this technique are pre-
sented in Section 6. Unfortunately, except for cache lines of
length 64 bytes or greater, the technique results in expan-
sion rather than compression of the input. In the following
sections we introduce a new approach to extract additional
context for compressing instruction cache lines that extends
beyond a single cache line boundary. A cache line will be
compressed using the context obtainable from those other
cache lines guaranteed to have been encountered on all of
the possible run-time paths leading to an instruction cache
miss for the line. To this end we will review the imme-
diate dominance relation between basic blocks in a control
flow graph from compiler design [1, 21], introduce a new
data structure we term the compulsory miss tree, and fi-
nally present our improved adaptive compression technique
for cache lines.

4.2 The immediate dominance relation
An executable program’s object code consists of encoded

machine instructions each of which can be classified as either
a branch instruction or one which does not affect control
flow. Control moves sequentially through a program until a
branch is encountered. At such a point the processor begins
executing instructions at the destination of the branch or at
the address following the branch. A basic block is a maximal
sequence of consecutive instructions in which flow of control
enters at the beginning of the block and leaves at the end.
We can partition the object code for a program into a set
of basic blocks. The control flow graph (CFG) of a program
is an abstract representation of the code which models, at
compile-time, possible flow of control within the program at
run-time1. Its nodes are basic blocks, and an edge 〈x, y〉
indicates that execution of block y can immediately follow
that of block x in some execution sequence. The graph has a
distinguished node entry representing the program’s unique
entry point. CFGs are used in many compiler and link-time
optimizations, and their construction is well described in the
literature [1, 21].

Let x, y be blocks in a CFG. We say x dominates y (writ-
ten x dom y) if every path from entry to y in the CFG

1The term control flow graph typically refers to the repre-
sentation of control flow within a single procedure. Here we
use the term to mean an interprocedural control flow graph
of the supergraph form [22].

A

B C

D

E F

A

B C D

E F

Figure 4: Example control flow graph and its imme-
diate dominator tree

passes through x. Every node dominates itself and every
node is dominated by entry. x strictly dominates y (x sdom
y) if x dom y and x �= y. x immediately dominates y (x
idom y) if x sdom y and x does not dominate any other
dominator of y. Every node other than entry has a unique
immediate dominator. This relation may be represented by
an immediate dominator tree with entry at the root and
edges representing the idom relation between nodes.

Figure 4 presents a simple control flow graph and its as-
sociated immediate dominator tree.

4.3 Compulsory miss tree
When a processor is unable to locate the data that it

requires in its cache, a cache miss occurs. These misses can
be characterized as either compulsory, capacity or conflict
misses. Capacity and conflict misses occur as a result of the
physical size of the cache and the associated block placement
strategy. A compulsory miss occurs on the first access to a
piece of data through the cache, that is, when the data was
not previously loaded [11].

In this section we present an algorithm to construct a
compulsory miss tree for a given program and instruction
cache. Nodes in this tree represent individual instruction
cache lines in the program which may be loaded from mem-
ory. When any type of miss occurs for a given node in the
tree, all ancestors of the node will previously have caused
their compulsory miss in the cache to occur.

The construction proceeds as follows: First, the bound-
aries between basic blocks in the object code are identified.
Then we determine the boundaries in the object code be-
tween cache line data for loading into the instruction cache.
Next, the CFG is constructed from the set of basic blocks,
and the associated immediate dominator tree is derived. Re-
call that for each basic block in the immediate dominator
tree, execution of all its ancestors will have preceded exe-
cution of the node itself. This will have occurred in order
from the root of the tree to the node in question, but other
basic blocks may also have been executed between nodes on
that path. When a given basic block is encountered its in-
structions will execute in sequential order. Thus cache lines
containing instructions for the basic block will be found in
contiguous memory locations, and data from them will be
requested in order from the cache.

We define two relations, touches-cl for basic blocks and
touches-bb for cache lines (Figure 5), which will help us
later when we relate the dominance control flow information
to the order of compulsory misses in the instruction cache.

285

touches-cl(basicblock b) = [c | c ∈ cachelines, c.addressrange ∩ b.addressrange �= ∅]
touches-bb(cacheline c) = [b | b ∈ basicblocks, b.addressrange ∩ c.addressrange �= ∅]

Figure 5: Definition of touches-cl and touches-bb, relating basic blocks and cache lines to each-other

Given a basic block x, touches-cl will return a set containing
those cache lines y which contain part of the data for basic
block x. Similarly, given a particular cache line q, touches-bb
will return the set of basic blocks r which contribute to the
data stored in cache line q.

Together, this knowledge allows us construct the compul-
sory miss tree by employing the algorithm shown in Figure
6. Lines 3–8 identify the root of the compulsory miss tree,
that is, the first cache line of instruction data that will miss
when the program executes. This corresponds to the cache
line containing the first instruction in the program’s entry
basic block (the root of the immediate dominator tree). Line
10 performs a pre-order traversal of all basic blocks b in the
immediate dominator tree, determining for each the point
in the compulsory miss tree where its associated cache lines
cl should be attached (line 11). As each cache line cl may
contain data from multiple basic blocks, its compulsory miss
will occur the first time any of those blocks in touches-bb(cl)
execute. For this reason, only the compulsory misses gen-
erated on paths to all basic blocks in touches-bb(cl) may
be used as ancestors for cl in the compulsory miss tree, as
determined by lines 15 and 16. In the event that b, the cur-
rent basic block being traversed, does not contain any cache
lines attached to the compulsory miss tree, the misses guar-
anteed to have previously occurred prior to its execution are
those resulting from execution of its immediate dominator.
In this situation, the immediate dominator’s deepest cache
line in the compulsory miss tree is used as ancestor for the
first cache line in block b (lines 18 and 19).

Figure 7 shows a simple MIPS assembly language program
with its associated machine-level object code. Two views
of the program are provided - a basic block view (showing
the source code), and a cache line view (showing the corre-
sponding machine-level object code). We use a hypothetical
instruction cache that holds 8 bytes (2 instructions) per line.
The touches-bb and touches-cl relations are also indicated.
The CFG and immediate dominator tree introduced in Fig-
ure 4 are those that correspond to this program. Applying
the algorithm outlined in Figure 6 to the example program
yields the compulsory miss tree shown in Figure 8.

4.4 Improved LZW for cache lines
Our improved approach to dynamically building an LZW

dictionary for cache line compression begins by building a
compulsory miss tree for the program to be compressed.
Recall that this tree has the property that whenever a miss
occurs for a cache line, all of its ancestors will previously
have triggered their compulsory miss.

4.4.1 Compression
Statically we allocate space in the LZW dictionary to

those cache lines on the path to the largest number of other
cache lines. In this way, nodes deeper in the compulsory
miss tree will have a substantially larger amount of context
available in the dictionary for use in their coding when com-
pared to the naive LZW scheme introduced earlier in this
paper. The nodes in the compulsory miss tree are weighted

0

1

2 3 4

5

7

6

Figure 8: Compulsory miss tree

by a count of all their descendants. Then, beginning with
only the alphabet of bytes

P
= 0..255 in the dictionary, the

cache lines from the compulsory miss tree are compressed in
order of their weight. Each cache line uses only those entries
placed in the dictionary by its ancestors in the compulsory
miss tree for its coding. In this way, each cache line inher-
its the context contributed to the adaptive model from the
compression/decompression of its compulsory miss tree par-
ent. Note that the ordering of compression guarantees all of
a node’s ancestors will be processed before the node itself,
and hence the appropriate entries in the dictionary must be
present. When the dictionary becomes full, no more adapta-
tion takes place and all remaining cache lines are compressed
using the entries placed in the (now full) dictionary by their
ancestors. Note that each pointer, although fixed in length,
cannot be used to address arbitrary entries in the dictionary
since not all entries are guaranteed to have been initialized
at the point when the decompression of a cache line occurs,
hence only those entries statically guaranteed to be initialized
may be addressed.

Referring to our example program from Figure 7, cache
lines will be compressed in the order {0, 1, 4, 5, 2, 3, 6, 7}.
The first byte from Line 0 will be compressed using only
the initial alphabet for context, with dictionary adaptation
starting at entry 256. Subsequent bytes will be processed in
a similar fashion using the expanding dictionary for coding
purposes. However, at the start of each new cache line, the
initial context for compression comprises only those entries
added to the dictionary by the line’s ancestors in the compul-
sory miss tree. For example while node 5 will have adapted
the dictionary at compression-time prior to the compression
of node 2, the encoding of node 2 must not make use of
those dictionary entries; only the entries resulting from the
compression of nodes 0 and 1, as well as those resulting from
processing the node itself, may be referenced when node 2
is being processed. An outline of the process is shown in
Figure 9.

286

1 construct_compulsory_miss_tree(): CacheLine is
2

3 BasicBlock idomTreeRoot := build_immediate_dominator_tree()
4 CacheLine cmTreeRoot := first_cache_line(idomTreeRoot)
5

6 cmTreeRoot.processed := true
7 cmTreeRoot.cmTreeDepth := 0
8 cmTreeRoot.cmTreeParent := nil
9

10 for each BasicBlock b in pre_order_traverse(idomTreeRoot)
11 for each CacheLine cl in touches -cl(b)
12

13 if cl.processed = false then
14

15 BasicBlock a := common_idom_ancestor(touches -bb(cl))
16 cl.cmTreeParent := deepest_cmt_cl(a)
17

18 if cl.cmTreeParent = nil then
19 cl.cmTreeParent := deepest_cmt_cl(a.idomTreeParent)
20 end -- if
21

22 cl.cmTreeDepth := cl.cmTreeParent.cmTreeDepth + 1
23 cl.processed := true
24

25 end -- if
26

27 end -- for each
28 end -- for each
29

30 return cmTreeRoot
31

32 deepest_cmt_cl(x)
33 -- Returns the cache line deepest in the compulsory miss tree from the set
34 -- touches -cl(x). Returns nil if no cache line in touches -cl(x) has been added
35 -- to the tree.
36

37 common_idom_ancestor(x)
38 -- Returns the deepest common ancestor of the set of basic blocks x in the
39 -- immediate dominator tree.
40

41 first_cache_line(x)
42 -- Returns the cache line with lowest address in the set touches -cl(x).
43

44 build_immediate_dominator_tree()
45 -- Constructs an immediate dominator tree for the input program and returns
46 -- its root node.

Figure 6: Compulsory miss tree construction algorithm

Cache line view Basic block view

cl# touches-bb obj code source code touches-cl bb

0 {A} 0x8C080200 lw t0,512(zero)

{0, 1} A
0x8C090204 lw t1,516(zero)

1 {A} 0x10080004 beq zero,t0,<C>

0x240A0000 li t2,0

2 {B} 0x01095020 add t2,t0,t1

{2, 3} B0x10000002 b 420 <D>

3 {B, C} 0x014A5020 add t2,t2,t2

0x01205020 add t2,t1,zero {3} C

4 {D} 0x8C0B0208 lw t3,520(zero)

{4, 5} D0x100A0004 beq zero,t2,<F>

5 {D, E} 0x016A5820 add t3,t3,t2

0x214AFFFF addi t2,t2,-1

{5, 6} E
6 {E} 0x1000FFFB b <D>

0xAC0B0208 sw t3,520(zero)

7 {F} 0x1000FFFF b <F> {7} F
0x00000000 nop

Figure 7: View of program object code showing cache lines (cl) and basic blocks (bb)

287

Index Phrase
0 0x00
1 0x01
. .
. .

255 0xFF
256 uninit
257 uninit
. .
. .

2n uninit

Index Phrase
0 0x00
. .
. .

255 0xFF
256 0x8C,0x08
257 0x08,0x02
258 0x02,0x00
259 0x00,0x8C
260 0x8C,0x09
261 0x90,0x02
262 0x02,0x04
263 uninit
. .
. .

2n uninit

Index Phrase
0 0x00
. .
. .

255 0xFF
Line0 adaptations
Line1 adaptations
Line4 adaptations
Line5 adaptations
Line2 adaptations

. uninit

. .

. .
2n uninit

Figure 9: Initial dictionary; dictionary after com-
pressing line 0; and structure of dictionary after five
lines lines from the compulsory miss tree have been
compressed

4.4.2 Decompression
LZW generally inserts new entries at the next available

location in the dictionary during both compression (as we
did above) and decompression. Since we cannot guarantee
the total order in which compulsory misses will occur at
run-time, we cannot employ such an approach during de-
compression. If we did, adaptations could occur at different
locations in the dictionary to those that occurred during
compression, thereby invalidating the indices used for the
encoding. For example, a sample execution of our program
from Figure 7 which begins by traversing basic blocks a and
b will cause the compulsory miss, and hence decompression,
of cache lines in the order 0, 1, 2 and 3. At compression-
time, however, the lines were compressed and modified the
dictionary in the order 0, 1, 4.... Clearly if we allow the de-
compression at run-time adapt the dictionary from the next
available location, we will not reconstruct the same model
used at compression-time, resulting in serious errors in the
‘decompressed’ code.

For this reason, encoded cache lines require some addi-
tional bookkeeping information for use by the decompres-
sion unit to ensure fidelity of the dictionary model. They
need to indicate whether or not their decompression should
adapt the dictionary, and if so where entries in the dictio-
nary should be placed as the node is decompressed. A single
bit is stored to indicate whether processing a node should
lead to a modification of the dictionary, and if so the follow-
ing index will identify the location in the dictionary where
the first new entry should be placed. This information is
readily available at compression-time, and is output as part
of the compressed cache line encoding. When a miss occurs
in the instruction cache at run-time, its compressed form is
located in memory. If the first bit is a zero, then it shows
that all codes needed for its decoding have already been ini-
tialized and this node adds no new entries to the dictionary
as it is expanded. However, if the first bit is set to one,
then the regular LZW decompression technique is applied,
adapting from the location identified by the first index of
the cache line’s encoding. For an example of the encoding,
see Figure 10, where the compressed version of line 0 from
our example is presented.

Our LAT tables are slightly larger than Wolfe’s, since we
allow for the expansion of data where they reject it. We need

to do this since that is effectively how LZW attains compres-
sion: initial data coding causes expansion, but also provides
those dictionary entries that later allow us obtain good com-
pression ratios. The maximum size of a compressed cache
line using our scheme includes the overhead when a cache
line contributes to the LZW dictionary (1 bit flag plus the
index used to address the location to adapt) plus the worst
case encoded size when no compression occurs and every
byte is replaced by an index to the LZW dictionary (requir-
ing x · n-bit indices for a dictionary using indices of length
n bits, in a cache line of x bytes).

5. RELATED WORK
Work on code size reduction has focused on two general

approaches termed code compaction and code compression.
Code compaction applies transformations to the input pro-
gram creating an output program which is semantically iden-
tical to the input, but which requires less space for storage.
Binaries resulting from code compaction are directly exe-
cutable on their target architectures and no decompression
step is required. The transformations employed for code
compaction include traditional compiler techniques such as
redundant and dead code elimination applied in an aggres-
sive interprocedural fashion, combined with procedural ab-
straction and cross jumping [4, 7, 9].

Code compression techniques on the other hand recode
the input binary in a form which is not directly executable
on the target processor, requiring an intermediate decom-
pression step before execution can occur. Such techniques
are based on coding and information theory concepts. They
are orthogonal to the code compaction methods mentioned
above. The techniques have been applied at various levels
of granularity including an entire program’s abstract syn-
tax tree [8], individual procedures [5, 6], basic blocks [18],
instruction sequences which do not extend beyond a basic
block [14], individual cache lines [12, 25] and indeed individ-
ual instructions [27].

A number of semiadaptive statistical techniques have been
proposed for fine grained code compression, such as Xie’s
variable to fixed coding scheme [26] and Lekatsas’ semiadap-
tive markov compression (SAMC) [16]. The compulsory
miss tree based approach described in this paper does not
solve the problem of maintaining a statistical model adap-
tively, and so statistical techniques are not described in this
section.

An obvious semiadaptive approach to code compression
[27] takes a list of all instructions used in a given program’s
object code and extracts a list of the unique binary encod-
ings to form a dictionary. The program is then recoded,
replacing each instruction with a pointer to its original en-
coding. Decoding is implemented on-chip via a dictionary
lookup. Locating compressed code in memory is straight-
forward since both the uncompressed program and its com-
pressed version use an identical memory address space. Thus
decoding can begin at any instruction in the stream and is
not restricted to start at branch targets.

Lefurgy [14] introduces a semiadaptive dictionary-based
compression scheme where code words are expanded into a
sequence of instructions during the processor decode cycle.
The code words are prefixed with unused opcode encodings
in the base instruction set, and interspersed with uncom-
pressed instructions. The solution used to locate compressed
code in memory involves rewriting branch instructions and

288

Adapt LZW dictionary (binary2) Adaptation location (decimal10) LZW coded cache line data (hexadecimal16)

1 256 0x8C 0x08 0x02 0x00 0x8C 0x09 0x02 0x04
Encoded using a Each dictionary index is encoded

single bit using n bits (n = LZW pointer length)

Figure 10: Encoding format for Line 0

program jump tables containing destination addresses of
control flow. These are updated to point to the location
of code in the compressed instruction memory. The scheme
enables decoding from basic block boundaries by allowing
dictionary code words to replace only instruction sequences
which do not overlap basic blocks.

The only attempt at applying adaptive techniques to code
compression that we are aware of was presented by Lin [18],
where LZW was applied to individual basic blocks in VLIW
code. The average basic block size in their experiments was
reported at 454 bytes and this provided sufficient context for
LZW to achieve compression ratios of 83-87%, and a vari-
ant of LZW 75%. To locate code in memory they used a
lookup table which mapped from uncompressed branch des-
tinations to corresponding locations in compressed memory.
This did not adversely affect the compressed code size since
on average there were just 80 basic blocks in the evaluated
programs. To enable basic block decoding at branch tar-
gets the LZW dictionary is reset before encoding/decoding
each block. However such a distribution of few but large
basic blocks is uncharacteristic of normal RISC code that
has been optimized for size, and hence their approach is not
applicable to a large class of embedded systems.

6. RESULTS
To evaluate our new approach to code compression, eight

benchmarks from the MiBench [10] and MediaBench [13]
suites were selected. These were compiled for the MIPS ar-
chitecture using GCC 3.3.1 with size optimization enabled
(-Os) and then compacted using version 0.3 of the Diablo
link-time optimizer for MIPS [20]. We began by reproduc-
ing the results presented by Madou [20], then we extended
Diablo to output data about the basic block boundaries in
the optimized binaries along with information about their
associated interprocedural control flow graphs. The object
code and associated control flow graph were used as input
to our compression algorithm which then produced the re-
sults presented here. It should be noted that previous ob-
ject code compression schemes working at the granularity of
cache lines have not applied link-time optimization and com-
paction prior to obtaining their results, thus leaving more
redundancy in the benchmark code upon which they applied
their techniques. We present results only in terms of code
size reduction, leaving an implementation and evaluation of
the performance overhead incurred in employing the tech-
nique to future work.

We experimented with varying both the dictionary size/in-
dex length (from 9 to 12 bits) and cache line size (ranging
from 16 to 128 bytes). For comparison, data for the ba-
sic scheme described in Section 4.1 where LZW is applied to
each cache line independently is also presented. Using its as-
signed virtual address the first instruction of the object code
did not always align to the start of a cache line boundary,
nor did the code necessarily fill the final cache line in which
it was contained; in these situations, the cache lines were
padded with zeros until they became correctly aligned. We

 0.7

 0.8

 0.9

 1

 1.1

 1.2

averagetoastrijndaelraw
daudio

raw
caudio

ispelldjpegcrc32cjpeg

C
om

pr
es

si
on

 r
at

io

16 byte cache line
32 byte cache line
64 byte cache line

128 byte cache line

Figure 12: Compression ratio for regular LZW, ap-
plied to cache lines of 16 to 128 bytes

padded all compressed cache line encodings to byte align-
ment. Our results account for all overhead involved in the
scheme, including the LAT tables (requiring a constant over-
head of 6.25%, 3.515%, 1.953125% and 1.072419% of the
original program code size for cache lines of length 16, 32,
64 and 128 bytes respectively, using dictionary indices of size
ranging from 9 to 15 bits per index and eight cache lines per
LAT entry).

Figures 12 and 13 present the compression ratios (com-
pressed size/uncompressed size) achieved in our experiments
for all benchmarks, using various length cache line sizes with
9 bit LZW dictionary indices. A compression ratio of 1 in-
dicates no size reduction, greater than 1 expansion, and less
than 1 compression. Figure 11 shows the original code size
(when padded to cache line alignment), and that resulting
from applying the two approaches for each cache line length
(results in figure 11 represent our raw results, from which
the compression ratios were derived. They exclude the LAT
overhead, though it is fully accounted for in all other sum-
mary descriptions and results). On average, 7.7%, 11.9%,
17.7% and 18.3% of the original code size is eliminated us-
ing our compulsory miss tree based technique for cache lines
of length 16, 32, 64 and 128 bytes respectively, compared
with reductions of -12.6%, -5.9%, 2.0% and 10.2% for reg-
ular LZW. We do not present results for larger dictionaries
since none of them showed an improvement over those just
described. We rationalize this somewhat unexpected behav-
ior as follows:

The control flow graph presented by Diablo is conserva-
tive, resulting in a shallow dominator tree. The CFG re-
construction algorithm employed by Diablo assumes that
indirect branches may pass to any relocation target in the
object code. This impacts the compression attainable using
our scheme since increasing the dictionary size cannot pro-
vide additional context for nodes near the top of the compul-

289

Original size LZW size Improved LZW size
16 32 64 128 16 32 64 128 16 32 64 128

CRC 32 23328 23360 23424 23424 24756 23837 22440 20678 20268 19368 18304 18789
CJPEG 98240 98272 98304 98304 104638 100851 94876 87868 84568 81393 78317 77370
DJPEG 118752 118784 118848 118912 126385 121738 114648 106192 105792 102057 96520 95331
ISPELL 86624 86656 86720 86784 90751 86760 80800 74298 73856 69667 66533 66983
RAW-CAUDIO 13808 13824 13888 13952 14688 14219 13387 12435 12057 11685 10969 11003
RAW-DAUDIO 14064 14080 14144 14208 14977 14494 13653 12651 12135 11643 11131 11301
RIJNDAEL 39856 39872 39936 39936 42811 41374 39053 36060 36579 35691 34219 35398
TOAST 61168 61184 61248 61312 65074 62526 58858 54381 55061 53643 51243 50263

Figure 11: Original code size and that resulting from compression (in bytes), excluding LAT overhead, for a
variety of cache line sizes

 0.7

 0.8

 0.9

 1

 1.1

 1.2

averagetoastrijndaelraw
daudio

raw
caudio

ispelldjpegcrc32cjpeg

C
om

pr
es

si
on

 r
at

io

16 byte cache line
32 byte cache line
64 byte cache line

128 byte cache line

Figure 13: Compression ratio for compulsory miss
tree based LZW, applied to cache lines of 16 to 128
bytes

sory miss tree, the most common location for a line during
our experiments (see for example the immediate domina-
tor tree and associated compulsory miss tree for the CRC32
benchmark in Figures 14 and 15 respectively). A tighter in-
tegration with the code generation tool chain would provide
less conservative information, giving rise to a deeper imme-
diate dominator tree, resulting in a deeper compulsory miss
tree.

The compression ratio results we present here are not di-
rectly comparable to those published elsewhere in other re-
search on code size reduction techniques. The difficulty with
comparing results published in the literature is the diversity
of the experimental setups employed, as has previously been
noted [2]. Unfortunately, given the extensive literature on
code size reduction techniques [23], it is impractical to reim-
plement existing methods to provide a fair comparison each
time a new technique is developed.

Consider, for example, that the schemes we reference in
this paper have targeted the Compaq Alpha [5, 6, 7], MIPS
[20, 25], A RISC like abstract machine [4], ARM [14, 27],
Texas Instruments TMS320C6x [18, 26], PowerPC [12, 18],
i386 [18] and PDP 11 [9]. Each of these machines employ a
different Instruction Set Architecture, with a distinct encod-
ing, providing different opportunities for compression. The
benchmarks evaluated vary from one investigation to an-
other, with some combination of programs from SPEC ’95,
SPEC ’92, MiBench, MediaBench and vendor supplied code
in the mix. Preparation of the input binaries employed a
spread of optimizations ranging from none at all, through

‘normal’ optimization levels, to size optimization. Indeed
some papers do not discuss the preparation of the binaries
they compress in any detail. Taking into account the fact
that different compilers were used (various versions of GCC,
the massively scalar compiler, and vendor supplied compil-
ers), it is obvious that the results obtained across papers
are simply not amenable to direct comparison. Furthermore
some of the techniques described compress statically linked
programs, while others do not include any library code in
their results. Indeed while some researchers have applied
program compaction prior to compression as we do, the vast
majority have not.

7. FUTURE WORK
Our heuristic statically allocated space in the LZW dic-

tionary to those nodes with the largest number of children
in the compulsory miss tree. The intuition behind this al-
location was to maximize the number of dictionary entries
available to as many cache lines as possible. Other heuris-
tics might be investigated giving the potential for better
results. For example, it would be possible to modify our ap-
proach and reserve a single section of the dictionary for use
by all cache lines which were not statically allocated space
in the dictionary. As these nodes do not provide context
to any other node in the compulsory miss tree, they may
share a single section of the dictionary which is cleared and
adapted as their compression/decompression takes place.
Indeed suitable control flow analysis might identify collec-
tions of cache lines which can share sections of the dictio-
nary, effectively increasing its size and the amount of context
available for coding of certain cache lines.

Applying the standard intraprocedural approach to com-
puting the dominance relation gives conservative results if
applied to a control flow graph representing an entire pro-
gram. It always gives rise to a tree structure, the immediate
dominator tree, when the relation is transitively reduced.
If a more precise analysis is applied to CFGs of the su-
pergraph variety, considering only feasible paths which may
actually be traversed at run-time, the transitive reduction
of the dominance relation may give rise to a directed acyclic
graph (DAG). This is because the intraprocedural compu-
tation of dominance considers all paths through the graph
traversable while the representation of procedure calls/re-
turns in a CFG introduces a flow-sensitivity of paths which
is simply ignored. With a more careful analysis of control
flow, additional information about which basic blocks are
guaranteed to be encountered on all paths to a given block
may be extracted. A full investigation of flow-sensitive in-
terprocedural dominance, and the construction of an asso-
ciated compulsory miss DAG is the subject of future work.

290

Figure 14: Immediate dominator tree for CRC32 benchmark

Figure 15: Compulsory miss tree for CRC32 benchmark, based on a 32 byte cache line size

This analysis would allow certain cache lines use more of the
constructed LZW dictionary than is currently the case.

In this study we investigated the use of the LZW compres-
sion algorithm, one of the LZ78-based adaptive dictionary
compression techniques. Future work will look at employ-
ing other popular adaptive schemes, including those grouped
under the LZ77 class of algorithms. We believe that by ap-
plying appropriate constraints these techniques can be effi-
ciently implemented and parallelized in hardware for object
code compression. Indeed, specialized adaptive algorithms
exploiting the nature of object code also merit closer study.

8. CONCLUSIONS
In this paper we have presented a new approach to object

code compression employing an algorithm from the class of
adaptive schemes previously dismissed by many researchers.
Our approach makes use of knowledge about the partial
order in which compulsory misses for a program will oc-
cur in an instruction cache at run-time, summarized in a
data structure we term the compulsory miss tree. This
tree is used as a basis to appropriately construct an adap-
tive dictionary-based model for compressing/decompressing
individual instruction cache lines. We have demonstrated
that adaptive object code compression at this granularity
can yield results sufficient to warrant further investigation.
Furthermore, we have described a number of avenues for fu-
ture research in this area. The remaining question regarding
the use of adaptive algorithms for object code compression
is whether such schemes can be implemented with a suffi-
ciently high decode efficiency to make the overall approach
practical. With appropriate constraints applied, we believe
the answer to this question will be yes.

Acknowledgments
We are grateful to Edsko de Vries for helpful discussions and
for critical feedback on early drafts of this paper. The work
of John Gilbert was supported by a Trinity College Dublin
Postgraduate Award.

9. REFERENCES
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.

Compilers - Principles, Techniques and Tools.
Addison-Wesley, 1986.

[2] Árpád Beszédes, Rudolf Ferenc, Tibor Gyimóthy,
André Dolenc, and Konsta Karsisto. Survey of
code-size reduction methods. ACM Comput. Surv.,
35(3):223–267, 2003.

[3] Timothy C. Bell, John G. Cleary, and Ian H. Witten.
Text Compression. Prentice Hall, 1990.

[4] Keith D. Cooper and Nathaniel McIntosh. Enhanced
code compression for embedded RISC processors. In
PLDI ’99: Proceedings of the ACM SIGPLAN 1999
conference on Programming language design and
implementation, pages 139–149, New York, NY, USA,
1999. ACM Press.

[5] Saumya Debray and William Evans. Profile-guided
code compression. In PLDI ’02: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 95–105,
New York, NY, USA, 2002. ACM Press.

[6] Saumya Debray and William S. Evans. Cold code
decompression at runtime. Commun. ACM,
46(8):54–60, 2003.

[7] Saumya K. Debray, William Evans, Robert Muth, and
Bjorn De Sutter. Compiler techniques for code
compaction. ACM Trans. Program. Lang. Syst.,
22(2):378–415, 2000.

[8] Michael Franz and Thomas Kistler. Slim binaries.
Commun. ACM, 40(12):87–94, 1997.

[9] Christopher W. Fraser, Eugene W. Myers, and Alan L.
Wendt. Analyzing and compressing assembly code. In
SIGPLAN ’84: Proceedings of the 1984 SIGPLAN
symposium on Compiler construction, pages 117–121,
New York, NY, USA, 1984. ACM Press.

[10] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan
Ernst, Todd M. Austin, Trevor Mudge, and
Richard B. Brown. MiBench: A free, commercially
representative embedded benchmark suite. In
Proceedings of the IEEE 4th Annual Workshop on
Workload Characterization, 2001.

[11] John L. Hennessy and David A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, 2002.

[12] T.M. Kemp, R.K. Montoye, J.D. Harper, J.D. Palmer,
and D.J. Auerbach. A decompression core for
PowerPC. IBM Journal of Research and Development,
42(6):807–812, 1998.

[13] Chunho Lee, Miodrag Potkonjak, and William H.
Mangione-Smith. MediaBench: a tool for evaluating
and synthesizing multimedia and communicatons
systems. In MICRO 30, pages 330–335. IEEE
Computer Society, 1997.

[14] C. Lefurgy, P. Bird, I-Cheng Chen, and T. Mudge.
Improving code density using compression techniques.
In MICRO 30, pages 194–203. IEEE Computer
Society, 1997.

[15] Charles Robert Lefurgy. Efficient Execution of
Compressed Programs. PhD thesis, Department of

291

Computer Science and Engineering, University of
Michigan, 2000.

[16] Haris Lekatsas. Code Compression For Embedded
Systems. PhD thesis, Department of Electronic
Engineering, Princeton University, 2000.

[17] Stan Liao, Srinivas Devadas, and Kurt Keutzer. A
text-compression-based method for code size
minimization in embedded systems. ACM Trans. Des.
Autom. Electron. Syst., 4(1):12–38, 1999.

[18] C. Hong Lin, Y. Xie, and W. Wolf. LZW-based code
compression for VLIW embedded systems. In DATE
’04, page 30076. IEEE Computer Society, 2004.

[19] Steven Lucco. Split-stream dictionary program
compression. In PLDI ’00: Proceedings of the ACM
SIGPLAN 2000 conference on Programming language
design and implementation, pages 27–34, New York,
NY, USA, 2000. ACM Press.

[20] Mathias Madou, Bjorn De Sutter, Bruno De Bus,
Ludo Van Put, and Koen De Bosschere. Link-time
compaction of MIPS programs. In Proceedings of the
International Conference on Embedded Systems and
Applications, pages 70–75, Las Vegas, 6 2004. CSREA
Press.

[21] Steven S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[22] Eugene M. Myers. A precise inter-procedural data
flow algorithm. In POPL ’81, pages 219–230. ACM
Press, 1981.

[23] Rik van de Wiel and Mario Latendresse. The code
compression bibliography, 2004.
www.iro.umontreal.ca/˜latendre/codeCompression/.

[24] Terry A. Welch. A technique for high performance
data compression. IEEE Computer, 17(6):8–19, 1984.

[25] Andrew Wolfe and Alex Chanin. Executing
compressed programs on an embedded RISC
architecture. In MICRO 25, pages 81–91. IEEE
Computer Society Press, 1992.

[26] Yuan Xie, Wayne Wolfe, and Haris Lekatsas. Code
compression using variable-to-fixed coding based on
arithmetic coding. In Proceedings of the Data
Compression Conference. IEEE Computer Society,
2003.

[27] Y. Yoshida, Bao-Yu Song, H. Okuhata, T. Onoye, and
I. Shirakawa. An object code compression approach to
embedded processors. In ISLPED ’97, pages 265–268.
ACM Press, 1997.

292

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

