
CFLRU: A Replacement Algorithm for Flash Memory*

Seon-yeong Park1, Dawoon Jung1, Jeong-uk Kang1, Jin-soo Kim2, and Joonwon Lee2
Division of Computer Science,

Korea Advanced Institute of Science and Technology (KAIST)
373-1 Guseong-dong, Daejeon, Korea

1{parksy, dwjung, ux}@calab.kaist.ac.kr
2{jinsoo, joon}@cs.kaist.ac.kr

ABSTRACT
In most operating systems which are customized for disk-based
storage system, the replacement algorithm concerns only the
number of memory hits. However, flash memory has different
read and write cost in the aspects of time and energy so the
replacement algorithm with flash memory should consider not
only the hit count but also the replacement cost caused by
selecting dirty victims. The replacement cost of dirty page is
higher than that of clean page with regard to both access time and
energy consumption. In this paper, we propose the Clean-First
LRU (CFLRU) replacement algorithm that exploits the
characteristics of flash memory. CFLRU splits the LRU list into
the working region and the clean-first region and adopts a policy
that evicts clean pages preferentially in the clean-first region until
the number of page hits in the working region is preserved in a
suitable level. Using the trace-driven simulation, the proposed
algorithm reduces the average replacement cost by 28.4% in swap
system and by 26.2% in buffer cache, compared with LRU
algorithm. We also implement the CFLRU algorithm in the Linux
kernel and present some optimization issues.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage management-Secondary
storage

General Terms
Algorithms, Design, Measurement, Performance.

Keywords
Flash Memory, Replacement Algorithm, Embedded Storage.

 * This research was supported by the MIC(Ministry of Information and

Communication), Korea, under the ITRC(Inofrmation Technology
Research Center) support program supervised by the IITA(Institute of
Information Technology Assessment) (IITA-2005-C1090-0502-0031)

1. INTRODUCTION
Flash memory has been gaining popularity in mobile embedded
systems as non-volatile storage due to its characteristics such as
small and lightweight form factor, solid-state reliability, and low
power consumption [1]. The emergence of single flash memory
chip with several gigabytes capacity makes a strong tendency to
replace magnetic disk with flash memory for the secondary
storage of mobile computing devices such as tablet PCs, PDAs,
and smart phones [2, 3].

For decades, traditional operating systems have been optimized in
various ways assuming that the secondary storage consists of
magnetic disks. Unfortunately, flash memory exhibits different
characteristics compared to magnetic disks. Most notably, flash
memory does not have a seek time, and its data can not be
overwritten before being erased. In addition, flash memory has
asymmetric read and write operation characteristics in terms of
performance and energy consumption. Therefore, it is necessary
to revisit various operating system policies and mechanisms, and
to optimize them for flash memory-based secondary storage.

In this paper, we focus on a cache replacement policy for
embedded systems equipped with flash memory as secondary
storage. Most operating systems use an approximated LRU (Least
Recently Used) algorithm for a replacement policy. However,
operating systems with flash memory need to adopt a new
replacement policy which considers not only the cache hit rate but
also the replacement cost. The replacement cost occurs when a
dirty page which is modified before evicting from page cache is
written to flash memory to reclaim free space. The write
operations to flash memory necessitate more time and energy than
read operations, and moreover increasing the number of write
operations will accompany even more costly erase operations.
Therefore, the replacement policy should reduce the number of
write and erase operations on flash memory, while avoiding
escalation of memory misses which might lead to a large number
of read operations.

We propose a new replacement policy, called Clean-First LRU
(CFLRU), which takes into consideration of the imbalance of read
and write costs of flash memory when replacing pages. The basic
idea behind CFLRU is to keep a certain amount of dirty pages
deliberately in page cache to reduce the number of flash write
operations, while preventing the overall performance from being
significantly affected due to the degraded cache hit rate.

We simulated CFLRU with two kinds of traces; one is virtual
memory traces to evaluate the effect of the replacement algorithm
in swap system, and the other is block access traces to evaluate it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES'06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010...$5.00.

234

in a file system buffer cache. Using these traces, we find that
CFLRU algorithm reduces the average replacement cost by 28.4%
in swap system and by 26.2% in buffer cache, when comparing
with LRU. When calculating the replacement cost, we assume
that the cost of a write operation is eight times higher than that of
a read operation. We have also implemented our algorithm in the
Linux kernel and presented some optimization issues for flash
memory.

The rest of this paper is organized as follows. Section 2 presents
the characteristics of flash memory and the motivation of our
work. Section 3 describes our CFLRU replacement algorithm.
Section 4 shows the simulation methodology and simulated
results with real workload traces. In section 5, we apply our
algorithm to the Linux kernel and section 6 shows the
implementation results. Section 7 overviews the related work.
Finally, we conclude in section 8.

2. BACKGROUND AND MOTIVATION
2.1 Flash Memory
There are two different types of flash memory: NAND flash and
NOR flash. Major difference between them is the bus interface
[4]. NAND flash has an I/O interface with control inputs, but
NOR flash has directly connected address and data buses similar
to SRAM. NAND flash is especially appropriate for data storage
because of higher density, lower cost, and faster write operations.
NOR flash is designed for code storage and execute-in-place
(XIP) applications due to its faster read operations and random
access capabilities.

The characteristics of flash memory are significantly different
from magnetic disks. First, flash memory has no latency
associated with the mechanical head movement to locate the
proper position to read or write data. In magnetic disks, this seek
time has been one of the most time-consuming parts in I/O
activity, and operating systems have performed various
optimizations such as prefetching and disk scheduling to amortize
the cost.

Second, flash memory has asymmetric read and write operation
characteristics in terms of performance and energy consumption.
Table 1 compares the access time and the energy consumption in
flash memory when 4KB data is read, written, or erased. The time
and energy values are extracted from [21]. From table 1, we can
see that the access time and the energy consumption of a write
operation are about 6.3 ~ 6.4 times higher than those of a read
operation in NAND flash memory, and the ratio becomes much
larger in NOR flash memory.

Third, flash memory does not support in-place update; the write to
the same page can not be done before the page is erased. Thus, as
the number of write operations increases so does the number of
erase operations. If the erase operations are involved, the cost
imbalance would be even worse. When we consider the potential
erase cost usually accompanied with flash write operations,
performing a flash write operation costs more than 8 times higher
than performing a flash read operation.

Finally, blocks of flash memory are worn out after the specified
number of write/erase operations. Therefore, flash memory
requires a well-designed garbage collection scheme to evenly
wear out the flash memory region.

2.2 Motivation
One of the target applications of flash memory is embedded
storage of mobile devices such as MP3 players, PDAs (Personal
Digital Assistants), PMPs (Portable Media Players), and smart
phones. In these devices, the operating system has much more
chances to optimize I/O subsystem to adopt specialized features
based on the characteristics of flash memory. Using the kernel-
level information effectively, the operating system can reduce the
number of costly write and erase operations, and as a result,
increase the performance [5].

Our work is motivated by the observation of replacement policies
of the existing operating systems. Most operating systems are
customized for disk-based storage system and their replacement
policies only concern the number of cache hits. However,
operating systems that use flash memory as secondary storage
should consider different read and write cost of flash memory
when they replace pages to reclaim free space. In this paper, we
propose the Clean-First LRU (CFLRU) replacement algorithm for
flash memory. CFLRU tries to reduce the number of costly write
operations and potential erase operations until the degradation of
cache hit rate does not harm the performance. To our best
knowledge, CFLRU is the first replacement algorithm proposed
for flash memory.

3. CFLRU ALGORITHM
3.1 Overview
When cache replacement occurs, two kinds of replacement costs
are involved. One is generated when a requested page is fetched
from secondary storage to the page cache in RAM. Using
Belady’s MIN algorithm [8], this cost can be minimized by
selecting a victim that has the largest forward distance in the
future references. Among online algorithms, LRU has been
commonly used for replacement algorithm because it exploits the
property of locality in references. The other cost is generated
when a page is evicted from the page cache to secondary storage,
i.e., flash memory. This cost can be minimized by selecting a
clean page for eviction. A clean page contains the same copy of
the original data in flash memory thus the clean page can be just
dropped from the page cache when it is evicted by the
replacement policy.

Satisfying only one kind of replacement cost would benefit from
its advantage, but for a long term, it would affect the other kind of
replacement cost, and vice versa. For example, a replacement

Table 1. The characteristics of flash memory [21]

235

policy might decide to keep dirty pages in cache as many as
possible to save the write cost on flash memory. However, by
doing this, the cache will run out of space, and consequently the
number of cache misses will be increased dramatically, which, in
turn, will increase the replacement cost of reading requested pages
from flash memory. On the other hand, a replacement policy that
focuses mainly on increasing the cache hit count will evict dirty
pages, which will increase the replacement cost of writing evicted
pages into flash memory. Thus, a sophisticated scheme to
compromise both sides of efforts is needed to minimize the total
cost.

For this purpose, we propose a new replacement algorithm, called
CFLRU (Clean-First LRU), which is modified from the LRU
algorithm. CFLRU divides the LRU list into two regions to find a
minimal cost point, as shown in Figure 1. The working region
consists of recently used pages and most of cache hits are
generated in this region. The clean-first region consists of pages
which are candidates for eviction. CFLRU selects a clean page to
evict in the clean-first region first to save flash write cost. If there
is no clean page in this region, a dirty page at the end of the LRU
list is evicted. For example, under the LRU replacement algorithm,
the last page in the LRU list is always evicted first. Thus, the
priority for being a victim page is in the order of P8, P7, P6, and
P5, in Fig. 2. However, under the CFLRU replacement algorithm,
it is in the order of P7, P5, P8, and P6.
The size of the clean-first region is called a window size, w. It is
important to adjust the window size properly, because the hit rate
may fall dramatically if the window size grows too large. This
issue will be examined in the next subsection.

3.2 Window Size for Minimal Replacement
Cost
Finding the right window size of the clean-first region is
important to minimize the total replacement cost. A large window
size will increase the cache miss rate and a small window size will
increase the number of evicted dirty pages, that is, the number of
flash write operations. The flash write operations can also cause a
large number of the costly erase operations, as mentioned in
section 2.1. Therefore, the window size of the clean-first region
needs to be decided properly in order to minimize the overall
replacement cost.

Let us assume that CW is the cost of a flash write operation and CR
is the cost of a flash read operation. If ND denotes the number of
dirty pages that should have been evicted in the LRU order but
are kept in the cache, the benefit of the CFLRU algorithm is
CW•ND. If NC is the number of clean pages that are evicted instead
of dirty pages within the clean-first region, and Pi(k) is the

probability of the future reference of a clean page, i, which is
evicted at the k-th position, the cost of the CFLRU algorithm can

be calculated by ∑ CR • Pi(k). Figure 2 shows the probability of

the future reference at each position of the LRU list. In this graph,
the x-axis indicates the position of a page in the LRU list. The
left-end of the x-axis is the most recently used page and the right-
end of the x-axis the least recently used page. The y-axis indicates
the probability of the future reference at each position of the
pages. For example, if the k-th page in the LRU list is selected for
an eviction, it is likely to be referenced in the future and fetched
into the cache again with its probability of P(k). From what has
been discussed above, formula (1) summarizes the proper window
size, w, of the clean-first region.

 MAX [CW• ND - ∑ CR • Pi(k)] (1)

However, in the real world, it is not easy to find the probability of
the future reference at each position of the LRU list. In this paper,
we investigate the proper window size of the clean-first region
with statically defined parameters and also devise a method to
adjust the window size dynamically. The static method initially
fixes the window size with an average well-performed value
obtained from repetitive experiments over a predetermined
application set. However, static method can not dynamically
adjust the window size to various cache size and different
application sets. The dynamic method can properly adjust the
window size based on periodically collected information about
flash read and write operations. If νW and νR represent the ratio of
write and read operations for a given time period, respectively,
the cost difference between adjacent periods, ∆(νW· CW + νR· CR)
can control whether to enlarge or reduce the window size. With
our experiments, the dynamic algorithm performs well with
various cache states imposed by different application sets.

4. SIMULATION STUDY
Before implementing the CFLRU replacement algorithm in the
Linux kernel, we performed a simulation study. The objective of
this study is to compare the performance of the pure LRU with the

Figure 1. Example of CFLRU algorithm

Figure 2. Window size of CFLRU algorithm

w

NC

i

NC

i

NC

i

236

CFLRU algorithm. In addition, we simulated the offline algorithm,
Belady’s MIN. It is known to be the optimal algorithm that
maximizes the cache hit rate but is not a cost optimal algorithm.

4.1 Simulation methodology
Our simulation is performed with two different types of real
workload traces. One is the trace for swap system and the other is
for file system. For swap system, we gathered virtual memory
reference traces using a profiling tool, called Valgrind [9]. We
have slightly modified Valgrind’s cache simulation module called
Cachegrind to obtain instruction and data reference traces. For file
system, we gathered block reference traces directly from the
buffer cache under the ext2 file system. We chose five different
applications and executed them on Linux/x86 machine, according
to the scenario shown in Table 2. The characteristics of the two
kinds of traces used in simulations are described in Table 3.

In the simulations, we assume that the system has 32MB SDRAM
and a 128MB flash memory for swap space or file system. It is
also assumed that the operating system and X-windows system
consume about 16MB of SDRAM, thus each application can
freely use about 16MB of the remaining SDRAM for cache space.
Because the Valgrind profiling tool can gather virtual memory
reference traces only for one application at a time, the cache size
is dedicated to one application.

We compare the performance of Belady’s MIN algorithm, LRU,
CFLRU with static window size (CFLRU-static), and CFLRU
with dynamic window size (CFLRU-dynamic). To evaluate the
replacement cost, we use the weighted count of read and write
operations on flash memory. The write count is weighted with
eight times higher than the read count. This is based on the access
time and the energy consumption characteristics of NAND flash
memory taking into account the cost of potential erase operations
(cf. Table 1). Note that as discussed in section 2.1, the relative
cost of write operation is increased by more than an order of
magnitude in NOR flash memory.

(a) Virtual memory references

(b) Buffer block references

4.2 Simulation Results
Figure 4 shows the replacement cost of four algorithms. In these
results, it is clear that Belady’s MIN algorithm is not optimal with
flash memory. However, it provides the performance by
minimizing the hit count. CFLRU-static shown in the graph
presents the lowest cost among six different configurations of the
window size, in the form of S/x, where S is the cache size and x
varies from 1 to 6. Compared with the LRU algorithm, the
average replacement costs of CFLRU-static and CFLRU-dynamic
are reduced by 28.4% and by 23.1%, respectively, when they are
used for swap system. In the case of file system buffer cache, the
average replacement costs of CFLRU-static and CFLRU-dynamic
are reduced by 26.2% and by 23.5%, respectively. Sometimes, the
dynamic algorithm has a small amount of performance
degradation when comparing with the static algorithm. This is due
to a wrong decision that might happen if the computed
replacement cost to predict the future events is not accurate with
the actually occurred events. However, CFLRU-dynamic still has
reasonable performance, and it has an advantage that we do not
have to reconfigure the window size whenever the cache size and
the application set change.

5. IMPLEMENTATION ON LINUX
We have implemented the CFLRU replacement algorithm based
on the Linux kernel 2.4. In this section, we briefly address the
replacement policy of the Linux kernel, and explain our
modification for the CFLRU replacement algorithm and some
optimization issues.

Table 2. Scenarios used in gathering traces

Table 3. Workloads used in simulations

237

5.1 Original Linux Page Reclamation
The Linux kernel 2.4 has the page cache that consists of two
pseudo-LRU lists, the active list and the inactive list, as shown
in Figure 5 [10]. The pages in the active list are recently
accessed while the pages in the inactive list are not. When the
kernel decides to make free space, it starts the reclaiming phase.
First, it scans the pages in the inactive list. Priority value
decides the scanning range of pages in the inactive list. Priority
of the inactive list is increased, from 1/6 to 1/5, …, and 1, until
the enough number of pages (usually 32) is freed. Second, if
there are too many process-mapped pages, it starts the swap-out
phase. Page reclamation in the swap-out phase is performed in a
round-robin fashion in the Linux kernel 2.4, starting the
scanning from the memory that was last checked. In this phase,
the pages that are in the active list or recently accessed are
skipped.

5.2 CFLRU Implementation
To implement the CFLRU replacement algorithm in the Linux
kernel, we insert an additional reclamation function that
chooses clean victims first before starting the original

reclamation phases. Similar to the original Linux kernel, the
additional reclamation function consists of two phases. In the
first phase, clean pages in the inactive list are evicted first until
the enough number of pages is freed. In the original Linux
kernel, dirty pages become ready to write when they are
selected as victims, but under our CFLRU, dirty pages are
simply skipped. In the second phase, clean pages that belong to
the process region are swapped out. As mentioned above,
reclamation in the swap-out phase is not based on LRU in the
Linux kernel 2.4. It is future work to modify the reclamation
algorithm of swap system in the CFLRU fashion.

In the inactive list of the Linux kernel, the concept of priority is
correctly matched with that of the window size of the clean-first
region in CFLRU. We configure the priority value statically, as
default. However, the window size for the minimal replacement
cost depends on the specific reference patterns of applications. To
adjust the window size properly, the priority values can be
changed dynamically. A kernel daemon periodically checks the
replacement cost and compare with last replacement cost to
decide whether to increase or decrease the priority. To avoid
oscillation of the priority value, the difference between the current
cost and the last cost has to exceed a predefined threshold.

(a) Replacement cost for swap system

(b) Replacement cost for file system buffer cache

Figure 4. Replacement costs of Belady’s MIN, LRU, CFLRU-static, and CFLRU-dynamic

238

5.3 Optimizations for flash memory
The I/O subsystem of the Linux kernel is optimized for disk-based
storage. Disk scheduling policy and sequential read-ahead are
examples of optimizations to reduce the seek time of disk-based
storage. However, the disk optimization does not help improve
the performance of a system with flash memory. It might rather
decrease the performance due to the wasting time for doing the
disk optimizations. Especially, read-ahead has a bad effect on
cache hit rate when most of read-ahead pages are never accessed
in the near future. The cache space for actively used pages is
reduced because of read-ahead pages. In our experience,
sequential read-ahead pages achieve low hit rate in many cases.
Random access time of flash memory is faster than that of
magnetic disk because flash memory has no mechanical parts to
search data. We remove the sequential read-ahead function in the
Linux kernel and these results in large improvement on cache hit
rate.

6. IMPLEMENTATION RESULTS
The CFLRU replacement algorithm is evaluated on a system with
a Pentium IV processor and 32MB SDRAM running the Linux
kernel 2.4.28. We evaluate the performance of the replacement
algorithms per application, so that the choice of the cache size,
32MB, is appropriate for the cache replacement algorithm. The
system has been emulated to have 64MB and 256MB of flash
memory for swap space and for file system (ext2), respectively.
The emulated flash memory has the same latency as real NAND
flash memory [21].

We compare four Linux kernel implementations; plain Linux
kernel, Linux kernel without swap read-ahead (no-readahead),
Linux kernel with CFLRU static algorithm (CFLRU-static), and
Linux kernel with CFLRU dynamic algorithm (CFLRU-
dynamic). The Linux kernels with CFLRU static algorithm and
CFLRU dynamic algorithm also do not exploit read-ahead
method. The window size of the CFLRU static algorithm is 1/4 of
the inactive list. To measure the performance of four methods, we
chose five applications; gcc, tar, diff, encoding, and file system
benchmarks. These applications are not generally used in mobile
devices but are proper for measuring the time delay.

Figure 6 shows the weighted cost calculated by the number of
flash read and write operations. As mentioned before, flash
memory is partitioned into two regions; one for swap system and
the other for file system. We measured the total number of flash
read and write operations and weighted the write count with eight
times higher than read count. The no read-ahead method reduces
the overall read count when comparing the plain Linux kernel. In
CFLRU methods, the overall flash read count is slightly
increased, while the flash write count is significantly decreased,
thus the sum of weighed counts is reduced when comparing to the
no read-ahead method. Figure 7 shows the normalized time delay

and expected energy. The expected energy is calculated with byte
read and byte write counts from/to flash memory. The average
time delay of no read-ahead method is reduced by 2.4%, and the
expected energy saving by 4.4%. The average time delays of
CFLRU-static and CFLRU-dynamic method are reduced by 6.2%
and by 5.7%, respectively, while the expected energy savings of
CFLRU-static and CFLRU-dynamic by 11.4% and 12.1%,
respectively.

7. RELATED WORK
There have been plenty of studies for cache replacement
algorithms. Belady’s MIN algorithm [8] is known for offline
optimal and it provides the lower bound of miss counts compared
to other online algorithms. In online algorithms, the LRU [11, 12]
algorithm is widely used. Many operating systems use an
approximated LRU for cache management. To enhance the
performance over the LRU algorithm for particular workloads,
various algorithms such as 2Q [13], LRU-K [14], EELRU [15],
LRFU [16], and ARC [17] have been proposed. However, all
these algorithms pay attention only to the minimization of cache
miss counts.

Recently, several studies have focused on the replacement
algorithm with various miss costs, especially, under assumption
that all pages have a uniform size. The GreedyDual [18]
algorithm considers multiple miss costs, and when replacement
occurs, the costs of all blocks are reduced by the cost of an
evicting block. According to the research of Jeong and Dubois
[20], the GreedyDual algorithm does not perform well with a page
replacement algorithm when the difference between low and high
cost is small. Jeong and Dubois proposed a cost-sensitive
algorithm in CC-NUMA multiprocessor environment [19, 20].
They first devised an offline algorithm for two different miss
costs [19] and later proposed an online algorithm based on LRU
[20]. The online cost-sensitive algorithm selects a victim whose
cost is lower than the cost of the least recently used block. The
cost of the least recently used block is reduced by twice the
amount of the miss cost of the victim.

These algorithms only consider the replacement cost that occurs
when pages or blocks are fetched into the cache. In addition, they
do not consider the potential hit-ratio of victims that are evicted
instead of high-cost blocks. In contrary, CFLRU counts the
replacement cost both evicting pages from cache and fetching
pages from flash memory, and pages with high hit ratio are kept
in cache with the expectation of reducing flash read costs.

8. CONCLUSION
This paper presents the Clean-First LRU (CFLRU) replacement
algorithm for flash memory. CFLRU considers the fact that flash
memory has asymmetric read and write cost. CFLRU tries to
reduce the number of costly write and potential erase operations
as long as the degradation of cache hit rate does not harm the
performance. We configure the window size of the clean-first
region for both statically and dynamically. The dynamic CFLRU
algorithm has a benefit that we do not have to reconfigure the
window size each time the memory size changes, while achieving
the similar performance results with the static CFLRU algorithm
configured with the best performed window size. We simulated
our algorithm with real workload traces and implemented it on the

Figure 5. LRU lists in Linux

239

Linux kernel. In addition, we applied some optimizations for flash
memory to the Linux kernel.

Our simulation results show that, in swap system, static and
dynamic methods of CFLRU reduce the replacement cost by
28.4% and by 23.1%, respectively, in comparison to LRU. In file
system buffer cache, static and dynamic methods reduce the
replacement cost by 26.2% and 23.5%, respectively. We also
evaluate the CFLRU implementation on Linux and compare the
performance of the original Linux kernel, the Linux kernel
without read-ahead method, and CFLRU without read-ahead
method. The average time delay of no read-ahead method is
reduced by 2.4%, and the expected energy saving by 4.4%. The
average time delays of CFLRU-static and CFLRU-dynamic
method are reduced by 6.2% and by 5.7%, respectively, while the
expected energy savings of CFLRU-static and CFLRU-dynamic
by 11.4% and 12.1%, respectively.

One minor issue in CFLRU algorithm is that keeping dirty pages
in the SDRAM cache may cause a problem when the power has
been shut down abruptly. However, this is not a unique problem
in CFLRU. The widely used replacement algorithms such as LRU
also have the same problem. Although the amount of lost dirty
blocks may become slighted larger in case of CFLRU, it is

unnecessary to concern in swap system because the process data
in swap system need not recover after crash or shut-down. In the
case of file system buffer cache, dirty blocks can expose a
recovery problem. To cope with this problem, we need to use the
CFLRU algorithm with journaling file system.

9. REFERENCES
[1] R. Cáceres, F. Douglis, K. Li, and B. Marsh, “Operating

System Implications of Solid-State Mobile Computers,”
Proc. of the 4th IEEE Workshop on Workstation Operating
Systems, October 1993.

[2] Samsung Flash memory,
http://www.samsung.com/Products/Semiconductor/Flash/.

[3] M-systems Fast Flash Disks, http://www.m-sys.com/site/en-
US/Products/IDESCSIFFD/IDESCSIFFD.

[4] Memory Technology Devices, http://www.linux-
mtd.infradead.org/doc/nand.html.

[5] D. Jung, J. Kim, S. Park, J. Kang, and J. Lee, "FASS: A
Flash-Aware Swap System", Proc. of International
Workshop on Software Support for Portable Storage
(IWSSPS), Mar. 2005.

Figure 6. Weighted flash read and write counts under swap and file system cache

Figure 7. Time delay and expected energy

240

[6] Yet Another Flash Filing System (YAFFS), Aleph One
Company.

[7] D. Woodhouse, “JFFS: The Journaling Flash File System”,
Proc. of Ottawa Linux Symposium, 2001.

[8] L. Belady, “A Study of Replacement Algorithms for a
Virtual-Storage Computer,” IBM Systems Journal, vol.5,
no.2, pp.78-101, 1966.

[9] N. Nethercote and J. Seward, “Valgrind: A program
supervision framework,” Electronic Notes in Theoretical
Computer Science, vol.89, no.2, 2003.

[10] D. P. Bovet and M. Cesati, Understanding the Linux Kernel,
Second edition, Oreilly & Associates, 2003.

[11] P. J. Denning, “The Working Set Model for Program
Behavior,” Communications of the ACM, vol.11, no.5, May
1968.

[12] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,
“Evaluation Techniques for Storage Hierarchies,” IBM
Systems Journal, vol.9, no.2, pp.78-117, 1970.

[13] T. Johnson and D. Shasha, “2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm,”
Proc. of 20th International Conference Very Large Data
Bases, pp.439-450, 1994.

[14] P. E. O'Neil and G. Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Buffering,” Proc.
of ACM SIGMOD Conference, May 1993.

[15] Y. Smaragdakis, S. Kaplan, and P. Wilson, “EELRU: Simple
and Effective Adaptive Page Replacement,” Proc. of ACM
SIGMETRICS Conference, 1999.

[16] D. Lee, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim,
“LRFU: A Spectrum of Policies that Subsumes the LRU and
LFU Policies”, IEEE Transactions on Computers, vol. 50,
no. 12, pp.1352-1361, Dec. 2001.

[17] N. Megiddo and D.S. Modha, “ARC: A Self-Tuning, Low
Overhead Replacement Cache,” Proc. of USENIX
Conference File and Storage Technologies (FAST), 2003.

[18] N. Young, “The k-server Dual and Loose Competitiveness
for Paging,” Algorithmica, vol.11, no. 6, pp. 525-541, June
1994.

[19] J. Jeong and M. Dubois, “Optimal Replacements in Caches
with Two Miss Costs,” Proc. of the Eleventh Annual ACM
Symposium on Parallel Algorithms and Architectures, 1999.

[20] J. Jeong and M. Dubois, “Cost-sensitive Cache Replacement
Algorithms,” Proc. of the Symposium on High-Performance
Computer Architecture (HPCA), Jan. 2003.

[21] H. Lee and N. Chang, “Low-Energy Heterogeneous Non-
volatile Memory Systems for Mobile Systems,” Journal of
Low Power Electronics, vol.1, no.1, pp.52-62, Apr. 2005.

241

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

