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ABSTRACT 
In most operating systems which are customized for disk-based 
storage system, the replacement algorithm concerns only the 
number of memory hits. However, flash memory has different 
read and write cost in the aspects of time and energy so the 
replacement algorithm with flash memory should consider not 
only the hit count but also the replacement cost caused by 
selecting dirty victims. The replacement cost of dirty page is 
higher than that of clean page with regard to both access time and 
energy consumption. In this paper, we propose the Clean-First 
LRU (CFLRU) replacement algorithm that exploits the 
characteristics of flash memory. CFLRU splits the LRU list into 
the working region and the clean-first region and adopts a policy 
that evicts clean pages preferentially in the clean-first region until 
the number of page hits in the working region is preserved in a 
suitable level. Using the trace-driven simulation, the proposed 
algorithm reduces the average replacement cost by 28.4% in swap 
system and by 26.2% in buffer cache, compared with LRU 
algorithm. We also implement the CFLRU algorithm in the Linux 
kernel and present some optimization issues.   

Categories and Subject Descriptors 
D.4.2 [Operating Systems]: Storage management-Secondary 
storage 

General Terms 
Algorithms, Design, Measurement, Performance. 
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1. INTRODUCTION 
Flash memory has been gaining popularity in mobile embedded 
systems as non-volatile storage due to its characteristics such as 
small and lightweight form factor, solid-state reliability, and low 
power consumption [1]. The emergence of single flash memory 
chip with several gigabytes capacity makes a strong tendency to 
replace magnetic disk with flash memory for the secondary 
storage of mobile computing devices such as tablet PCs, PDAs, 
and smart phones [2, 3]. 

For decades, traditional operating systems have been optimized in 
various ways assuming that the secondary storage consists of 
magnetic disks. Unfortunately, flash memory exhibits different 
characteristics compared to magnetic disks. Most notably, flash 
memory does not have a seek time, and its data can not be 
overwritten before being erased. In addition, flash memory has 
asymmetric read and write operation characteristics in terms of 
performance and energy consumption. Therefore, it is necessary 
to revisit various operating system policies and mechanisms, and 
to optimize them for flash memory-based secondary storage. 

In this paper, we focus on a cache replacement policy for 
embedded systems equipped with flash memory as secondary 
storage. Most operating systems use an approximated LRU (Least 
Recently Used) algorithm for a replacement policy. However, 
operating systems with flash memory need to adopt a new 
replacement policy which considers not only the cache hit rate but 
also the replacement cost. The replacement cost occurs when a 
dirty page which is modified before evicting from page cache is 
written to flash memory to reclaim free space. The write 
operations to flash memory necessitate more time and energy than 
read operations, and moreover increasing the number of write 
operations will accompany even more costly erase operations. 
Therefore, the replacement policy should reduce the number of 
write and erase operations on flash memory, while avoiding 
escalation of memory misses which might lead to a large number 
of read operations. 

We propose a new replacement policy, called Clean-First LRU 
(CFLRU), which takes into consideration of the imbalance of read 
and write costs of flash memory when replacing pages. The basic 
idea behind CFLRU is to keep a certain amount of dirty pages 
deliberately in page cache to reduce the number of flash write 
operations, while preventing the overall performance from being 
significantly affected due to the degraded cache hit rate. 

We simulated CFLRU with two kinds of traces; one is virtual 
memory traces to evaluate the effect of the replacement algorithm 
in swap system, and the other is block access traces to evaluate it 
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in a file system buffer cache. Using these traces, we find that 
CFLRU algorithm reduces the average replacement cost by 28.4% 
in swap system and by 26.2% in buffer cache, when comparing 
with LRU. When calculating the replacement cost, we assume 
that the cost of a write operation is eight times higher than that of 
a read operation. We have also implemented our algorithm in the 
Linux kernel and presented some optimization issues for flash 
memory. 

The rest of this paper is organized as follows. Section 2 presents 
the characteristics of flash memory and the motivation of our 
work. Section 3 describes our CFLRU replacement algorithm. 
Section 4 shows the simulation methodology and simulated 
results with real workload traces. In section 5, we apply our 
algorithm to the Linux kernel and section 6 shows the 
implementation results. Section 7 overviews the related work. 
Finally, we conclude in section 8. 

2. BACKGROUND AND MOTIVATION 
2.1 Flash Memory 
There are two different types of flash memory: NAND flash and 
NOR flash. Major difference between them is the bus interface 
[4]. NAND flash has an I/O interface with control inputs, but 
NOR flash has directly connected address and data buses similar 
to SRAM. NAND flash is especially appropriate for data storage 
because of higher density, lower cost, and faster write operations.  
NOR flash is designed for code storage and execute-in-place 
(XIP) applications due to its faster read operations and random 
access capabilities.  

The characteristics of flash memory are significantly different 
from magnetic disks. First, flash memory has no latency 
associated with the mechanical head movement to locate the 
proper position to read or write data. In magnetic disks, this seek 
time has been one of the most time-consuming parts in I/O 
activity, and operating systems have performed various 
optimizations such as prefetching and disk scheduling to amortize 
the cost.  

Second, flash memory has asymmetric read and write operation 
characteristics in terms of performance and energy consumption. 
Table 1 compares the access time and the energy consumption in 
flash memory when 4KB data is read, written, or erased. The time 
and energy values are extracted from [21]. From table 1, we can 
see that the access time and the energy consumption of a write 
operation are about 6.3 ~ 6.4 times higher than those of a read 
operation in NAND flash memory, and the ratio becomes much 
larger in NOR flash memory.  

Third, flash memory does not support in-place update; the write to 
the same page can not be done before the page is erased. Thus, as 
the number of write operations increases so does the number of 
erase operations. If the erase operations are involved, the cost 
imbalance would be even worse. When we consider the potential 
erase cost usually accompanied with flash write operations, 
performing a flash write operation costs more than 8 times higher 
than performing a flash read operation. 

Finally, blocks of flash memory are worn out after the specified 
number of write/erase operations. Therefore, flash memory 
requires a well-designed garbage collection scheme to evenly 
wear out the flash memory region. 

 
 

2.2 Motivation 
One of the target applications of flash memory is embedded 
storage of mobile devices such as MP3 players, PDAs (Personal 
Digital Assistants), PMPs (Portable Media Players), and smart 
phones. In these devices, the operating system has much more 
chances to optimize I/O subsystem to adopt specialized features 
based on the characteristics of flash memory. Using the kernel-
level information effectively, the operating system can reduce the 
number of costly write and erase operations, and as a result, 
increase the performance [5]. 

Our work is motivated by the observation of replacement policies 
of the existing operating systems. Most operating systems are 
customized for disk-based storage system and their replacement 
policies only concern the number of cache hits. However, 
operating systems that use flash memory as secondary storage 
should consider different read and write cost of flash memory 
when they replace pages to reclaim free space. In this paper, we 
propose the Clean-First LRU (CFLRU) replacement algorithm for 
flash memory. CFLRU tries to reduce the number of costly write 
operations and potential erase operations until the degradation of 
cache hit rate does not harm the performance. To our best 
knowledge, CFLRU is the first replacement algorithm proposed 
for flash memory. 

3. CFLRU ALGORITHM 
3.1 Overview 
When cache replacement occurs, two kinds of replacement costs 
are involved. One is generated when a requested page is fetched 
from secondary storage to the page cache in RAM. Using 
Belady’s MIN algorithm [8], this cost can be minimized by 
selecting a victim that has the largest forward distance in the 
future references. Among online algorithms, LRU has been 
commonly used for replacement algorithm because it exploits the 
property of locality in references. The other cost is generated 
when a page is evicted from the page cache to secondary storage, 
i.e., flash memory. This cost can be minimized by selecting a 
clean page for eviction. A clean page contains the same copy of 
the original data in flash memory thus the clean page can be just 
dropped from the page cache when it is evicted by the 
replacement policy. 

Satisfying only one kind of replacement cost would benefit from 
its advantage, but for a long term, it would affect the other kind of 
replacement cost, and vice versa.  For example, a replacement 

Table 1.  The characteristics of flash memory [21] 
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policy might decide to keep dirty pages in cache as many as 
possible to save the write cost on flash memory. However, by 
doing this, the cache will run out of space, and consequently the 
number of cache misses will be increased dramatically, which, in 
turn, will increase the replacement cost of reading requested pages 
from flash memory. On the other hand, a replacement policy that 
focuses mainly on increasing the cache hit count will evict dirty 
pages, which will increase the replacement cost of writing evicted 
pages into flash memory. Thus, a sophisticated scheme to 
compromise both sides of efforts is needed to minimize the total 
cost. 

 

 
For this purpose, we propose a new replacement algorithm, called 
CFLRU (Clean-First LRU), which is modified from the LRU 
algorithm. CFLRU divides the LRU list into two regions to find a 
minimal cost point, as shown in Figure 1. The working region 
consists of recently used pages and most of cache hits are 
generated in this region. The clean-first region consists of pages 
which are candidates for eviction. CFLRU selects a clean page to 
evict in the clean-first region first to save flash write cost. If there 
is no clean page in this region, a dirty page at the end of the LRU 
list is evicted. For example, under the LRU replacement algorithm, 
the last page in the LRU list is always evicted first. Thus, the 
priority for being a victim page is in the order of P8, P7, P6, and 
P5, in Fig. 2. However, under the CFLRU replacement algorithm, 
it is in the order of P7, P5, P8, and P6.  
The size of the clean-first region is called a window size, w. It is 
important to adjust the window size properly, because the hit rate 
may fall dramatically if the window size grows too large. This 
issue will be examined in the next subsection. 

3.2 Window Size for Minimal Replacement 
Cost 
Finding the right window size of the clean-first region is 
important to minimize the total replacement cost. A large window 
size will increase the cache miss rate and a small window size will 
increase the number of evicted dirty pages, that is, the number of 
flash write operations. The flash write operations can also cause a 
large number of the costly erase operations, as mentioned in 
section 2.1. Therefore, the window size of the clean-first region 
needs to be decided properly in order to minimize the overall 
replacement cost. 

Let us assume that CW is the cost of a flash write operation and CR 
is the cost of a flash read operation. If ND denotes the number of 
dirty pages that should have been evicted in the LRU order but 
are kept in the cache, the benefit of the CFLRU algorithm is 
CW•ND. If NC is the number of clean pages that are evicted instead 
of dirty pages within the clean-first region, and Pi(k) is the 

probability of the future reference of a clean page, i, which is 
evicted at the k-th position, the cost of the CFLRU algorithm can  

be calculated by ∑  CR • Pi(k). Figure 2 shows the probability of  

the future reference at each position of the LRU list. In this graph, 
the x-axis indicates the position of a page in the LRU list. The 
left-end of the x-axis is the most recently used page and the right-
end of the x-axis the least recently used page. The y-axis indicates 
the probability of the future reference at each position of the 
pages. For example, if the k-th page in the LRU list is selected for 
an eviction, it is likely to be referenced in the future and fetched 
into the cache again with its probability of P(k). From what has 
been discussed above, formula (1) summarizes the proper window 
size, w, of the clean-first region. 

 

 MAX [CW• ND - ∑  CR • Pi(k)]                      (1) 

 

However, in the real world, it is not easy to find the probability of 
the future reference at each position of the LRU list. In this paper, 
we investigate the proper window size of the clean-first region 
with statically defined parameters and also devise a method to 
adjust the window size dynamically. The static method initially 
fixes the window size with an average well-performed value 
obtained from repetitive experiments over a predetermined 
application set. However, static method can not dynamically 
adjust the window size to various cache size and different 
application sets. The dynamic method can properly adjust the 
window size based on periodically collected information about 
flash read and write operations. If νW and νR represent the ratio of 
write and read operations for a given time period, respectively, 
the cost difference between adjacent periods, ∆(νW· CW  + νR· CR) 
can control whether to enlarge or reduce the window size. With 
our experiments, the dynamic algorithm performs well with 
various cache states imposed by different application sets. 
 

 

 

4. SIMULATION STUDY 
Before implementing the CFLRU replacement algorithm in the 
Linux kernel, we performed a simulation study. The objective of 
this study is to compare the performance of the pure LRU with the 

Figure 1. Example of CFLRU algorithm 

Figure 2. Window size of CFLRU algorithm 
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CFLRU algorithm. In addition, we simulated the offline algorithm, 
Belady’s MIN. It is known to be the optimal algorithm that 
maximizes the cache hit rate but is not a cost optimal algorithm. 

4.1 Simulation methodology 
Our simulation is performed with two different types of real 
workload traces. One is the trace for swap system and the other is 
for file system. For swap system, we gathered virtual memory 
reference traces using a profiling tool, called Valgrind [9]. We 
have slightly modified Valgrind’s cache simulation module called 
Cachegrind to obtain instruction and data reference traces. For file 
system, we gathered block reference traces directly from the 
buffer cache under the ext2 file system. We chose five different 
applications and executed them on Linux/x86 machine, according 
to the scenario shown in Table 2. The characteristics of the two 
kinds of traces used in simulations are described in Table 3.  

In the simulations, we assume that the system has 32MB SDRAM 
and a 128MB flash memory for swap space or file system. It is 
also assumed that the operating system and X-windows system 
consume about 16MB of SDRAM, thus each application can 
freely use about 16MB of the remaining SDRAM for cache space. 
Because the Valgrind profiling tool can gather virtual memory 
reference traces only for one application at a time, the cache size 
is dedicated to one application. 

 
 

We compare the performance of Belady’s MIN algorithm, LRU, 
CFLRU with static window size (CFLRU-static), and CFLRU 
with dynamic window size (CFLRU-dynamic). To evaluate the 
replacement cost, we use the weighted count of read and write 
operations on flash memory. The write count is weighted with 
eight times higher than the read count. This is based on the access 
time and the energy consumption characteristics of NAND flash 
memory taking into account the cost of potential erase operations 
(cf. Table 1). Note that as discussed in section 2.1, the relative 
cost of write operation is increased by more than an order of 
magnitude in NOR flash memory. 

 

 

 
(a) Virtual memory references 

 
(b) Buffer block references 

4.2 Simulation Results 
Figure 4 shows the replacement cost of four algorithms. In these 
results, it is clear that Belady’s MIN algorithm is not optimal with 
flash memory. However, it provides the performance by 
minimizing the hit count. CFLRU-static shown in the graph 
presents the lowest cost among six different configurations of the 
window size, in the form of S/x, where S is the cache size and x 
varies from 1 to 6. Compared with the LRU algorithm, the 
average replacement costs of CFLRU-static and CFLRU-dynamic 
are reduced by 28.4% and by 23.1%, respectively, when they are 
used for swap system. In the case of file system buffer cache, the 
average replacement costs of CFLRU-static and CFLRU-dynamic 
are reduced by 26.2% and by 23.5%, respectively. Sometimes, the 
dynamic algorithm has a small amount of performance 
degradation when comparing with the static algorithm. This is due 
to a wrong decision that might happen if the computed 
replacement cost to predict the future events is not accurate with 
the actually occurred events. However, CFLRU-dynamic still has 
reasonable performance, and it has an advantage that we do not 
have to reconfigure the window size whenever the cache size and 
the application set change. 

5. IMPLEMENTATION ON LINUX 
We have implemented the CFLRU replacement algorithm based 
on the Linux kernel 2.4. In this section, we briefly address the 
replacement policy of the Linux kernel, and explain our 
modification for the CFLRU replacement algorithm and some 
optimization issues. 

Table 2. Scenarios used in gathering traces 

Table 3. Workloads used in simulations 
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5.1 Original Linux Page Reclamation 
The Linux kernel 2.4 has the page cache that consists of two 
pseudo-LRU lists, the active list and the inactive list, as shown 
in Figure 5 [10]. The pages in the active list are recently 
accessed while the pages in the inactive list are not. When the 
kernel decides to make free space, it starts the reclaiming phase. 
First, it scans the pages in the inactive list. Priority value 
decides the scanning range of pages in the inactive list. Priority 
of the inactive list is increased, from 1/6 to 1/5, …, and 1, until 
the enough number of pages (usually 32) is freed. Second, if 
there are too many process-mapped pages, it starts the swap-out 
phase. Page reclamation in the swap-out phase is performed in a 
round-robin fashion in the Linux kernel 2.4, starting the 
scanning from the memory that was last checked. In this phase, 
the pages that are in the active list or recently accessed are 
skipped. 

5.2 CFLRU Implementation 
To implement the CFLRU replacement algorithm in the Linux 
kernel, we insert an additional reclamation function that 
chooses clean victims first before starting the original 

reclamation phases. Similar to the original Linux kernel, the 
additional reclamation function consists of two phases. In the 
first phase, clean pages in the inactive list are evicted first until 
the enough number of pages is freed. In the original Linux 
kernel, dirty pages become ready to write when they are 
selected as victims, but under our CFLRU, dirty pages are 
simply skipped. In the second phase, clean pages that belong to 
the process region are swapped out. As mentioned above, 
reclamation in the swap-out phase is not based on LRU in the 
Linux kernel 2.4. It is future work to modify the reclamation 
algorithm of swap system in the CFLRU fashion.  

In the inactive list of the Linux kernel, the concept of priority is 
correctly matched with that of the window size of the clean-first 
region in CFLRU. We configure the priority value statically, as 
default. However, the window size for the minimal replacement 
cost depends on the specific reference patterns of applications. To 
adjust the window size properly, the priority values can be 
changed dynamically. A kernel daemon periodically checks the 
replacement cost and compare with last replacement cost to 
decide whether to increase or decrease the priority. To avoid 
oscillation of the priority value, the difference between the current 
cost and the last cost has to exceed a predefined threshold.  

(a) Replacement cost for swap system 

(b) Replacement cost for file system buffer cache 

 
Figure 4. Replacement costs of Belady’s MIN, LRU, CFLRU-static, and CFLRU-dynamic 
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5.3 Optimizations for flash memory 
The I/O subsystem of the Linux kernel is optimized for disk-based 
storage. Disk scheduling policy and sequential read-ahead are 
examples of optimizations to reduce the seek time of disk-based 
storage. However, the disk optimization does not help improve 
the performance of a system with flash memory. It might rather 
decrease the performance due to the wasting time for doing the 
disk optimizations. Especially, read-ahead has a bad effect on 
cache hit rate when most of read-ahead pages are never accessed 
in the near future. The cache space for actively used pages is 
reduced because of read-ahead pages. In our experience, 
sequential read-ahead pages achieve low hit rate in many cases. 
Random access time of flash memory is faster than that of 
magnetic disk because flash memory has no mechanical parts to 
search data. We remove the sequential read-ahead function in the 
Linux kernel and these results in large improvement on cache hit 
rate. 

6. IMPLEMENTATION RESULTS 
The CFLRU replacement algorithm is evaluated on a system with 
a Pentium IV processor and 32MB SDRAM running the Linux 
kernel 2.4.28. We evaluate the performance of the replacement 
algorithms per application, so that the choice of the cache size, 
32MB, is appropriate for the cache replacement algorithm. The 
system has been emulated to have 64MB and 256MB of flash 
memory for swap space and for file system (ext2), respectively. 
The emulated flash memory has the same latency as real NAND 
flash memory [21]. 

We compare four Linux kernel implementations; plain Linux 
kernel, Linux kernel without swap read-ahead (no-readahead), 
Linux kernel with CFLRU static algorithm (CFLRU-static), and 
Linux kernel with CFLRU dynamic algorithm (CFLRU-
dynamic). The Linux kernels with CFLRU static algorithm and 
CFLRU dynamic algorithm also do not exploit read-ahead 
method. The window size of the CFLRU static algorithm is 1/4 of 
the inactive list. To measure the performance of four methods, we 
chose five applications; gcc, tar, diff, encoding, and file system 
benchmarks. These applications are not generally used in mobile 
devices but are proper for measuring the time delay.   

Figure 6 shows the weighted cost calculated by the number of 
flash read and write operations. As mentioned before, flash 
memory is partitioned into two regions; one for swap system and 
the other for file system. We measured the total number of flash 
read and write operations and weighted the write count with eight 
times higher than read count. The no read-ahead method reduces 
the overall read count when comparing the plain Linux kernel. In 
CFLRU methods, the overall flash read count is slightly 
increased, while the flash write count is significantly decreased, 
thus the sum of weighed counts is reduced when comparing to the 
no read-ahead method. Figure 7 shows the normalized time delay 

and expected energy. The expected energy is calculated with byte 
read and byte write counts from/to flash memory.  The average 
time delay of no read-ahead method is reduced by 2.4%, and the 
expected energy saving by 4.4%. The average time delays of 
CFLRU-static and CFLRU-dynamic method are reduced by 6.2% 
and by 5.7%, respectively, while the expected energy savings of 
CFLRU-static and CFLRU-dynamic by 11.4% and 12.1%, 
respectively. 

7. RELATED WORK 
There have been plenty of studies for cache replacement 
algorithms. Belady’s MIN algorithm [8] is known for offline 
optimal and it provides the lower bound of miss counts compared 
to other online algorithms. In online algorithms, the LRU [11, 12] 
algorithm is widely used. Many operating systems use an 
approximated LRU for cache management. To enhance the 
performance over the LRU algorithm for particular workloads, 
various algorithms such as 2Q [13], LRU-K [14], EELRU [15], 
LRFU [16], and ARC [17] have been proposed. However, all 
these algorithms pay attention only to the minimization of cache 
miss counts.  

Recently, several studies have focused on the replacement 
algorithm with various miss costs, especially, under assumption 
that all pages have a uniform size. The GreedyDual [18] 
algorithm considers multiple miss costs, and when replacement 
occurs, the costs of all blocks are reduced by the cost of an 
evicting block. According to the research of Jeong and Dubois 
[20], the GreedyDual algorithm does not perform well with a page 
replacement algorithm when the difference between low and high 
cost is small. Jeong and Dubois proposed a cost-sensitive 
algorithm in CC-NUMA multiprocessor environment [19, 20]. 
They first devised an offline algorithm for two different miss 
costs [19] and later proposed an online algorithm based on LRU 
[20]. The online cost-sensitive algorithm selects a victim whose 
cost is lower than the cost of the least recently used block. The 
cost of the least recently used block is reduced by twice the 
amount of the miss cost of the victim.   

These algorithms only consider the replacement cost that occurs 
when pages or blocks are fetched into the cache. In addition, they 
do not consider the potential hit-ratio of victims that are evicted 
instead of high-cost blocks. In contrary, CFLRU counts the 
replacement cost both evicting pages from cache and fetching 
pages from flash memory, and pages with high hit ratio are kept 
in cache with the expectation of reducing flash read costs. 

8. CONCLUSION 
This paper presents the Clean-First LRU (CFLRU) replacement 
algorithm for flash memory. CFLRU considers the fact that flash 
memory has asymmetric read and write cost. CFLRU tries to 
reduce the number of costly write and potential erase operations 
as long as the degradation of cache hit rate does not harm the 
performance. We configure the window size of the clean-first 
region for both statically and dynamically. The dynamic CFLRU 
algorithm has a benefit that we do not have to reconfigure the 
window size each time the memory size changes, while achieving 
the similar performance results with the static CFLRU algorithm 
configured with the best performed window size. We simulated 
our algorithm with real workload traces and implemented it on the 

Figure 5. LRU lists in Linux 
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Linux kernel. In addition, we applied some optimizations for flash 
memory to the Linux kernel. 

Our simulation results show that, in swap system, static and 
dynamic methods of CFLRU reduce the replacement cost by 
28.4% and by 23.1%, respectively, in comparison to LRU. In file 
system buffer cache, static and dynamic methods reduce the 
replacement cost by 26.2% and 23.5%, respectively. We also 
evaluate the CFLRU implementation on Linux and compare the 
performance of the original Linux kernel, the Linux kernel 
without read-ahead method, and CFLRU without read-ahead 
method. The average time delay of no read-ahead method is 
reduced by 2.4%, and the expected energy saving by 4.4%. The 
average time delays of CFLRU-static and CFLRU-dynamic 
method are reduced by 6.2% and by 5.7%, respectively, while the 
expected energy savings of CFLRU-static and CFLRU-dynamic 
by 11.4% and 12.1%, respectively. 

One minor issue in CFLRU algorithm is that keeping dirty pages 
in the SDRAM cache may cause a problem when the power has 
been shut down abruptly. However, this is not a unique problem 
in CFLRU. The widely used replacement algorithms such as LRU 
also have the same problem. Although the amount of lost dirty 
blocks may become slighted larger in case of CFLRU, it is 

unnecessary to concern in swap system because the process data 
in swap system need not recover after crash or shut-down. In the 
case of file system buffer cache, dirty blocks can expose a 
recovery problem. To cope with this problem, we need to use the 
CFLRU algorithm with journaling file system. 
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