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ABSTRACT

Random access memory (RAM) is tightly-constrained in many
embedded systems. This is especially true for the least expen-
sive, lowest-power embedded systems, such as sensor network
nodes and portable consumer electronics. The most widely-
used sensor network nodes have only 4–10 KB of RAM and
do not contain memory management units (MMUs). It is very
difficult to implement increasingly complex applications under
such tight memory constraints. Nonetheless, price and power
consumption constraints make it unlikely that increases in RAM
in these systems will keep pace with the requirements of appli-
cations.

We propose the use of automated compile-time and run-time
techniques to increase the amount of usable memory in MMU-
less embedded systems. The proposed techniques do not in-
crease hardware cost, and are designed to require few or no
changes to existing applications. We have developed a fast com-
pression algorithm well suited to this application, as well as run-
time library routines and compiler transformations to control
and optimize the automatic migration of application data be-
tween compressed and uncompressed memory regions. These
techniques were experimentally evaluated on Crossbow TelosB
sensor network nodes running a number of data collection and
signal processing applications. The results indicate that avail-
able memory can be increased by up to 50% with less than 10%
performance degradation for most benchmarks.

Categories and Subject Descriptors: D.4.2 [Storage Manage-
ment]: Virtual Memory; E.4 [Coding and Information Theory]:
Data Compaction and Compression

General Terms: Design, Experimentation, Management, Per-
formance

Keywords: Embedded System, Wireless Sensor Network, Data
Compression
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1. INTRODUCTION

Low-power, inexpensive embedded systems are of great im-
portance in applications ranging from wireless sensor networks
to consumer electronics. In these systems, processing power
and physical memory are tightly limited due to constraints on
cost, size, and power consumption. For example, eight-bit
microcontrollers generally have no memory management units
(MMUs). Sensor network nodes are among the embedded sys-
tems whose resource and power are most tightly constrained.
Although the proposed techniques may be used in any memory-
constrained embedded system without an MMU, this article
will focus on using them to increase usable memory in sen-
sor network nodes with no changes to hardware and with no or
minimal changes to applications.

Many recent ideas for improving the communication, secu-
rity, and in-network processing capabilities of sensor networks
rely on sophisticated routing [11], encryption [5], query pro-
cessing [8], and signal processing [14] algorithms implemented
on sensor network nodes. However, sensor network nodes have
tight memory constraints. For example, the popular Crossbow
MICA2, MICAz, and TelosB sensor network nodes have be-
tween 4 KB and 10 KB of RAM, a substantial portion of which
is consumed by the operating system (OS), e.g., TinyOS [6]
or MANTIS OS [1]. Tight constraints on cost and power con-
sumption of sensor network nodes make it unlikely for the size
of physical RAM to keep pace with the demands of increasingly
sophisticated in-network processing algorithms.

In order to reduce cost, sensor network nodes typically avoid
the use of dedicated dynamic random access memory (DRAM)
integrated circuits; in extremely low price, low power embed-
ded systems, RAM is typically on the same die as the processor.
Unfortunately, it is not economical to fabricate the deep trench
capacitors used for high-density RAM with the same process
as processor logic. As a result, static random access mem-
ory (SRAM) is used in sensor network nodes. Unlike DRAM,
SRAM generally requires six transistors per bit and has high
power consumption. Increasing the amount of physical mem-
ory in sensor network nodes would increase die size, and hence
cost, as well as power consumption. Some researchers have
proposed addressing memory constraints using hardware tech-
niques such as compression units inserted between memory and
processor. However, such hardware implementations typically
have difficulty adapting to the characteristics of different appli-
cation data. Moreover, they would increase the price of sensor
network nodes either by requiring additional integrated circuit
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packages or by requiring microcontroller redesign. Barring new
technologies that allow inexpensive, high-density, low-power,
high-performance RAM to be fabricated on the same integrated
circuits as logic, sensor network applications will continue to
face strict constraints on RAM in the future.

Software techniques that use data compression to increase us-
able memory have some advantages over hardware techniques.
They do not require processor or printed circuit board redesign
and they allow the selection and modification of compression
algorithms, permitting good performance and compression ratio
(compressed data size divided by original data size) for the tar-
get application. However, software techniques that require the
re-design of applications are unlikely to be used by anybody but
embedded systems programming experts. Most sensor network
application experts are not embedded system programming ex-
perts. If memory expansion technologies are to be widely de-
ployed, they should not require changes to hardware and should
require minimal or no changes to applications.

In this article, we propose a new memory expansion tech-
nique, named MEMMU, for use in wireless sensor networks.
This technique uses compile-time transformation and run-time
library support to automatically manage on-line migration of
data between compressed and uncompressed memory regions in
sensor network nodes. It provides application developers with
access to more usable RAM and requires no or minor changes
to application code and no changes to hardware. The proposed
technique requires no MMU and has other design features en-
abling its use in sensor network nodes with extremely tight
memory and performance constraints. It has been optimized
to minimize impact on performance and power consumption;
experimental results indicate that in many applications, such
as data sampling and audio signal correlation computation, its
overhead is small. We plan to release MEMMU for free aca-
demic and non-profit use [17].

The rest of this article is organized as follows. Section 2 sum-
marizes related work and contributions. Section 3 provides a
motivational scenario that illustrates the importance and effec-
tiveness of the proposed technique. Section 4 describes the li-
brary and compiler techniques, optimization schemes, as well as
the compression or decompression algorithms designed to au-
tomatically increase usable memory in sensor network nodes.
Section 5 presents the experimental set-up, describes the work-
loads, and discusses the experimental results in detail. Finally,
Section 6 concludes the article.

2. RELATED WORK

The proposed library and compiler techniques to increase us-
able memory were built upon work in the areas of on-line data
compression, wireless sensor networks, and high-performance
data compression algorithms.

2.1 Software Virtual Memory Management
for MMU-Less Embedded Systems

Choudhuri and Givargis [3] proposed a software virtual mem-
ory implementation for MMU-less embedded systems based on
an application level virtual memory library and a virtual mem-
ory aware assembler. They assume that secondary storage, e.g.,
EEPROM or Flash, is present in the system. Their technique au-
tomatically manages data migration between RAM and the sec-
ondary storage to provide applications access to more memory
than provided by physical RAM. However, since access to such

secondary storage is significantly slower than that to RAM, the
performance penalty of this approach can be very high for some
applications. In contrast, MEMMU requires no secondary stor-
age and its performance and power consumption penalties have
been minimized via various optimization techniques.

2.2 Hardware-Based Code and Data
Compression in Embedded Systems

A number of previous approaches incorporated compression
into the memory hierarchy for different goals. Main mem-
ory compression techniques [24] insert a hardware compres-
sion/decompression unit between cache and RAM. Data are
stored uncompressed in cache, and are compressed on-the-
fly when transferred to memory. Code compression tech-
niques [13] store instructions in compressed format in ROM
and decompress them during execution. Compression is usu-
ally performed off-line and can be slow, while decompression
is done during execution, usually by special hardware, and must
be very fast.

2.3 Software-Based On-Line Memory
Compression

Compressed caching [4, 26] introduces a software cache to
the virtual memory system that uses part of the memory to store
data in compressed format. Swap compression [25] compresses
swapped pages and stores them in a memory region that acts as a
cache between memory and disk. The primary objective of both
techniques is to improve system performance by decreasing the
number of page faults that must be serviced by hard disks. Both
techniques require a backing store, i.e., hard disks, when the
compressed cache is filled up. In contrast, MEMMU does not
rely on any backing store.

CRAMES [27] is an OS controlled, on-line memory com-
pression framework designed for disk-less embedded systems.
It takes advantage of the OS virtual memory infrastructure and
stores LRU pages in compressed format in physical RAM.
CRAMES dynamically adjusts the size of the compressed mem-
ory area, protecting applications capable of running without
it from performance or energy consumption penalties. Al-
though CRAMES does not require any special hardware for
compression/decompression, it does require an MMU. In con-
trast, MEMMU does not require the use of an MMU.

Biswas et al. [2] described a memory reuse method that re-
duces the memory footprint by compressing live globals in
place and growing stack or heap into the freed region when they
overflow. Their technique relies upon static liveness analysis in
order to identify memory locations for reuse. In addition, this
memory reuse method cannot compress portions of arrays un-
less the compiler does independent liveness analysis on each
scalar within an array. In contrast, MEMMU compresses pages
instead of variables and dynamically selects LRU victim pages
for compression.

2.4 Compression for Reducing
Communication in Sensor Networks

In many sensor network applications, sensor nodes in the net-
work must frequently communicate with each other or with
a central server. Sensor nodes have limited power sources
and wireless communication accelerates battery depletion [21].
In-network data aggregation [16, 9] and data reduction via
wavelets or distributed regression [10, 18] can significantly
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reduce the volume of communicated data. However, these
techniques are lossy, limiting their application. Recently, re-
searchers have proposed to reduce the amount of data commu-
nication via compression [19, 22] in order to reduce radio en-
ergy consumption. In contrast, MEMMU focuses on automated
memory compression for functionality improvement instead of
communication reduction.

2.5 Software-Based Memory Compression
Algorithms

LZO [15] is a very fast general-purpose compression algo-
rithm that works well on memory data. However, the memory
requirement of LZO is at least 8 KB, far exceeding the avail-
able memory of many low-end embedded systems and sensor
nodes. Rizzo et al. [23] proposed a software-based algorithm
that compresses in-RAM data by only exploiting the high fre-
quency of zero-valued data. This algorithm trades off degraded
compression ratio for improved performance. Wilson et al. [26]
presented a software-based algorithm called WKdm that uses a
small dictionary of recently-seen words and attempts to fully or
partially match incoming data with an entry in the dictionary.
Yang et al. [28] designed a new software-based memory com-
pression algorithm, named pattern-based partial match (PBPM)
for embedded systems. This algorithm explores frequent pat-
terns that occur within each word of memory and takes advan-
tage of the similarities among words by using a small dictionary.

Many software-based memory compression algorithms are
not appropriate for use on sensor network nodes due to large
memory requirements or poor performance. For those with suf-
ficiently low overhead, we found none that provides a satisfac-
tory compression ratio for sensor data. The main reasons for
this are that (1) zero words are rare in sensor data, (2) the simi-
larities among sensor datum are not sufficient even though data
often change gradually with time, and (3) the page size is usu-
ally significantly smaller in low-cost MMU-less devices than in
other embedded systems. We propose a memory compression
algorithm that operates with very high performance on the 16-
bit data generally found in the memory of MICAz and TelosB
sensor network nodes. The average compression ratio for vari-
ous types of sensor data is approximately 50%.

3. MOTIVATIONAL SCENARIO

Consider an application in which individual sensor nodes re-
act to particular events, e.g., low-frequency vibration, by trig-
gering high rate audio data sampling. After the sampling is
complete, data are filtered and statistics, e.g., variance and
mean, are computed and transferred to an observer node. If the
raw data are of interest to the observer node, they are requested
and transmitted through the network. In existing sensing ar-
chitectures, the size of the data buffer is tightly constrained.
Barring slow EEPROM writes, on a Crossbow TelosB sensor
node the buffer cannot exceed approximately 9.5 KB of RAM.
Moreover, sampling rate and/or duration cannot be increased
without redesigning the sensor node hardware or complicat-
ing the application implementation. If, instead, the automated
data compression technique proposed in this article is used, por-
tions of sampled data will be automatically compressed when-
ever they would otherwise exceed physical memory. During fil-
tering, e.g., convolution, data are automatically decompressed
and recompressed to trade off performance and usable mem-
ory. Commonly-used data are cached in uncompressed for-

mat to maintain good performance. This is achieved without
changes to hardware and with no or minimal changes to applica-
tion code. To the application designer, it appears as if the sensor
network node has 16.4 KB available when, in fact, it still con-
tains only 10 KB of physical RAM (please refer to Section 5).

Furthermore, most wireless sensor networks use a store-and-
forward technique to control the flow of information. Therefore,
the local memory of a node is used as a shared resource to han-
dle multiple messages traveling along different routes. In order
to avoid losing data in the process of communication, a node
must generally store already-sent data until it receives an ac-
knowledgment. As a result, the buffer can easily be filled when
the communication rate is high, leading to message loss or even
network deadlock. With MEMMU, usable local memory can
be increased thus reducing the possibility of data loss.

4. MEMORY EXPANSION ON

EMBEDDED SYSTEMS WITHOUT

MMUS

This section describes the design MEMMU, our technique
for Memory Expansion on embedded systems without MMUs.
The main goal of MEMMU is to provide application designers
with access to more usable RAM than is physically available
in MMU-less embedded systems without requiring changes to
hardware and with minimal or no changes to applications. We
achieve this goal via on-line compression and decompression of
in-RAM data. In order to maximize the increase in usable RAM
and minimize the performance and energy penalties resulting
from the technique, it is necessary to solve the following sub-
problems:

1. Intelligently determine which pages to compress and when
to compress them to minimize performance and energy
penalties. This is particularly challenging for low-end
embedded systems without MMUs.

2. Control the organization of compressed and uncompressed
memory regions and the migration of data between them
to maximize the increase in usable memory while mini-
mizing performance and energy penalties.

3. Design a compression algorithm for use in embedded sys-
tems that has low performance overhead, low memory re-
quirements, and a good compression ratio for data com-
monly present in MMU-less embedded systems, for ex-
ample, those sensed, processed, and communicated in
sensor network nodes, e.g., audio samples, light lev-
els, temperatures, humidities and, in some cases, two-
dimensional images.

MEMMU divides physical RAM into three regions: the re-
served region, the compressed region, and the uncompressed
region. The reserved region is used to store uncompressed data
of the OS, including MEMMU. The compressed region and the
uncompressed region are both used by applications. Applica-
tion data are automatically migrated between these regions; the
size of each region is decided by compile-time analysis of ap-
plication memory requirements and estimated compression ra-
tio. The compressed region can be viewed as a high-capacity
but somewhat slower form of memory, and the uncompressed
region can be viewed as a small, high-performance data cache.
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Figure 1: Memory layout

Figure 1 illustrates the memory layout of an embedded sys-
tem using MEMMU. From the perspective of application de-
signers, all pages in the left-most Virtual Memory column are
available. Memory objects in virtual memory are mapped to the
uncompressed or compressed region via a software-maintained
page table. A memory management mechanism was designed
to manage data compression, decompression, and migration be-
tween two regions.

4.1 Handle-Based Data Access

Data elements are accessed via their virtual address handles.
The floor of virtual address divided by the page size is the corre-
sponding virtual page number. The mapping from virtual page
to RAM is stored in a page table maintained as an array. For
example, if the content of index n is m, and m is in the range of
uncompressed pages, virtual page n is mapped to page m in the
uncompressed region. If m is greater than number of uncom-
pressed pages, n is in the compressed region.

When data are accessed via their virtual addresses within an
application, MEMMU first determines the status of the corre-
sponding virtual page based on the page table.

1. If the virtual page maps to an uncompressed page, the
physical address of the data can be directly obtained by
adding the offset to the address of the uncompressed page.
The data element is then accessed via its physical address.

2. If the virtual page has not been accessed before, i.e., no
mapping has yet been determined for the virtual page, the
proposed technique creates a mapping from this page to
an available page in the uncompressed region. If there is
no available page in the uncompressed region at that time,
a victim page is moved to the compressed region to make
an uncompressed page available.

3. If the virtual page maps to a compressed page, the com-
pressed page is decompressed and moved to the uncom-
pressed region. Again, if there is no available page in the
uncompressed region at that time, a victim page is moved
to the compressed region to make an uncompressed page
available.

In order to make the procedure transparent to users, and to
avoid increasing application development complexity, the rou-
tines for these operations are stored in a runtime library and
compiler transformations are used to convert memory accesses
within unmodified code to library calls. Figure 2 illustrates
the write handle procedure. The three vertical paths prior
to the final store instruction correspond to the three situations
discussed above. The left path shows the situation in which a

get virtual page number
p0 and offset

get physical address
addr from PT[p0] and

offset

p0 maps to
uncompressed

region

update LRU list get victim page p2
get page p1 from

uncompressed region

update page table
map p0 to p1

*addr = data

get physical address
addr from p1 and offset

decompress page p0 to
page p1

replace or append p0 to
LRU list tail

compress p2 to
compressed region

decompress p0 to
PT[p2]

update LRU list

get phisical address
addr from PT[p2] and

offset

return

Yes

No

Fail

Succeed

Figure 2: Write handle procedure

virtual page p0 maps to a page PT[p0] in the uncompressed re-
gion. Its physical address is computed by adding the physical
page address and the offset. In the other two paths, virtual page
p0 maps to a compressed page. In the middle path, a free page
p1 is obtained from the uncompressed region. The compressed
page is decompressed to p1 and a mapping from p0 to p1 is cre-
ated in the page table. Otherwise if the uncompressed region
is exhausted, as shown in the right path, a victim page p2 from
the uncompressed region is compressed, so the physical page
previously used by p2 is freed and used to decompress p0. Fi-
nally, p0 will be mapped to a physical page in the uncompressed
region, and data are written to the physical address.

4.2 Memory Management and Page
Replacement

When the uncompressed memory region is filled by an appli-
cation, its pages will be incrementally moved to the compressed
region to make space available in the uncompressed region.
When data in the compressed region are later accessed, they
are decompressed and moved back to the uncompressed region.
Ideally, pages that are unlikely to be used for a long time should
be compressed to minimize the total number of compression
and decompression events. MEMMU approximates this behav-
ior via a least-recently used (LRU) victim page selection policy.
The LRU list is doubly-linked. Every item in the LRU list stores
the associated virtual page handle. Handles are ordered by the
times of handle references. When a page that is already in the
LRU list is accessed, it is relocated to the tail of the list, other-
wise the page is appended to the list. The page at the head of
the LRU list is selected for compression. After a victim page
is compressed, the corresponding list item is removed from the
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Figure 3: Memory coalescing

LRU list. Therefore, page handles in the LRU list indicate pages
currently residing in the uncompressed region.

Managing the uncompressed memory region is straightfor-
ward since pages have uniform sizes. On the contrary, man-
aging the compressed region is complex since page sizes dif-
fer. Memory allocation in the compressed region is dynamic
because when a page is decompressed and moved back to the
uncompressed region, the memory it occupies is released im-
mediately for reuse. Compressed memory management is akin
to heap management. It imposes memory overhead for keeping
information such as page sizes and addresses. Free slots in the
compressed region are stored in a free-list. When looking for a
fit slot for a compressed page in the free-list, we use the best fit

policy, which allocates the smallest free slot equal to or larger
than the required size.

4.3 Preventing Fragmentation

One potential problem with dynamic memory allocation is
fragmentation. Fragmentation can prevent a newly compressed
page from fitting in the compressed region even though the to-
tal available memory in that region is sufficient. This situation
has the potential to terminate application execution. MEMMU
performs memory merging and coalescing to prevent fragmen-
tation.

Free block merging takes place every time a page is decom-
pressed and moved from the compressed region. Free block
handles are maintained in a list in order of the physical address
of their compressed areas. If a free block is adjacent to its pre-
decessor or successor, these adjacent blocks are merged. This
is a well-known memory management technique.

Coalescing occurs when the memory allocator fails to allo-
cate a new block from the free list. In this case, MEMMU lo-
cates pages in order of increasing addresses and moves them
to the top of the compressed region, or to the bottom of the
most-recently moved pages. This process continues until all
compressed pages have been moved. Upon completion, a sin-
gle large free region remains. Figure 3 illustrates this procedure.
Rectangles A, B, and C represent three compressed pages and
shaded rectangles represent freed blocks. After three iterations
of moving A, B, and C upwards, all freed blocks are merged
into one big free block. This coalescing algorithm has a time
complexity of O(n2), where n is the total number of compressed
pages. However, since in practice n is usually small, the cost of
coalescing is low. For example, a TelosB mote with a pagesize
of 256 bytes will have 18 compressed pages (n = 18), assuming
that MEMMU expands memory by 50%.

4.4 Interrupt Management

The primary target platform for MEMMU is wireless sensor
network nodes, which are typical memory-constrained, MMU-
less embedded systems. On sensor nodes, hardware interrupts

often take place when newly-sensed data arrive. There are two
naive approaches to handle interrupts during page misses: (1)
disable them when accessing data in memory or (2) allow inter-
rupts at any time. Unfortunately, the first approach would result
in interrupt misses when interrupts occur during page misses.
However, the second approach is also dangerous because any
access to a page in the compressed region during the execu-
tion of an interrupt service routine triggered during a page miss
would result in an inconsistent compressed region state.

Consider an application for environmental data sampling in
which missing samples is not desirable. Although the optimiza-
tion techniques described in Section 4.5 can be deployed to re-
duce the overall execution time overhead, they cannot reduce
the worst-case data access delay. In the worst case, the page of
incoming data is in the compressed region, but there is neither
available space in the uncompressed region to decompress this
page nor space in the compressed region to compress a victim
page. In this situation, coalescing, compression, and decom-
pression must be performed before the data can be written to
memory, i.e.,

worst case delay = tcoalesce + tcomp. + tdecomp.

where the t values are durations. The upper bound of coalesc-
ing is when all blocks in compressed region are moved upward.
This latency can be approximated by the time required to copy
the whole compressed region plus the time required by the coa-
lescing algorithm. Using the compression algorithm introduced
in Section 4.6, the time of compress and decompress one page
is 33 µs.

Missing sampling events can be avoided as long as the sam-
pling period is longer than the worst-case delay. However, ar-
bitrarily reducing sampling rate is not an acceptable solution
because some applications may require high sampling rates and
even infrequent events may occur during a page miss. To solve
this problem, a ring buffer may be used. The ring buffer sits
in the reserved memory region. When data arrive, they are im-
mediately stored in the ring buffer and a process rbuf task is
posted, which moves older data in the ring buffer to the sam-
ple buffer. This technique prevents data that arrive during page
misses from being dropped. The ring buffer should be large
enough to hold the longest-possible sequence of missed sam-
ples. Based on our experiment, for an application sampling
at 19,600 bps, the ring buffer need be at most 16 bytes long.
Note that MEMMU does not require the use of a ring buffer
when sampling rate is low. However, it provides a convenient
and low-overhead method of preventing missed interrupts. In
order to use ring buffer, one sets the ring buffer length based
on estimated worst-case delay, inserts the write rbuf function
call, and posts the process rbuf task to transfer data from ring
buffer to the application data structure.

4.5 Optimization Techniques

In the previous sections, we described the basic design com-
ponents of the MEMMU memory expansion system. Every
memory access requires (1) a runtime handle check to ensure
the address is in the uncompressed region, (2) an update to the
LRU list, and (3) a virtual to physical address translation. This
introduces high execution time overhead that is proportional to
the total number of memory accesses. Hence, the basic solution
is not practical for many real applications on embedded sys-
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tems. However, the technique can be optimized to significantly
reduce the number of runtime checks, LRU list updates, and
address translations. In this section, we introduce several such
compile-time optimization techniques.

1. Frequent references optimization: If a small data struc-
ture is used very frequently in the application, it should be
allocated to the reserved region at compile time to elimi-
nate all handle checks and address translations. For exam-
ple, in the image convolution application shown in Fig-
ure 4(a), the matrix K[M][M] of coefficients is accessed
in every iteration of the loop and the size of this matrix
is small. After moving it to the reserved region, we can
eliminate (W −M + 1)× (H−M + 1)×M×M runtime
checks and address translations related to this matrix.

2. Run-time handle check optimization: This is based on
the observation that if a sequence of memory references
access a same page, only the first handle check is neces-
sary since the referenced page is sure to be in the uncom-
pressed region on subsequent accesses. This optimization
is specific to sequential access patterns, although differ-
ent incremental values are supported. By inserting checks
to decide whether the data element to be accessed next
is in a different page than the previous one, the number
of handle checks for all accesses to the same page can
be reduced to one. This can be especially useful for a
hardware-triggered sample arrival event that writes data
into the buffer, as illustrated in Figure 6. Data ready is
a hardware-triggered event. The if statement in the op-
timized code filters all the handle checks mapping to the
same page that was checked in the previous reference.

3. Loop transformation and compile-time elimination of

inner-loop checks: This optimization scheme can fur-
ther reduce runtime handle checks by means of compile-
time loop transformations. Access to an array in a loop
usually uses an incremental memory reference pattern.
Figure 5(a) illustrates an example of sequential reference
to an array. At most PAGESIZE references access the
same page. Figure 5(b) illustrates the unoptimized so-
lution, which inserts a handle check before every mem-
ory reference and replaces writes to memory with our
write handle routine. The entire loop requires N han-
dle checks. Figure 5(c) illustrates the optimized solution.
With loop transformation, the previous loop is broken into
nested loops. The inner loop accesses only memory in-
side a same page; handle checks for the inner loop can be
replaced by one check in the outer loop. The total num-
ber of handle checks is reduced from N to N/PAGESIZE.
For the sake of simplicity, we assume that the array A is
aligned with pages. Misaligned arrays can be managed
by adding two additional loops to handle the non-aligned
head and tail portions of the array.

4. Handle check hoisting: By hoisting handle checks, mul-
tiple handle checks inside a loop can be replaced with
one handle check outside the loop. This optimization
requires that the total size of the accessed pages is no
larger than the size of the uncompressed region. It can
be viewed as prefetching pages and locking them in the
uncompressed region until a portion of code finishes exe-
cution. Figure 4 gives an example of handle check hoist-

ing. Figure 4(a) is the original code for image convo-
lution. Without handle check hoisting, MEMMU would
require (H −M + 1)× (W −M + 1)× (2×M×M + 1)
handle checks. It can be decided at compile time that the
second inner loop, which covers three rows of A and one
row of B, is the largest loop that can reside in the uncom-
pressed region. Therefore, handle checks are hoisted to
the beginning of the second inner loop, as shown in (b).
This saves at least (H −M + 1)× (W −M + 1)× (2×
M×M + 1)− (H−M + 1)× 4 handle checks. Note that
at most four pages may be covered in the second loop.

5. Pointer dereferencing to reduce address translation:

There are usually dependencies among sequences of ref-
erence addresses. Many applications use a constant stride
in memory reference sequences. If the physical address
of memory object A is known, and object B is in the same
page as A, the physical address of B can be determined by
dereferencing and adding an offset to the pointer to A in-
stead of computing results based on page table contents.
Figure 5(c) shows that this optimization scheme can elim-
inate N−N/PAGESIZE address translations.

We are still in the process of evaluating the relative benefits of
the proposed optimization techniques and determining which to
include in the released version of MEMMU. The frequent refer-

ence optimization is implemented by modifying LLVM [12] to
allocate all small data structures in the reserved region. The in-
crease in usable memory resulting from allowing the migration
of small globals, such as scalars, is generally not sufficient to
offset the cost of managing their migration. The run-time han-

dle check optimization is carried out in a compiler pass, in which
LLVM creates two page number variables, current page num-
ber and last page number, for each check handle and puts ev-
ery check handle in an if statement. Check handle is called
only when the current page number differs from the previous
page number. We are not yet certain whether the loop trans-

formation or handle check hoisting optimizations are general
enough, and improve performance enough, to justify their full
automation or inclusion within MEMMU. The pointer deref-

erencing optimization is implemented by replacing calls to the
write handle and the read handle functions with direct ac-
cess via a pointer. The base pointer is computed by translat-
ing the first encountered virtual address to a physical address.
Subsequent pointers in the same page are computed by adding
offsets to the base pointer.

4.6 Delta Compression Algorithm

We developed a high-performance, lossless compression al-
gorithm based on delta compression for use in sensor network
applications. This algorithm exploits the similarities between
adjacent data elements. Despite its simplicity, the algorithm
has high performance and a good compression ratio for sensor
data in which adjacent samples are often correlated.

To design an appropriate compression algorithm for sen-
sor data, the regularities of the data must be well understood.
For this purpose, we collected numerous types of sensor data,
e.g., sound, light, and temperature, from Crossbow MICAz and
TelosB sensor network nodes and analyzed their characteris-
tics. Intuitively, sensor data are likely to stay similar during a
certain period of time, and within a certain geographic range,
hence showing high amounts of temporal and spatial locality.
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Input: 2-D array A[H,W ]
Input: 2-D array K[M,M]
Output: 2-D array B[H−M +1,W −M +1]

1: n← ∑
M−1
p=0 ∑

M−1
q=0 Kpq

2: for i ∈ {0 · · ·H−M} do

3: for j ∈ {0 · · ·W −M} do
4: t← 0
5: for a ∈ {0 · · ·M−1} do

6: for b ∈ {0 · · ·M−1} do

7: p← A[i+a][ j +b]
8: q← K[a][b]
9: t← t + p×q

10: end for
11: end for
12: B[i][ j]← t/n
13: end for
14: end for

Input: array A allocated by vm malloc(H×W )
Input: 2-D array K[M,M]
Output: array B allocated by

vm malloc((H−M +1)× (W −M +1))

1: n← ∑
M−1
p=0 ∑

M−1
q=0 Kpq

2: for i ∈ {0 · · ·H−M} do
3: Bring in pages to be used in the following loop

to uncompressed region
4: for j ∈ {0 · · ·W −M} do
5: t← 0
6: for a ∈ {0 · · ·M−1} do

7: for b ∈ {0 · · ·M−1} do

8: p← read handle(A+(i+a)×W + j +b)
9: q← K[a][b]

10: t← t + p×q
11: end for
12: end for
13: write handle(B+ i× (W −K +1)+ j, t/n)
14: end for
15: end for

(a) (b)

Figure 4: Example of (a) original and (b) transformed convolution application

Variable: array A[N]
1: for i ∈ {0 · · ·N} do

2: A[i]← x
3: end for

Variable: array A allocated by vm malloc(N)
1: for i ∈ {0 · · ·N} do
2: check handle(A+ i)
3: write handle(A+ i, x)
4: end for

(a) (b)

Variable: array A allocated by vm malloc(N)
1: pnum← N/PAGESIZE
2: for i ∈ {0 · · · pnum} do
3: check handle(A+ i×PAGESIZE)
4: for j ∈ {0 · · ·PAGESIZE} do
5: write handle(A+ i×PAGESIZE+ j, x)
6: end for
7: end for

Variable: array A allocated by vm malloc(N)
1: pnum← N/PAGESIZE
2: for i ∈ {0 · · · pnum} do
3: check handle(A+ i×PAGESIZE)
4: base ptr← virtual to physical(A+ i×PAGESIZE)
5: for j ∈ {0 · · ·PAGESIZE} do
6: *base ptr← x
7: base ptr++
8: end for
9: end for

(c) (d)

Figure 5: Example of optimizations on an array access

Algorithm 1 Delta compression

Input: IN word stream
Output: OUT word stream
Variable: DATA word stream, TAPE delta stream
1: for i ∈ {1, · · · ,N} do

2: δ← IN[i] - IN[i-1]
3: if log2 δ≤MAXBITS then

4: TAPE[i]← δ
5: else
6: TAPE[i]← MAGIC CODE
7: DATA[i]← IN[i]
8: end if
9: OUT ← pack(TAPE, DATA)

10: end for

For example, in sensor network deployed for seabird habitat
monitoring [20] sensor nodes may be placed in petrel nests in
underground burrows. The temperature and humidity sensed
from one sensor node usually changes smoothly during a day,
except as a result of storms. In addition, the sensor data of
temperature and humidity from adjacent burrows are likely to
be similar; these data are usually transmitted within a cluster
of nodes before they are sent to the base station. Thus, sensor
nodes commonly contain highly-redundant data.

Algorithm 2 Delta decompression

Input: IN word stream
Output: OUT word stream
Variable: DATA word stream, TAPE delta stream
1: DATA, TAPE← unpack(IN)
2: for TAPE[i] in range of TAPE do
3: if TAPE[i] = MAGIC CODE then
4: OUT[i]← DATA[i]
5: else
6: δ← TAPE[i]
7: OUT[i]← OUT[i-1] + δ
8: end if
9: end for

A delta-based compression algorithm exploits regularity in
data: the difference between two adjacent data elements (delta)
usually requires fewer bits to store than the original data. Our
implementation of the delta compression and decompression al-
gorithms are presented in Algorithm 1 and Algorithm 2. The
algorithms are based on the observation that the majority of the
deltas can be stored within a pre-defined MAXBITS; if the delta
cannot be stored within MAXBITS, i.e., there is a sudden change
in sensed data, the raw data are stored and a MAGIC CODE is
recorded to indicate this abnormality. The algorithm also adapts
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1: check handle(buf+ count)
2: write handle(buf+ count, data)
3: count++

1: cur page← (buf+ count)/PAGESIZE
2: if cur page �= last page then
3: check handle(buf+ count)
4: end if
5: write handle(buf+ count, data)
6: count++
7: last page← cur page

(a) (b)

Figure 6: Example of (a) original and (b) transformed data ready(data) function

Number of bits to store deltas
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Figure 7: Histogram of compression bits

to the compressibility of pages by means of early termination.
When the number of deltas that exceed MAXBITS is above a
certain threshold, causing the “compressed” page to exceed its
original size before compression, the algorithm terminates and
reports the compressed page size as zero, indicating that this
page is not compressed.

In order to identify the MAXBITS value that provides the best
compression ratio, we statistically analyzed the sample sound
data collected by the Crossbow MICAz sensor node. Since
the analog-to-digital converter (ADC) on the MICAz gener-
ates a 10-bit output, the compression algorithm reads in 2 bytes
(16 bits) at a time and computes the delta on a 2 bytes basis.
Figure 7 shows that 95% of the deltas can be represented using
six bits. Therefore, in our implementation, MAXBITS is set to
six. Please note that this value may vary depending on the un-
derlying hardware of the sensor node, i.e., the bit width of the
ADC.

4.7 Summary

Figure 8 illustrates the procedure for automatically generat-
ing an executable from mid/high-level language source code
such as ANSI C with MEMMU. First, the memory require-
ment of the application is analyzed. If it is smaller than physical
RAM, compression is not necessary and therefore no transfor-
mations are performed. Otherwise the application code is trans-

executable
App2.exe

Source code
App1.c

byte code
App1.bc

byte code
App2.bc

Source code
App2.c

llvm front-end

memory access
and llvm

transformation

llvm c back-end

compiler libarary

larger than
RAM ?

memory usage
analysis

executable
App1.exe

Y

N

compiler

load
store
...

call check_handle()
call read_handle()
call write_handle()
...

check_handle()
read_handle()
write_handle()
...

Figure 8: Overview of technique

ferred to LLVM byte code by the LLVM compiler. After that,
memory load and store instructions are replaced with calls to
our handle access functions, i.e., check handle, read handle,
and write handle, meanwhile other transformations are per-
formed to enable the optimizations described in Section 4.5. A
call to a memory initialization routine is also inserted at the
beginning of the byte code. The modified byte code is then
converted back to high-level language via the LLVM back-end.
Finally, the modified application is compiled with the extended
library containing definition of our handle accessing functions
to generate an executable.

In the memory initialization routine, physical memory is di-
vided into three regions and the size of each region is computed
based on the application memory requirement and the estimated
compression ratio of MEMMU. Since runtime data compres-
sion ratio cannot be accurately decided at compile time, it is
possible that the runtime compression ratio is higher than the
predicted compression ratio, causing execution to stop when
both memory regions are full. Predicting the worst-case com-
pression ratio may guarantee the execution of application, how-
ever it can degrade performance as a result of more frequent
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Table 1: Filtering Benchmark

Orig. Unopt. Opt.

app. MEMMU MEMMU

RAM usage (B) 9,935 7,243 7,243

Buffer size (B) 9,728 9,728 9,728

Processing time (s) 1.24 2.31 1.35

Active Power (mW) 6.77 6.97 6.80

Average power (mW) 3.94 5.92 4.27

compression and decompression. Therefore, it is suggested that
users determine the compression ratio on sample data of their
application and set the MEMMU compression ratio appropri-
ately.

In our experiments, MEMMU is tested on TelosB motes that
support TinyOS [6]. TinyOS and its applications are written in
nesC [7]. NesC is an extension to the C programming language
that supports the structure and execution model of TinyOS.
TinyOS itself does not support dynamic memory allocation, so
there are only stack and global variables in the nesC program;
this makes analysis of the application memory requirement eas-
ier. Unfortunately LLVM does not have nesC front-end and
back-end, so users must extract the application kernel and com-
pile it with our modified LLVM, then put the generated C code
into original nesC program and compile it with the ncc compiler
to generate executable running on the mote.

5. EXPERIMENTAL RESULTS

This section presents the evaluation results of MEMMU us-
ing five representative applications in the wireless sensor net-
work domain. These benchmarks were executed on a TelosB
wireless sensor node. The TelosB is an MMU-less, low-power,
wireless module with integrated sensors, radio, antenna, and an
MSP430 microcontroller. It has 10 KB RAM and typically runs
TinyOS. The benchmarks are tested under three system settings:
running the original applications without MEMMU, with an un-
optimized version of MEMMU, and with an optimized version
of MEMMU. Four metrics were evaluated: memory usage, av-
erage power consumption, execution time, and processing rate.
Processing rate is defined as application data size divided by
execution time. Power measurements were taken using a Na-
tional Instruments 6034E data acquisition card attached to the
PCI bus of a host workstation running Linux. Power was com-
puted based on the measured voltage across a 10 Ω resistor in
series with the power supply. The experimental results show
that, with the exception of the image convolution benchmark,
the execution time overhead of all other four benchmarks are
below 10%.

5.1 Sound Filtering

The first benchmark is a sound filtering application. When
timer periodically fires, mote starts one-dimensional filtering
on collected audio data. The MSP430 microcontroller automat-
ically puts itself into a low power mode when the task stack
is empty and wakes up when the next timer event arrives; as
shown in Figure 9, the power waveform is close to square wave.
For this benchmark, we assume fixed application and input data
sizes (buffer sizes), and compare the memory usage to deter-
mine the amount of memory saved by using MEMMU.

Table 2: Convolution Benchmark
Orig. Unopt. Opt.

app. MEMMU MEMMU

RAM usage (B) 9,739 9,739 9,739

Input image size (B) 4,900 6,084 6,084

Output image size (B) 4,624 5,776 5,776

Execution time (s) 1.50 4.47 4.07

Processing rate (B/s) 6,349.33 2,653.24 2,914.00

Power (mW) 6.57 6.82 6.75

Table 1 shows results for this benchmark when running un-
der three system settings. The memory reduction achieved by
MEMMU is 9,935− 7,243 = 2,692 bytes, which is 27% of
the original memory requirement. The saved memory is avail-
able to store other data, which may be larger than 2,692 bytes
as a result of compression. For this benchmark, optimization
methods 1, 3, and 4 were applied. The processing time and av-
erage power consumption overhead of unoptimized MEMMU
are 86.3% and 50.3%, while after optimization, the overheads
are reduced to 8.9% and 8.4%, respectively. Figure 9 depicts
the power consumption under three scenarios. We believe the
power overhead mainly comes from the following two sources.

1. The mote stays in active mode longer when MEMMU is
used. The original application has the shortest data pro-
cessing time while unoptimized MEMMU has an 86.3%
execution time penalty. The optimization techniques sig-
nificantly reduce the performance penalty, increasing the
processing rate by 41.6% compared to the unoptimized
version.

2. Active power consumption also increases slightly as a re-
sult of MEMMU’s computations; the optimized MEMMU
has a 0.4% active power penalty.

5.2 Image Convolution

Our second benchmark implements a convolution algorithm
in which a matrix is convolved with a 3× 3 coefficient kernel
matrix. Note that 2-D convolution needs to be used for visual
images. In order to permit consistent input to allow fair com-
parisons for each test case, identical images were transferred to
the mote via USB. The input is a gray-scale image of a cloudy
sky. Table 2 compares the input and output image sizes, RAM
usage, processing rate, execution time, and average power con-
sumption of the benchmark application under three settings.
The results indicate that using the same amount of physical
RAM, MEMMU allows the application to handle images that
require more memory than is physically available: the unmodi-
fied TelosB can only handle an input image of size smaller than
4.8 KB, while MEMMU allows the mote to process images that
are 25% larger (6 KB). Since the delta compression algorithm is
less efficient for 8-bit images, the compression ratio in this case
is 62.4%. We believe a more efficient compression algorithm
designed for image data will result in a higher usable memory
improvement ratio.

Unfortunately, the increase in image size comes with a cost:
using MEMMU results in a 58.2% decrease in processing rate
and 3.8% increase in power consumption. To reduce perfor-
mance and power consumption penalties, optimization meth-
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Figure 9: Power consumption of the sound-filtering benchmark under three settings

Table 3: Light Sampling Benchmark

Orig. Unopt. Opt.

app. MEMMU MEMMU

RAM usage (B) 9,735 9,735 9,735

Buffer size (B) 9,488 13,312 13,312

Processing time (s) 8.20 11.89 11.82

Processing rate(B/s) 1,157.07 1,119.60 1,126.23

Power (mW) 99.50 105.35 105.04

ods 1, 4, and 5 (as described in Section 4.5) were applied to
this benchmark. After optimization, the processing rate and
power consumption overhead was reduced to 54.1% and 2.7%,
respectively. Please note that the image convolution benchmark
was the only benchmark for which MEMMU has a performance
overhead higher than 10% after optimization. The performance
penalty for this benchmark is especially high. We suspect that
this is caused by frequent updates to the LRU list resulting from
memory access sequences that frequently change from page to
page.

5.3 Data Sampling

The third benchmark is a sensor data sampling application.
In this benchmark, the mote periodically senses the light level
and transmits the sensed data when its buffer is full. Related ap-
plications might first attempt to find trends and patterns in the
data, making a large buffer size useful. Optimization methods
1, 3, and 5 were applied to this benchmark. Table 3 shows that
with MEMMU, buffer size is increased by 40.3% with 3.2%
decrease in processing rate and 5.9% overhead on power con-
sumption. Furthermore, optimization techniques reduced the
processing rate decrease to 2.7% and the power consumption
overhead to 5.6%.

The optimization techniques do not make a big difference
for this benchmark because the basic technique without opti-
mization works well. There are two reasons for its good per-
formance. First, part of the execution delay is hidden by the
sampling period. Second, the data sampling application writes
to the buffer in a strictly sequential pattern, resulting in relative
less compression and decompression.

5.4 Covariance Matrix Computation

The fourth benchmark is a covariance matrix computation
application. This application is useful in statistical analysis
and data reduction. For example, it is the first stage of prin-
cipal component analysis. Each vector contains a number of

Table 4: Covariance Matrix Comp. Benchmark

Orig. Unopt. Opt.

app. MEMMU MEMMU

RAM usage (B) 9,643 9,643 9,643

Buffer size (B) 9,430 13,056 13,056

Processing time (s) 0.47 2.53 0.68

Processing rate (B/s) 19,894.51 5,170.69 19,200.00

Power (mW) 103.88 122.46 122.46

Table 5: Correlation Computation Benchmark

Orig. Unopt. Opt.

app. MEMMU MEMMU

RAM usage (B) 6,669 6,669 6,669

Signal size (B) 6,460 9,728 9,728

Processing time (s) 7.98 28.3 13.00

Processing rate (B/s) 809.52 343.75 748.31

Power (mW) 102.87 103.39 103.35

scalars with different attributes, e.g., different types of sensor
data. Optimization methods 1, 2, and 5 were applied to this
benchmark. Table 4 shows that MEMMU permits more vec-
tors to be processed at a single time: the buffer size increases
by 38.5%. Although the performance penalty of unoptimized
MEMMU is huge (the processing rate is decreased by 74%), it
is greatly reduced with optimizations. The processing rate us-
ing optimized technique is only 3.5% lower than the original
application, while the amount of usable memory increases by
38.5%. The penalties on average power consumption of both
unoptimized and optimized MEMMU are 17.9%.

5.5 Correlation Calculation

The last benchmark performs sound propagation delay es-
timation based on correlation calculation. This application is
used to determine the relative locations of sensors. Optimiza-
tion methods 1, 2, and 5 were applied to this benchmark. As
shown in Table 5, MEMMU increases the size of the input
data by 50.6%. Although unoptimized MEMMU lowers the
processing rate by 57.5%, the optimized MEMMU reduces the
processing rate by only 7.6%. The penalties to average power
consumption of both unoptimized and optimized MEMMU are
as low as 0.5%.
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6. CONCLUSIONS

We have described MEMMU, an efficient software-based
technique to increase usable memory in MMU-less embedded
systems via automated on-line compression and decompres-
sion of in-RAM data. A number of compile-time and run-time
optimizations are used to minimize its impact on the perfor-
mance and power consumption of the target systems. An effi-
cient delta-based compression algorithm was designed for sen-
sor data compression. MEMMU was evaluated using a number
of representative wireless sensor network applications. Exper-
imental results indicate that the optimization technique effec-
tively improve MEMMU’s performance and that MEMMU is
capable of significantly increasing usable memory with small
performance and power consumption penalties. We plan to re-
lease MEMMU for free academic and non-profit use [17].

7. REFERENCES

[1] ABRACH, H., BHATTI, S., CARLSON, J., DAI, H., ROSE,

J., SHETH, A., SHUCKER, B., AND HAN, R. MANTIS:

System support for MultimodAl NeTworks of In-situ

Sensors. In Proc. Int. Wkshp. Wireless Sensor Networks and

Applications (Sept. 2003), pp. 50–59.

[2] BISWAS, S., SIMPSON, M., AND BARUA, R. Memory

overflow protection for embedded systems using run-time

checks, reuse and compression. In Proc. Int. Conf.

Compilers, Architecture & Synthesis for Embedded Systems

(Sept. 2004), pp. 280–291.

[3] CHOUDHURI, S., AND GIVARGIS, T. Software virtual

memory management for MMU-less embedded systems.

Tech. rep., Center for Embedded Computer Systems,

University of California, Irvine, Nov. 2005.

[4] DOUGLIS, F. The compression cache: Using on-line

compression to extend physical memory. In Proc. USENIX

Conf. (Jan. 1993), pp. 519–529.

[5] GANESAN, P., VENUGOPALAN, R., PEDDABACHAGARI,

P., DEAN, A., MUELLER, F., AND SICHITIU, M.

Analyzing and modeling encryption overhead for sensor

network nodes. In Proc. Int. Conf. on Wireless Sensor

Networks and Applications (Sept. 2003), pp. 151–159.

[6] GAY, D., LEVIS, P., AND CULLER, D. Software design

patterns for TinyOS. In Proc. Languages, Compilers, and

Tools for Embedded Systems (June 2005), pp. 40–49.

[7] GAY, D., LEVIS, P., CULLER, D., AND BREWER, E. nesC

1.1 language reference manual, May 2003.

[8] GEHRKE, J., AND MADDEN, S. Query processing in sensor

networks. Pervasive Computing 3, 1 (Jan. 2004), 46–55.

[9] GUESTRIN, C., BODI, P., THIBAU, R., PASKI, M., AND

MADDE, S. Distributed regression: an efficient framework

for modeling sensor network data. In Proc. Int. Symp. on

Information Processing in Sensor Networks (Apr. 2004),

pp. 1–10.

[10] HELLERSTEIN, J. M., AND WANG, W. Optimization of

in-network data reduction. In Proc. of Int. Wkshp. on Data

Management for Sensor Networks (Aug. 2004), pp. 40–47.

[11] KARLOF, C., AND WAGNER, D. Secure routing in wireless

sensor networks: Attacks and countermeasures. Elsevier’s

AdHoc Networks J. 1, 2–3 (Sept. 2003), 293–315.

[12] LATTNER, C., AND ADVE, V. LLVM: A compilation

framework for lifelong program analysis & transformation.

In Proc. Int. Symp. Code Generation and Optimization (Mar.

2004), pp. 75–86.

[13] LEKATSAS, H., HENKEL, J., AND WOLF, W. Code

compression for low power embedded system design. In

Proc. Design Automation Conf. (June 2000), pp. 294–299.

[14] LI, D., WONG, K., HU, Y., AND SAYEED, A. Detection,

classification, and tracking of targets. Signal Processing

Magazine 19, 2 (Mar. 2002), 17–29.

[15] LZO real-time data compression library.

http://www.oberhumer.com/opensource/lzo.

[16] MADDEN, S., FRANKLIN, M., HELLERSTEIN, J., AND

HONG, W. TAG: a tiny AGgregation service for ad-hoc

sensor networks. In Proc. Symp. on Operating Systems

Design and Implementation (Dec. 2002), pp. 131–146.

[17] Memory expansion on embedded systems without MMUs.

MEMMU link at http://www.eecs.northwestern.edu/

˜dickrp/projects.html.

[18] NATH, S., GIBBONS, P. B., SESHAN, S., AND ANDERSON,

Z. R. Synopsis diffusion for robust aggregation in sensor

networks. In Proc. Int. Conf. on Embedded Networked

Sensor Systems (Nov. 2004), pp. 250–262.

[19] PEREIRA, C., GUPTA, S., NIYOGI, K., LAZARIDIS, I.,

MEHROTRA, S., AND GUPTA, R. Energy efficient

communication for reliability and quality aware sensor

networks. Tech. rep., University of California at Irvine, Apr.

2003.

[20] POLASTRE, J., SZEWCZYK, R., MAINWARING, A.,

CULLER, D., AND ANDERSON, J. Analysis of wireless

sensor networks for habitat monitoring. Wireless sensor

networks (2004), 399–423.

[21] POTTIE, G. J., AND KAISER, W. J. Wireless integrated

network sensors. Commun. ACM 43, 5 (May 2000), 51–58.

[22] PRADHAN, S. S., KUSUMA, J., AND RAMCHANDRAN, K.

Distributed compression in a dense microsensor network.

IEEE Signal Processing Magazine 19, 2 (Mar. 2002), 51–60.

[23] RIZZO, L. A very fast algorithm for RAM compression.

Operating Systems Review 31, 2 (Apr. 1997), 36–45.

[24] TREMAINE, B., FRANASZEK, P. A., ROBINSON, J. T.,

SCHULZ, C. O., SMITH, T. B., WAZLOWSKI, M., AND

BLAND, P. M. IBM memory expansion technology. IBM J.

of Research and Development 45, 2 (Mar. 2001), 271–285.

[25] TUDUCE, I. C., AND GROSS, T. Adaptive main memory

compression. In Proc. USENIX Conf. (Apr. 2005),

pp. 237–250.

[26] WILSON, P. R., KAPLAN, S. F., AND SMARAGDAKIS, Y.

The case for compressed caching in virtual memory systems.

In Proc. USENIX Conf. (Apr. 1999), pp. 101–116.

[27] YANG, L., DICK, R. P., LEKATSAS, H., AND

CHAKRADHAR, S. CRAMES: Compressed RAM for

embedded systems. In Proc. Int. Conf. Hardware/Software

Codesign and System Synthesis (Sept. 2005).

[28] YANG, L., LEKATSAS, H., AND DICK, R. P.

High-performance operating system controlled memory

compression. In Proc. Design Automation Conf. (July 2006).

135



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


