
Real-Time Interfaces for Interface-Based Design of
Real-Time Systems with Fixed Priority Scheduling

Ernesto Wandeler Lothar Thiele
Computer Engineering and Networks Laboratory

Swiss Federal Institute of Technology (ETH)
8092 Zurich, Switzerland

{wandeler,thiele}@tik.ee.ethz.ch

ABSTRACT
The central idea behind interface-based design is to describe
components by a component interface. In contrast to a com-
ponent description that describes what a component does,
a component interface describes how a component can be
used. A well designed component interface provides enough
information to decide whether two or more components can
work together properly in a system. In this work, we expand
the idea of interface-based design to the area of real-time
system design. Here, the term of ’working together prop-
erly’ refers to questions like: Does the composed system
satisfy all requested real-time properties such as delay and
throughput constraints? For this, we introduce Real-Time
Interfaces, that connect the principles of Real-Time Calcu-
lus with Interface-based Design. In contrast to traditional
real-time system design, in interface-based real-time system
design the compliance to real-time constraints is checked
at composition time. This leads to faster design processes
and partly removes the need for the classical binary search
approach to find an economically dimensioned system. Fur-
ther, interface-based real-time system design also benefits
from the properties of incremental design and independent
implementability.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and Embedded
Systems; C.4 [Computer Systems Organization]: Per-
formance of Systems—Modeling Techniques

General Terms
Performance, Design, Theory.

Keywords
Performance Analysis, Real-Time Calculus, Real-Time In-
terfaces, Hierarchical Scheduling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

1. INTRODUCTION
One of the major challenges in the design process of com-

plex real-time embedded systems is to analyze essential char-
acteristics of a system architecture in an early design stage,
to support the choice of important design decisions before
much time is invested in detailed implementations. For real-
time embedded systems, such essential system characteris-
tics are for example whether maximum delay and through-
put constraints are met, what the on-chip memory require-
ments will be, or how different architectural elements must
be dimensioned.

The system-level analysis of embedded systems is cur-
rently mainly based on simulation, using for example Sys-
temC, or trace based simulation as in [9]. While these tech-
niques allow modeling and simulation of complex systems
in any level of detail, simulation based approaches do not
allow to obtain worst-case results, and moreover they often
suffer from long run-times.

In contrast, formal analytical methods typically allow to
obtain hard bounded results for embedded real-time sys-
tem designs. An analytical framework for system level per-
formance analysis was proposed in [10]. This framework
uses a number of well know abstractions to capture the tim-
ing behavior of event streams and provides additional in-
terfaces between them. Traditional results from the area of
real-time schedulability analysis are then used to analyze a
component-based real-time system design.

Another method for component-based analysis and design
of real-time systems was proposed in [17]. This framework
uses the notion and concept of traditional software compo-
nent standards such as CORBA and proposes extensions for
the support of real-time services. The method proposed in
[17] is however tailored towards software engineering and
does not incorporate any notion of hardware resources.

Another approach of composing real-time components is
by making use of hierarchical scheduling, see [11]. The ap-
proach in [11] is however restricted to periodic tasks and a
periodic resource model.

In the domain of communication networks, powerful ab-
stractions have been developed to model flow of data through
a network. In particular Network Calculus [8] provides means
to deterministically reason about timing properties of data
flows in queuing networks, Network Calculus can thereby be
considered as a queuing theory that provides hard bounded
worst-case/best-case results. Real-Time Calculus [13] ex-
tends the basic concepts of Network Calculus to the do-
main of real-time embedded systems and in [2] a unifying
approach to Modular Performance Analysis with Real-Time

80

Calculus has been proposed. It is based on a general event
model, allows for hierarchical scheduling and arbitration,
and can take computation and communication resources into
account. Modular Performance Analysis with Real-Time
Calculus has been successfully used in several case studies
for hard real-time system analysis, see e.g. [3] or [16].

The performance analysis methods mentioned above have
in common that they are applied to analyze a component-
based real-time system design a posteriori. Thus, with these
methods a real-time system gets first designed and dimen-
sioned before performance analysis is applied. The analysis
results will then reveal whether a certain system architecture
will meet all real-time requirements, or not.

In difference to this two-step approach is the idea of interface-
based design [4, 7], where components are described by a
component interface. In contrast to a component descrip-
tion that describes what a component does, a component
interface describes how a component can be used. Through
input assumptions, a component interface describes the ex-
pectations a component has about the other components in
a system and through output guarantees, a component in-
terface tells other components in a system what they can
expect from this component. The major goal of a com-
ponent interface is then to provide enough information to
decide whether two or more components can work together
properly.

When we expand this idea of interface-based design to
the area of real-time system design, we need a component
system with interfaces that provide enough information to
decide whether two or more real-time components work to-
gether properly. Where in the case of such real-time inter-
faces, the term ’properly’ refers to questions like: Does the
composed system satisfy all requested real-time properties
such as delay and throughput constraints?

Consequently, in contrast to traditional design, in interface-
based real-time system design the compliance to real-time
constraints is checked at composition time. This leads to
faster design processes and partly removes the need for the
classical binary search approach to find an economically di-
mensioned system. Further, interface-based real-time sys-
tem design also benefits from the properties of incremental
design and independent implementability that are elemen-
tary features of interface-based design.

Contributions of this work:

• We present and define the notion of Real-Time Inter-
faces. Real-Time Interfaces as proposed in this paper
are a special instance of assume/guarantee interfaces
and they connect the principles of Real-Time Calculus
and Interface-based Design.

• We introduce a component model with Real-Time In-
terfaces, that defines the building blocks for interface-
based design of real-time systems. For this, we define
components that model hardware resources, compo-
nents that model event-streams as well as components
that model software-processes for preemptive fixed-
priority scheduling.

• We show the applicability of Real-Time Interfaces in
the area of real-time system design and we show how
interface-based design of real-time systems benefits from
the properties of incremental design and independent
implementability that are elementary features of inter-
face-based design.

• Finally, we show that the properties of Real-Time In-
terfaces also lead to some interesting on-line applica-
tions. Namely in the areas of on-line service and QoS-
adaptation as well as in the area of on-line admission
tests in real-time systems, where Real-Time Interfaces
seem to be a natural and expressive way to capture
at run-time the information required by such on-line
applications.

2. INTERFACE-BASED DESIGN
The definition of Real-Time Interfaces follows the prin-

ciples of interface-based design as described by de Alfaro
and Henzinger in [4] and more recently [7]. Whereas most
previous results relate to stateful interface languages such as
interface automata [6], or extensions towards the use of time
[5] or resources [1], the Real-Time Interfaces proposed in this
paper are based on a stateless assume/guarantee language,
see [4]. We shortly describe the underlying principles of
interface-based design as one of the two major prerequisites
of the new approach to the design of composable real-time
systems, for details see [7].

The major goal of the interface of a hardware-software
component is to provide enough information to decide whether
two or more components work together properly. In case of
Real-Time Interfaces, the term ’properly’ refers to questions
like: Does the composed system satisfy all requested real-
time properties such as delay and throughput constraints?
Does the composed system satisfy imposed (buffer) memory
constraints?

In case of assume/guarantee interfaces, a component in-
terface has a set of disjoint input and output variables XI

and XO , respectively. As expected, two interfaces F and
G can be composed by connecting input variables of one to
output variables of the other. The composed interface is
denoted as F‖G and has as its input variables all not con-
nected input variables of F and G and as output variables
all not connected outputs of F and G.

In order to decide, whether two components can work to-
gether properly, the corresponding interfaces are checked for
compatibility. To this end, an assume/guarantee interface
F contains predicates φI

F and φO
F on the values of its input

and output variables, respectively. The input assumption
φI

F and output guarantee φO
F represent a precondition and

postcondition of the interface, respectively. In other words,
the interface F has the property φI

F ⇒ φO
F , i.e. if its input

variables satisfy φI
F then the output variables satisfy φO

F .
An isolated component has open inputs and the associated
interface has free input variables.

After composing all the components of a system, there are
no open inputs any more and therefore, all input variables
of the corresponding interfaces are connected to output vari-
ables of other components. If the final system has some in-
puts to the environment, it must be closed by modeling the
environment by an appropriate interface. Interface-based
design supports incremental design (among other properties
like independent implementability). To this end, we would
like to compose two interfaces and check for compatibility
without closing the system. As a result, we come to an
existential interpretation of interface compatibility, see [4]:
Two interfaces F and G are compatible, if there exist ad-
missible values of free input variables of F‖G (i.e. satisfying
the input assumptions) such that all other input assump-
tions are also satisfied: (∀XO

F ∪ XO
G)(φO

F ∧ φO
G ⇒ φI

F ∧ φI
G).

81

In other words, the new input interface φI
F‖G is a predicate

(or assumption) on the free input variables of the composed
interfaces F‖G such that all internal predicates are satis-
fied. This way, interfaces can be added one-by-one and the
assumptions on the free input variables are getting increas-
ingly tight. Note that the formal definitions of interfaces,
compatibility, incremental design, and refinement are de-
scribed in [4] and [7].

The Real-Time Interfaces as proposed in this paper can
be considered as a special instance of assume/guarantee in-
terfaces tailored towards guarantees on the delays of events.
On the other hand, there are essential differences to previous
work in the interpretation of input/ouput variables [4, 6] of
interfaces and in the handling of resources and constraints
[1, 5]:

• The variables of interfaces are not directly related to
the sequence or timing of events. They contain al-
ready abstractions of timed event streams in the form
of Variability Characterization Curves, see e.g. [13,
12, 2]. This way, we connect the successful theory of
Real-Time Calculus with interface-based design.

• Requirements such as delay and buffer space are part
of the input variables and therefore, are part of a com-
ponent interface. As a result, they can be modified
by a component and are subject to input assumptions
and output guarantees.

• Resources are considered to be part of a component
interface. Therefore, their availability can be modified
by a component and input/output predicates can be
applied.

This way, composability is achieved in terms of (a) event
streams, (b) resources usage and (c) constraints as they can
be propagated through a set of hardware/software compo-
nents.

3. REAL-TIME INTERFACES
As described in the previous section, Real-Time Interfaces

as proposed in this paper combine principles of interface-
based design with principles of real-time system design and
Real-Time Calculus, see e.g. [13, 12, 2]. This section de-
scribes the meaning of input and output variables of a Real-
Time Interface and the associated assume/guarantee predi-
cates.

3.1 Component, Abstract Component and In-
terface

In this work, we interpret a single hardware/software com-
ponent as a task that is executed on a hardware resource.
Each component processes an incoming event stream. The
component is thereby triggered by the events of the event
stream, and a fully preemptable, independent task is instan-
tiated at every event arrival, to process the incoming event.
Active tasks are processed in a greedy fashion while being
restricted by the availability of resources. Resources that
are not consumed by the component are available for other
components.

The first step in deriving Real-Time Interfaces involves
the concept of an abstract component. In comparison to
the above described concrete hardware/software component,
an abstract component processes an abstract event stream.

The properties of the concrete event stream that enters the
hardware/software component are characterized by a Vari-
ability Characterization Curve (VCC) which is called arrival
curve α(Δ) following [8]. It describes the properties of event
streams that are essential for real-time analysis, see [13, 12].
In addition, the hardware resource which enables the exe-
cution of the task is modeled by means of a service curve
β(Δ), see also [8]. This Variability Characterization Curve
describes the essential properties of the resources available
for the task execution. In our simple scenario, the abstract
component has only one output β′(Δ) that describes the
remaining resource after executing the task for each input
event.

Finally, the Real-Time Interface exports the properties of
a component that are essential in order to prove compatibil-
ity, to enable incremental design and to allow independent
implementability. There are two classes of input and output
variables of a Real-Time Interface: The value of a service
variable is a service curve β(Δ) whereas the value of an ar-
rival variable consists of an arrival curve α(Δ) and an asso-
ciated maximal event delay d. The delay d denotes the max-
imal delay between the arrival of an event and the required
finishing time of the associated task execution. To each in-
put variable x and output variable y there are associated
assume and guarantee predicates φI

x and φO
y , respectively.

In this paper, we consider a very simple scenario only.
Components reflect software tasks, the scheduling policy is
restricted to preemptive fixed priority, and the tasks asso-
ciated to the different components are independent of each
other. But opposite to the usual assumption of periodic
event streams (or at most periodic with jitter), we allow
for an arbitrary burstiness of the incoming event streams.
It should be noted that the very same principles described
in this paper can not only be applied to other constraints
such as buffer and memory but also to more general scenar-
ios involving communication resources, distributed systems,
other scheduling policies such as EDF and TDMA and much
more detailed characterizations of workload properties, see
e.g. [14, 15].

3.2 Variability Characterization Curves
As described above, the timing characterization of event

and resource streams in abstract components and Real-Time
Interfaces are based on Variability Characterization Curves
(VCC) which substantially generalize the classical represen-
tations such as sporadic, periodic or periodic with jitter.

An event streams is described using an arrival curve α(Δ) ∈
R

≥0, Δ ∈ R
≥0 which provides an upper bound on the num-

ber of events in any time interval of length Δ. In particu-
lar, there are at most α(Δ) events within the time interval
[t, t + Δ) for all t ≥ 0.

In a similar way, the resource availability is characterized
using a service curve β(Δ) ∈ R

≥0, Δ ∈ R
≥0. This VCC

provides a lower bound on the available service in any time
interval of length Δ, i.e. in any time interval of length Δ at
least β(Δ) events can be processed.

Following the results from network calculus and Real-
Time Calculus see [8] and [13, 12], the following relations
can be derived:

• Remaining Service Curve: If a task with arrival
curve α(Δ) is executed on a resource with availability
β(Δ), then the remaining resource available to other
lower-priority tasks can be bounded by the service

82

curve:

β′(Δ) = sup
0≤λ≤Δ

{β(λ) − α(λ)}
def
= RT (β,α) (1)

• Delay: The maximum delay dmax of an event process-
ing for arrival curve α(Δ) and service curve β(Δ) is
bounded by the maximal horizontal distance between
α(Δ) and β(Δ):

dmax ≤ sup
Δ≥0

{inf{τ ≥ 0 : α(Δ) ≤ β(Δ + τ)}}
def
= Del(β, α) (2)

Note that the arrival and service curves can be determined
using traces (by using a sliding window approach), analytic
characterization of the corresponding stream (periodic, peri-
odic with jitter, sporadic), by modular performance analysis
or by using data sheets of the used hardware resources, see
e.g. [2, 14].

Figure 1 shows examples of the arrival curves α(Δ) for
event-streams with some typical analytic timing character-
izations. Note, that following [13], event-streams are typi-
cally described by a set of lower and upper arrival curves.
Thus, timing of the event-streams in Fig. 1 can be mod-
eled losslessly. For Real-Time Interfaces we however only
consider the upper arrival curve α(Δ) at the moment.

Δ

1

2

3

4

Δ

1

2

3

4

Δ

1

2

3

4

periodic periodic w/ jitter periodic w/ burst

p 2p
p-j p+j 2p+j2p-jd

α(Δ)

p 2p p 2p

α(Δ) α(Δ)
5 5 5

#events

Figure 1: Upper (thick) and lower (thin) arrival
curves for a periodic, a periodic with jitter and a
periodic with bursts event stream.

3.3 Interface Variables and Predicates
A Real-Time Interface may have input and output vari-

ables related to event streams (arrival) and resource avail-
ability (service). The value of an arrival variable consists
of the arrival curve α(Δ) and the requested maximal event
delay d. The associated output guarantee φO contains the
bounds α̂G(Δ) and d̂G which are part of the component
interface. The predicate guarantees that the provided ar-
rival curve satisfies α(Δ) ≤ α̂G(Δ) for all Δ and that the

requested maximal delay d is larger than d̂G, see Table 1.

Table 1: Assume/guarantee predicates of the vari-
ables in a Real-Time Interface.

var. type value input assumption φI output guarantee φO

arrival α, d (α ≤ α̂A) ∧ (d ≥ d̂A) (α ≤ α̂G) ∧ (d ≥ d̂G)

service β β ≥ β̂A β ≥ β̂G

In a similar way, the input predicate φI reflects the as-
sumption that the arrival curve of the incoming event stream

satisfies α(Δ) ≤ α̂A(Δ) for all Δ, and that the requested

maximum delay satisfies d ≥ d̂A. The values of the re-
source variables (service) are constraint by corresponding
assume/guarantee predicates, see Table 1.

In order to determine whether two Real-Time Interfaces
are compatible, we need to check the relation φO ⇒ φI for
each connection, see Section 2. An arrival connection is
compatible if

(d̂A ≤ d̂G) ∧ (α̂A(Δ) ≥ α̂G(Δ)) ∀Δ ≥ 0

and a service connection is compatible if

β̂A(Δ) ≤ β̂G(Δ) ∀Δ ≥ 0

Two components are compatible if all internal connections
are compatible and if all open input predicates and all out-
put predicates are still satisfiable.

The next section describes the relations between the com-
ponent interface functions α̂A(Δ), α̂G(Δ), d̂A, d̂G, β̂A(Δ)

and β̂G(Δ) in a real-time component system.

4. A COMPONENT SYSTEM WITH REAL-
TIME INTERFACES

Let us recall, that for the design of real-time systems,
we basically distinguish three different types of system el-
ements that are used as building blocks to build together
a real-time system. Firstly, a real-time system contains a
set of hardware resources, such as CPU’s, DSP’s or buses,
that provide computing and communication services within
a real-time system. Secondly, a real-time system contains
a set of real-time load specifications, that describe how the
system is being used by the environment, i.e. how much
load arriving events on an incoming event-stream generate,
and what the delay constraints of an event-stream are. And
finally, a real-time system contains a set of processes, that
use the available system services to process the incoming
real-time event-streams. Different processes may share the
available system services, and the method of sharing is de-
fined by a scheduling policy.

4.1 Service Components

Definition 1 (Serivce Component). A service com-
ponent models a computing or communication resource. The
Real-Time Interface of a service component has a single ser-
vice output variable with the output guarantee

φO = (β ≥ β̂G) (3)

Through the output guarantee of its Real-Time Interface,
a service components expresses that the service β(Δ), that
is provided by the component on its service output, is always
larger or equal β̂G(Δ) for any time interval Δ. The left-most
component in Figure 2 depicts a service component.

4.2 Load Components

Definition 2 (Load Component). A load component
models a real-time load specification. The Real-Time Inter-
face of a load component has a single arrival output variable
with the output guarantee

φO = (α ≤ α̂G) ∧ (d ≥ d̂G) (4)

83

Service Comp. Load Comp.

α , d
^G G^

Proc. Comp.

β , α , d, β
^^ 'G^A A

β
^G ^A

Figure 2: A service component (left), a load compo-
nent (middle) and a process component (right).

Through the output guarantee of its Real-Time Interface,
a load component expresses that the load α(Δ) that will be
emitted through its arrival output is always less or equal
α̂G(Δ) for any time interval Δ, and that the delay require-

ment d for this load is greater or equal d̂G. The component
in the middle of Figure 2 depicts a load component.

4.3 Process Components for FP

Definition 3 (Process Component for FP). A pro-
cess component for preemptive fixed priority scheduling mod-
els a process in a real-time system, that shares system ser-
vices with a fixed priority scheduling strategy, and that uses
the available system services to process real-time loads. The
Real-Time Interface of a process component for FP schedul-
ing has an arrival input variable, a service input variable,
and a service output variable. The interface has the input
assumption

φI = (d ≥ d̂A) ∧ (α ≤ α̂A) ∧ (β ≥ β̂A) (5)

and the output guarantee

φO = (β′ ≥ β̂
′G) (6)

With the input assumptions and the output guarantees
of its Real-Time Interface, a process component for fixed
priority scheduling expresses that whenever (a) the service
β(Δ) that is provided to the component on its service input

is larger or equal β̂A(Δ) for any Δ and (b) the load α(Δ)
that arrives at the component on its arrival input is less
or equal α̂A(Δ) for any Δ and has a maximum required

delay that is greater or equal d̂A, then (i) the arriving load
can be processed in real-time, i.e. with a guaranteed delay
dmax ≤ d̂A ≤ d̂G, and (ii) the service β′(Δ) that is provided
by the component on its service output is always larger or

equal β̂
′G(Δ) for any time interval Δ, and can be used by

lower-priority processes.
From the different component interfaces in Fig. 2, we see

that we can build interface models of real-time systems by
connecting the arrival output of load components to the ar-
rival input of process components, and by connecting the
service output of service and process components to the ser-
vice input of process components. As already alluded above,
the order in which process components are connected deter-
mine their priority for preemptive fixed priority scheduling
on a resource. The process component that is directly con-
nected to a service component is processed with priority
P = 1, while the next lower process component only gets the
service that is left over by the first process component, and
is therefore processed with priority P = 2. The next lower
process component is then processed with priority P = 3,
and so on.

During composition of a process component interface with
other service, arrival and process component interfaces, the
different interfaces share information on their input assump-
tions and output guarantees. A part of an interface compo-
sition with the involved information sharing is depicted in
Fig. 3.

β
^'A

β
^A

Load Comp.

α , d
^G G^

A α , d

 α , d
^G G^

β
^'A

β
^G

^ A^

Proc. Comp.

β , α , d, β
^^ 'G^A A ^A

β
^'G

β
^G

Figure 3: Information-sharing between interface
components during composition.

During composition with other interfaces, the equations
(7)-(10) define the relations between input assumptions and
output guarantees in every process component for preemp-
tive fixed priority scheduling:

β̂
′G = RT (β̂G, α̂G) (7)

β̂A = max
n

α̂G(Δ − d̂G), RT−β(β̂
′A, α̂G)

o
(8)

α̂A = min
n

β̂G(Δ + d̂G), RT−α(β̂
′A, β̂G)

o
(9)

d̂A = Del(β̂G, α̂G) (10)

with

RT−α(β′, β)(Δ) = β(Δ + λ) − β′(Δ + λ)

for λ = sup
˘
τ : β′(Δ + τ) = β′(Δ)

¯
(11)

and

RT−β(β′, α)(Δ) = β′(Δ − λ) + α(Δ − λ)

for λ = sup
˘
τ : β′(Δ − τ) = β′(Δ)

¯
(12)

While (7) and (10) can be derived directly from (1) and
(2) that are well-known results from the area of network

calculus [8], equations (8) and (9) for β̂A and α̂A are new
results.

Equation (8) is derived from the fact that β̂A needs to
satisfy the delay constraint

β̂A(Δ) ≥ α̂G(Δ − d̂G)

and the resource constraint

β̂A(Δ) ≥ inf

j
β : β̂

′A(Δ) = sup
0≥λ≥Δ

{β(λ) − α̂G(λ)}
ff

For taking into account the resource constraint, we construct
the inverse of the resource transformation RT (β, α) with
respect to β, as the smallest β(Δ) such that (1) holds. This

inverse is denoted as RT−β(β′, α)(Δ), and β̂A is then the
maximum of both expressions above.

84

Analogously, equation (9) is derived from the fact that α̂A

needs to satisfy the delay constraint

α̂A(Δ) ≤ β̂G(Δ + d̂G)

and the resource constraint

α̂A(Δ) ≤ sup

j
α : β̂

′A(Δ) = sup
0≥λ≥Δ

{β̂G(λ) − α(λ)}
ff

For taking into account the resource constraint, we construct
again the inverse of the resource transformation RT (β,α),
this time with respect to α, as the largest α(Δ) such that
(1) holds. This inverse is denoted as RT−α(β′, β)(Δ), and
α̂A is then the minimum of both expressions above.

4.4 Local Compatibility Checking
The presented component system for real-time systems

with fixed priority scheduling possesses a property that we
will refer to as ability for local compatibility checking.

While syntactical composability checking is usually a com-
putationally simple and straight-forward process for most
interface theories, this is in general not the case for seman-
tical compatibility checking of two interfaces.

For the presented component system however, semantical
compatibility checking of two interfaces is computationally
fast, whenever the two interfaces under consideration only
share one single connection, i.e. whenever the outputs of
one interface provide only one single input for the other
interface, or vice versa. If this property holds, semantical
compatibility checking can be done locally, i.e. only the
local interface predicates of the two components that get
connected must be considered during compatibility check-
ing.

This is true, because in any composed interface of the pre-
sented component system, through evaluation of (7)-(10),
the local interface predicates contain enough information of
the complete system, to check the compatibility of the com-
plete interface with any other interface that is only locally
connected.

In practice, this means that when we are given two inter-
faces that share only one single interface connection, then
the act of semantical compatibility checking of these two in-
terfaces can be done in O(n + n′) or in O(m + p) when the
two interfaces share only a service interface connection or
only an arrival interface connection, respectively. Thereby
n and n′ denote the number of segments that are used to

describe β̂G and β̂
′A, respectively, and m and p denote the

number of segments that are used to describe α̂A and α̂G,
respectively. In both cases, O(n + n′) and O(m + p) are

needed to check that β̂G ≥ β̂
′A or α̂A ≥ α̂G, respectively,

and for arrival interfaces O(m) are additionally needed to

adapt (9) to d̂G.
We will see that this ability for efficient local compatibility

checking allows for some interesting on-line applications of
Real-Time Interfaces.

5. APPLICATIONS
For the sake of simplicity, the upper linear approximation

of arrival curves α(Δ) and the lower linear approximation of
service curves β(Δ) are used in the examples of this Section.
All methods are however also directly applicable to step-wise
defined arrival and service curves.

5.1 Interface-Based Real-Time System Design
The most natural application for Real-Time Interfaces is

to enable interface-based design of real-time systems. For
this, suppose we are given the a set of service components,
a set of load components and a set of processing components
for fixed priority scheduling, together with their correspond-
ing Real-Time Interface descriptions.

The goal of interface based-design is then to build the in-
terface of a complete system, by composing all interfaces of
the different components. If this composition is successful, a
concrete instance of this system can be built from concrete
components that conform to their corresponding Real-Time
Interface descriptions. We are then assured that this con-
crete system fulfills all real-time requirements.

Example 1. Suppose, we want to build a real-time sys-
tem, that must process three different event-streams in real-
time. Event-stream A has a maximum burst demand of
100′000 cycles, a maximum burst-rate demand of 100′000 cy-
cles per second (c/s) for 1ms and a maximum long-term de-
mand of 25′000 c/s. Event-stream B has a maximum burst
demand of 10′000 cycles, a maximum burst-rate demand of
400′000 c/s for 0.5ms and a maximum long-term demand of
75′000 c/s. And event-stream C has a maximum burst de-
mand of 200′000 cycles and a maximum long-term demand
of 50′000 c/s. Further, event-stream A must not experience
a delay of more than 0.5ms when processed by the system,
while the maximum acceptable delay of event-stream B and
C are 2.5ms and 4ms, respectively. To build this system,
a CPU with a minimum resource availability of 300′000 c/s
(300MHz) is available.

For an interface-based design of a system that corresponds
to the above specification, we take three load components with
arrival interfaces that conform to the three event-streams A,
B and C, a service component with a service interface that
conforms to the given CPU, and three processing components
with corresponding interfaces.

Through successful interface-composition we can then show
that a system that corresponds to the above specification can
indeed be built on the given CPU. To implement this system,
preemptive fixed priority scheduling can be used on the CPU,
where processing of event-stream A has the highest priority
and processing of event-stream C has the lowest priority.

The interface model of the above system is shown on the
right side of Fig. 4. On the left side of the same figure, a
concrete instance of the real-time system that corresponds to
the interface model on the right is shown.

In Fig. 5 input assumptions of the service interfaces of the
three processing components of the above system are shown,
together with the output guarantee of the service interface of
the CPU. In this figure, we see that β̂A

I ≤ β̂G
CPU and that

therefore the service component of the CPU in the interface
model of Fig. 4 is compatible with the composed interface of
the other components. Note, that β̂G

I , β̂G
II and β̂G

III are not
shown here.

Finally, in Fig. 6 input assumptions of the arrival inter-
faces of the three processing components of the system in
Fig. 4 are shown together with the output guarantees of the
arrival interfaces of the three event-streams. In this figure,
we see that all input assumptions are strictly greater or equal
than the corresponding output guarantees and allow there-
fore the successful composition of all load components with
the composed interface of the other components.

85

<β=0>

Service Comp.

^

Process I

Priority = 1

CPU

Process II

Priority = 2

Process III

Priority = 3

RT-Stream

A

RT-Stream

B

RT-Stream

C

Concrete Instance Real-Time Interface Model

(FP Scheduling)

Real-Time System

Proc. Comp. I

βI, αI, dI, βI
^^ 'G^A A

Proc. Comp. II

βII, αII, dII, βII
^^ 'G^A A

Proc. Comp. III

βIII, αIII, dIII, βIII
^^ 'G^A A

Load Comp. B

αb, db
^G G^

Load Comp. A

αa, da
^G G^

Load Comp. C

αc, dc
^G G^

βCPU
^G

A

^A

^A

^A

Figure 4: A concrete stream-processing real-time
system and its Real-Time Interface Model.

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

x 105

Δ [ms]

su
p

p
ly

 in
 #

 c
yc

le
s

βCPU

βIII
^

βII
^

βI
^

A

A

A

G^

Figure 5: Output guarantee (solid) of the service
component in Fig. 4, together with the input as-
sumptions (dashed) of the three process components
in the composed interface model.

Interface-based design of real-time systems benefits from
all the advantages of interface-based design as described in
[7]. Most notable of all, interface-based design of real-time
systems supports incremental design and independent im-
plementability of real-time systems.

The property of incremental design ensures that the com-
patible components of a system can be put together in any
order [7]. In practice, this allows for example to design an
economic real-time system by first composing all load com-
ponents and process components. This leads to an inter-
face model with only open service inputs. By looking at

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10

x 105

Δ [ms]

d
em

an
d

 in
 #

 c
yc

le
s

αI
^

αa

αb

αc

αIII
^ αII

^ AAA

G

G

G^

^

^

Figure 6: Output guarantees (solid) of the three load
components in Fig. 4, together with the correspond-
ing input assumptions (dashed) of the three process
components in the composed interface model.

the input assumptions on these open service inputs, we can
then directly find the tightest service interfaces with output
guarantees that just still allow composition. By choosing
the most economic service components, i.e. processors, that
still conform to these tight service interfaces, we directly ob-
tain an economic real-time system that guarantees to fulfil
all real-time requirements, without being over-dimensioned.

This design procedure is a straight-forward process and
stands in contrast to traditional real-time system design,
where service-components are chosen a-priori, and perfor-
mance analysis methods like [10] or [13] are then used to
decide whether a system design fulfills all real-time require-
ments or not. In this traditional approach, economic designs
must be found by binary search, i.e. by parameter sweeps
(see e.g. [16]).

The property of independent implementability on the other
hand ensures that compatible interfaces can always be re-
fined independently [7]. In practice, this allows to outsource
the implementation of different system components, or to re-
place existing implementations of system components with
different or new implementations. As long as the imple-
mentations of all components conform to their respective
interfaces, the components will fit together and the com-
plete integrated system is guaranteed to fulfill all real-time
requirements.

5.2 On-Line Service- & Load-Adaptation
Real-Time Interfaces can not only be used for interface-

based design of real-time systems, but due to the ability
of local compatibility checking (see Section 4.4), there exist
also a wide range of interesting on-line applications for Real-
Time Interfaces.

For on-line applications of Real-Time Interfaces, an inter-
face model of the complete real-time system under consid-
eration is deployed together with the concrete system, and
is kept up-to-date at all times. The information contained
in this interface model can then be used to permit on-line

86

adaptation of different parameters of the running real-time
system. This application of Real-Time Interfaces may be
particularly interesting for power-aware real-time systems.

In the case of on-line service adaptation, the information
contained in service interfaces is exploited. The service in-
put assumption of any process component that is directly
connected to a service component specifies the detailed ser-
vice that is required from the service component over time,
to guarantee real-time processing. With the help of Real-
Time Interfaces, a service component can therefore lower
its output guarantee β̂G at run-time, as long as it remains
greater or equal as the input assumption β̂A of the directly
connected process component. In practice, this allows for
example a CPU to optimally adapt its frequency at run-
time, with the guarantee to not violate any real-time re-
quirements.

This adaptation of the output guarantee β̂G does of course
not refine the original interface of the service component,
but does instead coarsen it and leads to a new interface for
the service component. Because of this, the composition
of the remaining system interface with the new interface of
the adapted service component must be computed to obtain
again an interface model of the complete real-time system.
But due to the ability of local compatibility checking, the
compatibility of the new service component interface with
the remaining system interface can be guaranteed a priori,
and the service component can already adapt its service
guarantee, before computation of the interface composition
of the complete system is finished.

Example 2. Figure 7 shows the input assumption β̂A
I of

process component I of the real-time system in Fig. 4. Also
shown is the output guarantee β̂G

CPU of the service com-
ponent that models the 300MHz CPU of the system. We
know that any service component with an output guarantee
β̂G ≥ β̂A

I , i.e. that lies completely inside the grey shaded
area, will guarantee real-time processing. We can therefore
directly lower the speed of the CPU down to 240MHz, and
we can be sure that this adaptation will not lead to any vio-
lations of real-time requirements.

The same strategy as for service adaptation can be used
for on-line load adaptation (QoS-adaptation). In this case,
the information contained in arrival interfaces is exploited.
The load input assumption of any process component spec-
ifies the detailed load that can be processed over time with
the given real-time guarantee. With the help of Real-Time
Interfaces, a load component can therefore increase its out-
put guarantee α̂G, at run-time, as long as it remains lower
or equal as the input assumption α̂A of the connected pro-
cess component. And analogously, a load component can
lower its output guarantee d̂G at run-time, as long as the it
remains greater or equal as the input assumption d̂A or the
process component. In practice, this allows an event-stream
to increase its data-rate, or to get a guaranteed shorter pro-
cessing delay.

Like the on-line service adaptation, this on-line load adap-
tation requires to compute the composition of the remaining
system interface with the interface of the new load compo-
nent to obtain again an interface model of the complete real-
time system. This composition can again be computed after
the load adaptation took place.

Example 3. Figure 8 shows the input assumption α̂A
II of

process component II of the real-time system in Fig. 4, and

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

x 105

Δ [ms]

su
p

p
ly

 in
 #

 c
yc

le
s

βCPU (300MHz)

βI
^

βCPU (240MHz)

Sevice Adaptio
n^G

^G A

Figure 7: On-line service adaptation of the CPU in
Fig. 4.

the output guarantee α̂G
b of the load component that mod-

els the event-stream B. We know that any load component
with an output guarantee α̂G ≥ α̂A

II , i.e. that lies completely
inside the grey shaded area, is guaranteed to be processed
in real-time. We can therefore directly increase the maxi-
mum long-term demand of event-stream B from 75′000 c/s

to 140′000 c/s. Further, since d̂A
II = xxxms, event-stream

B can also get the guarantee of a maximum processing delay
of e.g. 1ms, compared to the initially guaranteed 2.5ms. For
this, the event stream must set d̂G

b = 1ms, which results in
an adaptation of α̂A

II that is however still guaranteed to be
strictly greater or equal than α̂G

B.

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Load Adaption

Delay A
daptio

n

x 105

Δ [ms]

d
em

an
d

 in
 #

 c
yc

le
s

αb (∅=75kc/s)

αb (∅=140kc/s)

αII (db=2.5ms)^

αII (db=1ms)^

A

A

^G

^G

^G

^G

Figure 8: On-line load adaptation of stream B in
Fig. 4.

For power-aware real-time systems a combination of Real-
Time Interface enabled on-line service and on-line load adap-

87

tation could also be interesting. Using on-line service adap-
tation, the speed of the processor in the system would be
kept at a minimum at all times. When one of the event-
streams would need to increase its load, it would adapt
(coarse) the output guarantee of its arrival interface. In
the system interface, we would then disconnect the service
component and would compose the adapted arrival interface
with the remaining system interface. After this composition,
the input assumption on the now open service input of the
system interface would specify the detailed service that is re-
quired from the service component over time, to guarantee
real-time processing of the system with the increased load.
The output guarantee of the service component could then
be increased on-line, to meet this service requirement. Af-
ter this on-line service adaptation, the event-stream could
be permitted to increase its load.

5.3 On-Line Admission Tests
Another on-line application of Real-Time Interfaces is en-

abled by the property of incremental design, that allows
Real-Time Interfaces to be used for on-line admission tests
on running real-time systems. For this, again an interface
model of the complete real-time system under consideration
is deployed together with the concrete system. To enable
on-line admission tests with this system interface, we add a
dummy process component at every existing service inter-
face connection in this interface. The load inputs of these
dummy processes are left open. Part of such an extended
system interface is depicted in Fig. 9.

Dummy P2

αP2
^

Dummy P1

αP1
^

admit S at P=1!

<αa, da>

if (αs ≤ αP1 ^ ds ≥ dP1)

admit S at P=2!

^

else

Service Comp.

βCPU
^G

Load Comp. A

αa, da
^G G^

A

A

A
Load Comp. S

αs, ds
^G G^

Load Comp. S

αs, ds
^G G^

G^

Proc. Comp. I

βI, αI, dI, βI
^^ 'G^A A ^A

^AG^

if (αs ≤ αP2 ^ ds ≥ dP2)^AG^ ^AG^

Figure 9: On-line admission tests with Real-Time
Interfaces.

Because of the property of incremental design, these ad-
ditional process components, that add open load inputs to
the system interface, have no influence to the compatibil-
ity of the initial system interface. And still, the load in-
put assumption α̂A on the open load inputs of the different
dummy components carry valuable information. These load
input assumptions specify the detailed load over time that
could be processed on the system with real-time guarantee,

if the respective dummy component would be replaced by a
process component.

In practice, the open load input α̂A
P1 of the dummy com-

ponent P1 in Fig. 9, specifies for example the detailed load
over time that could be processed by a new process com-
ponent if scheduled with priority P = 1. Analogous, α̂A

P2

specifies the load that could be processed by a process with
priority P = 2, and so on.

For on-online admission tests with the extended system
interface, the output guarantee α̂G

s of the interface of a new
load component S must be checked against the input as-
sumptions α̂A

Pj of all dummy components. If α̂G
s ≤ α̂A

Pj ,
then a new real-time load that conforms to the arrival inter-
face of S can be admitted, and the process that processes
this load can be run with priority P = j.

After admission of the new load S, the composition of
the interface of S with the remaining system interface must
be computed, and new dummy components must be added
before and after the dummy process that became the new
process component.

Example 4. Figure 10 shows the output guarantee α̂G
s of

an event stream S that wants to be admitted for process-
ing on the real-time system in Fig. 4 and that has a delay
requirement of d̂G

s = 1ms. Also shown are the input as-
sumptions α̂A

P1-α̂
A
P4 of dummy components that were added

at the different service interface connections in the interface
in Fig. 4. By checking the output guarantee against the dif-
ferent input assumptions in Fig. 10, we see that the event
stream S can be admitted. But for the system to still fulfill
all real-time requirements, the process that processes S can
only be scheduled with priority P = 2.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 105

Δ [ms]

d
em

an
d

 in
 #

 c
yc

le
s

αP2
^ αP3

^αP1
^

αP4
^

P=2

P=1 P=4P=3

A

A

AA
αS
^G

Figure 10: Admission test of an event-stream S in
the real-time system in Fig. 4.

5.4 Computational Complexity
To analyze the different examples in this section, we used a

prototype implementation of Real-Time Calculus and Real-
Time Interfaces. This prototype is implemented in Java and
uses Matlab as user frontend. With this prototype tool, it
took less than 1s for each example to compose and analyze
it, using Matlab 7 on a Pentium Mobile 1.6 GHz.

88

6. CONCLUSIONS AND FUTURE WORK
We presented and defined the notion of Real-Time In-

terfaces, that are a special instance of assume/guarantee
interfaces. Real-Time Interfaces as proposed in this paper
connect the principles of Real-Time Calculus and interface-
based design and can therefore fall back to the wide range
of already established research results in these two areas.
We also introduced a component model with Real-Time In-
terfaces that defines the building blocks for interface-based
design of real-time systems, and in this component model,
we defined different components that model hardware re-
sources, event-streams and software-processes for preemp-
tive fixed-priority scheduling, respectively. We have shown
the applicability of Real-Time Interfaces in the area of interface-
based design and we further showed that a range of on-line
applications in real-time systems could profit from the use
of Real-Time Interfaces.

In future, we would like to extend Real-Time Interfaces
to include additional information, as for example required
buffer and memory. Further, we want to introduce new
components for EDF and TDMA scheduling policies as well
as for communication hardware resources. Finally, a Java
implementation of Real-Time Calculus including Real-Time
Interfaces is currently under development.

Acknowledgements
This research has been funded by the Swiss National Sci-
ence Foundation (SNF) under the Analytic Performance Es-
timation of Embedded Computer Systems project 200021-
103580/1, and by ARTIST2.

7. REFERENCES
[1] A. Chakrabarti, L. de Alfaro, T. Henzinger, and

M. Stoelinga. Resource interfaces. In EMSOFT 03:
Embedded Software, Lecture Notes in Computer
Science 2855, pages 117–133. Springer-Verlag, 2003.

[2] S. Chakraborty, S. Künzli, and L. Thiele. A general
framework for analysing system properties in
platform-based embedded system designs. In Proc. 6th
Design, Automation and Test in Europe (DATE),
pages 190–195, March 2003.

[3] S. Chakraborty, S. Künzli, L. Thiele, A. Herkersdorf,
and P. Sagmeister. Performance evaluation of network
processor architectures: Combining simulation with
analytical estimation. Computer Networks,
41(5):641–665, April 2003.

[4] L. de Alfaro and T. Henzinger. Interface theories for
component-based design. In EMSOFT 01: Embedded
Software, Lecture Notes in Computer Science 2211,
pages 148–165. Springer-Verlag, 2001.

[5] L. de Alfaro, T. Henzinger, and M. Stoelinga. Timed
interfaces. In EMSOFT 02: Embedded Software,
Lecture Notes in Computer Science 2491, pages
108–122. Springer-Verlag, 2002.

[6] L. de Alfaro and T. A. Henzinger. Interface automata.
In Proc. Foundations of Software Engineering, pages
109–120. ACM Press, 2001.

[7] L. de Alfaro and T. A. Henzinger. Interface-based
design. In To appear in the Proceedings of the 2004
Marktoberdorf Summer School. Kluwer, 2005.

[8] J. Le Boudec and P. Thiran. Network Calculus - A
Theory of Deterministic Queuing Systems for the
Internet. LNCS 2050, Springer Verlag, 2001.

[9] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
Mediabench: A tool for evaluating and synthesizing
multimedia and communicatons systems. In
International Symposium on Microarchitecture, pages
330–335, 1997.

[10] K. Richter, M. Jersak, and R. Ernst. A formal
approach to mpsoc performance verification. IEEE
Computer, 36(4):60–67, April 2003.

[11] I. Shin and I. Lee. Periodic resource model for
compositional real-time guarantees. In Proceedings of
the Real-Time Systems Symposium (RTSS), pages
2–13. IEEE Press, 2003.

[12] L. Thiele, S. Chakraborty, M. Gries, A. Maxiaguine,
and J. Greutert. Embedded software in network
processors – models and algorithms. In Proc. 1st
Workshop on Embedded Software (EMSOFT), Lecture
Notes in Computer Science 2211, pages 416–434, Lake
Tahoe, CA, USA, 2001. Springer Verlag.

[13] L. Thiele, S. Chakraborty, and M. Naedele. Real-time
calculus for scheduling hard real-time systems. In
Proc. IEEE International Symposium on Circuits and
Systems (ISCAS), volume 4, pages 101–104, 2000.

[14] E. Wandeler, A. Maxiaguine, and L. Thiele.
Quantitative characterization of event streams in
analysis of hard real-time applications. Real-Time
Systems, 29(2-3):205–225, March 2005.

[15] E. Wandeler and L. Thiele. Abstracting functionality
for modular performance analysis of hard real-time
systems. In Asia South Pacific Design Automation
Conference (ASP-DAC), 2005.

[16] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse.
System architecture evaluation using modular
performance analysis - a case study. In 1st
International Symposium on Leveraging Applications
of Formal Methods (ISoLA), 2004.

[17] S. Wang, S. Rho, Z. Mai, R. Bettati, and W. Zhao.
Real-time component-based systems. In Proceedings of
the 11th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 428–437.
IEEE Press, 2005.

89

