
Deeply Embedded XML Communication – 
Towards an Interoperable and Seamless World 

Johannes Helander 
Microsoft Research 

One Microsoft Way, Redmond, WA 98052, USA 
+1-425-882-8080 

jvh@microsoft.com 
ABSTRACT 
Current consumer electronics devices do not interoperate and are 
hard to use. Devices use proprietary, device-specific and 
inflexible protocols. Resources across device classes, such as 
personal computers and home appliances cannot be taken 
advantage of. Even recent efforts to connect sensors into networks 
concentrate on new, ad-hoc protocols that segregate the low-cost 
devices into their own little world. 

If all classes of devices could speak the same language, they could 
talk directly to each other in ways natural to the application 
without artificial technical barriers. This would allow easily 
creating seamless applications that aggregate the capabilities of all 
the electronics. The interoperation adds value to all the devices. 

Extensible Markup Language (XML) Web Services were 
conceived to solve the e-business interoperation problem. After 
decades of failed attempts with EDI, SNA, DCOM, CORBA, and 
other similar technologies, XML and its communication 
specification SOAP has proven itself to be a viable technology. If 
XML is good for e-business, could it also be good for embedded 
systems communication? 

This paper argues that XML and SOAP indeed can be useful in 
small devices. Solutions to performance questions are available 
and techniques are outlined here. New unique challenges, such as 
heterogeneous configuration, privacy and security issues, and 
real-time requirements (e.g. for gaming) are identified and 
solutions outlined. A prototype implementation for low-cost 
microcontrollers is described with numbers included. 

Categories and Subject Descriptors 
C.3 [Special-purpose and application-based systems]:  
Real-time and embedded systems 

C.2.1 [Network architecture and design]:  
Wireless communication; Network communication 

General Terms 
Algorithms, Design, Performance, Security, Standardization 

Keywords 
Invisible Computing, XML, SOAP, Service Oriented Architecture, 
Home Networking, Embedded Systems 

 

1. INTRODUCTION 
Rice and seaweed can be eaten separately. However, when put 
together they taste a whole lot better. This sushi-effect is a case 
where putting two things together adds value to both. In 
networking this is more commonly known as Metcalfe’s Law, 
after the inventor of the Ethernet. Another way to put this is to 
state that it is counter-productive to separate different device 
classes into separate categories. Each category will then have to 
build critical mass for joint utility separately. If instead existing 
computing resources are taken advantage of, their momentum and 
critical mass can aid in pushing the information revolution into 
new areas. 

There are two converging technology trends that are in the 
position to create a breakthrough in consumer electronics—to 
create a seamless and interoperable world. 

1. Internet standards are no longer limited to moving data from 
one computer to another. Instead common representation of 
data and distributed computing is emerging from Service 
Oriented Architectures (SOA) and XML. This is essentially a 
standardization of the presentation and application layers, or 
levels 6 and 7 in the old ISO/OSI model. The leading efforts 
are in the two layers: SOAP (Simple Object Access Protocol, 
[1]) defines how to use XML for communication and WS-* 
(WS-Security, WS-Transfer, WS-Management, etc., [2]) 
specifications define how to use SOAP for specific purposes. 

2. Sufficiently powerful 32-bit microcontrollers are becoming 
cheap, small, and energy-efficient. It is already feasible to 
put these single-chip microcontrollers into almost any 
consumer application and there is decreasingly any need to 
aim for the very lowest end, the more slowly evolving 8-bit 
microcontrollers or analog circuits to control devices. This 
means that more intelligent software can be used, even while 
performance is still of essence. 

When put together it makes sense to ask whether there is any need 
for category specific communication protocols anymore, or would 
it be feasible to use the same protocols and data representations on 
all device categories. The answer appears to depend on: A) Can 
XML perform well enough? B) What necessary features are the 
XML standards not addressing? C) Are the new microcontrollers 
cheap and good enough? 

The rest of this paper is organized as follows: Section 2 outlines 
some XML usage patterns in the embedded space; sections 3 and 
4 outline solutions to the performance question; sections 5, 6, and 
7 address new features; sections 8 and 9 provide “proof by 
construction” and section 10 draws conclusions. 

What about the microcontrollers? The market will tell but it looks 
good. At the time of writing this paper multiple manufacturers 
produce very low-power ARM single chip computers that are 
sufficiently powerful to run the software described in this paper in 
the $5 price range. The prices are dropping quickly and the use of 
the new microcontrollers in devices is becoming easier. 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA. 
Copyright 2005 ACM 1-59593-091-4/05/0009...$5.00. 

62



2. HOW XML IS USED IN DEVICES 
XML is a semi-human readable stream of data, where each data 
item is tagged with a name. The formats of messages and the 
names of the tags are specified in a schema, which itself is 
expressed in XML. One document can be described by multiple 
schemas and the tags in the document have namespaces that 
facilitate resolving what tag belongs to what schema. The result is 
a structured document that is mostly self-descriptive. As its name 
indicates, XML is also extensible. New tags and schemas can be 
introduced and mixed with old documents without changing the 
meaning of the old tags. In SOAP specifically, the extension 
feature is additionally controlled by an explicit mustUnderstand 
attribute allowing some control over what extensions can safely 
be ignored in previous implementations. These properties make 
XML useful in heterogeneous environments where different 
computers use different software and different versions.  

While XML and SOAP specify message formats and how the 
messages should be processed, it leaves the implementation open. 
Some implementations may understand everything, where others 
only understand a few predefined messages. 

Messages are sent to objects in servers. A server typically sends a 
reply message but that depends on the message specification and 
schema. Unidirectional messages are traditionally called 
asynchronous and can be used to form arbitrary message patterns. 
Since everything that receives a message is a server, this is 
sometimes called a Service Oriented Architecture. Messages sent 
to objects fall largely into one of two categories: method calls, 
such as RobotMoveArm or property sets, e.g. Get SensorState.  
The choice between the styles is up to the specific use depending 
whether they deal with active or passive objects. The property set 
approach is facilitated by standard methods in WS-Transfer, WS-
Enumeration, and WS-Eventing, while the actual data format is 
specified in an application specific schema. In the method 
approach the messages themselves are specified in the application 
schema. Note that in current implementations some elements are 
specified in a separate WSDL document rather than the regular 
schema document, but essentially this is just a schema extension. 

For instance, a sensor device could provide its sensing and 
calibration parameters through one property set and the reading 
values through another. The user of the sensor values would then 
subscribe to the values using WS-Eventing. All that is needed to 
represent the sensor as a SOAP service is to define the schema 
and map the actual hardware values to the property set structure. 
If the sensor device also had an actuator, it could be controlled 
through appropriate methods, such as 

<MoveSteps>5</MoveSteps>. 

Since XML is somewhat human readable, it can also be used to 
represent domain specific programming languages and message 
pattern specifications, without the need for new parsers. One 
example of this is presented in section 7. In a way it is back to the 
future, when LISP used to have the same representation for 
programs and data. 

XML messages can be exchanged for control and discovery 
messages. XML can also be used for payload data, streaming, 
data-flow type programs, etc. The same messaging infrastructure 
can be used from the huge data center machine to the tiny deeply 
embedded device. 

One example of a practical interoperation problem is remote 
management of computers. The computers might be in different 
locations and have different operating systems and hardware. 

They also can be at different points in the host OS lifecycle, such 
as pre-boot, OS running and post-run. WS-Management is an 
industry standard that replaces complex vendor specific 
mechanisms with a coherent SOAP interface. It uses a property 
sets to access objects like processes, disks, and users. It uses 
methods to expose object specific functionality, e.g. 
PhysicalDisk::Format or ComputerSystem::Reboot. The WS-
Management interface is implemented, amongst others, by the 
latest Windows® operating system. A service processor, such as a 
smart network card or a chassis manager, running WS-
Management would be ideal for installation, monitoring and 
repair. Interestingly this calls for an embedded low-cost SOAP 
implementation even for managing big computers due to the 
management controllers' cost structure. Results from a preliminary 
implementation are included in section 9. 

3. PERFORMANCE 
Since the first XML Web Services implementations were geared 
towards high-end computers and were not well optimized, a 
common belief emerged: XML would be too heavy for low-cost 
devices. But is this really the case? Implementation cost can be 
evaluated through an alternative, light-weight implementation 
(section 8). So what are the fundamental costs and can they be 
mitigated sufficiently? 

1. Silicon—footprint: The footprint needs to be small enough so 
that the cost, size, and energy consumption of the 
microcontroller stay low enough. 

2. Bandwidth—size of messages: In a slow network or a low-
power wireless, transmitting overly large messages takes 
time, making operations slow, and prevents other use of the 
network.  

3. Energy—parsing overhead: The overhead of parsing, 
interpreting, and creating messages takes CPU cycles, where 
every cycle consumes a bit of energy, draining a battery. 
Transmitting and receiving data also consumes energy 
proportionally to the size of the message. 

(1) Footprint is largely an implementation issue. If a small amount 
of code can do all the work, the code size and consequently ROM 
footprint will stay small. Our solution here is a table driven 
serializer. Rather than having specific code for different messages, 
a tightly written interpreter matches messages with a compact 
metadata table that describes the messages. The results presented 
in section 9 show that this can and has been achieved. 

RAM footprint is dominated by network and message buffers and 
program stacks. In addition, it is important that as much data as 
possible is put into ROM as RAM is much more expensive. For 
this reason the above mentioned metadata table is placed in ROM 
–while if extended from XML schemas at run time the extensions 
go into RAM. Stack space is controlled by limiting the number of 
threads that do processing; by keeping the code straightforward by 
avoiding excessive recursion; and by delaying stack allocation 
until actually needed. An event driven serializer allows using the 
same thread to process multiple messages and processing each 
one while it is being received. The message is processed directly 
into its final form without intermediate object trees. A zero-copy 
networking interface allows processing the messages directly to 
and from the same memory buffers where the data was initially 
received without having to copy into secondary buffers. This 
saves both energy and space and applies to all stages, including 
encryption. Finally, messages are processed into continuations 
that are like threads except stack allocation is deferred until actual 
execution time. 

63



(2) XML tends to be verbose, with long strings naming simple 
things. Moreover since messages try to be self-descriptive and 
stateless, a lot of mostly constant data is repeated from one 
message to another. 

In many cases the verbosity does not matter and there are well 
established ways of using binary attachments for bulk data (e.g. 
video frames). The additional overhead in a message is still small 
compared to all the other networking layers and even the 
somewhat bloated messages are still small enough. However, in a 
few cases the overhead is simply too great—this can happen with 
e.g. certain encodings in WS-Security, where message sizes 
explode and cannot be compressed. Those encodings are simply 
unsuitable for embedded use. In other cases, however, a simple 
compression can take care of the bloat. 

(3) Energy is consumed in four significant ways related to 
messaging: executing, idling, transmitting, and receiving. 

Every instruction executed consumes a bit of energy but added 
together it matters little how fast the instructions are executed so a 
32 bit microcontroller is about the same as an 8 bit 
microcontroller in this regard. The amount of processing is 
affected by the data representation. Due to its semi-human 
readable representation XML implies conversions from internal 
computer data representations to textual representations. For 
instance, converting a number from binary to textual 
representation requires a large number of divisions, only to be 
converted back at the other end. Some of the overhead can be 
mitigated by an efficient implementation. Another approach is to 
compress the messages in such a way that the compressed 
message can be processed directly. Section 4 below discusses how 
to do that. 

Idle time power consumption is affected by the leakage current of 
the microcontroller. The leakage depends on the transistor count 
and is somewhat higher on a 32 chip part than an 8 bit chip. One 
solution is to shut off the power supply to the chip completely, 
leaving it to an auxiliary circuit to turn it back on later. This was 
technique was used in the Microsoft smart watch. Transitions 
between idle and running can also be high so it is desirable to do 
as much useful work as possible once there is something to do. 

Transmission energy is a simple function of message size. 
Receiving instead takes power whether anything is sent or not. In 
low-power radios receiving can take as much or more power than 
transmitting; thus it is important to be able to turn the receiver off 
when there is no data to receive. The complication is that without 
the receiver on there is no way of detecting when somebody is 
sending so advance coordination is required. Section 7 outlines 
one approach to that. 

4. COMPRESSION 
When data is encoded as XML it presents an infoset defined by its 
schema and has a canonical representation. If the XML message is 
first generated and then compressed, say using zip, it is still XML 
and has the same properties while it is no longer readable since 
the process can be reversed by decompressing the data. If the 
compressed form could be generated directly, without first 
generating the textual representation, the data would consequently 
still be XML as the textual representation can be mechanically 
generated from the compressed document. This would be 
achieved while avoiding the performance hit from generating the 
intermediate textual representation. The challenge is thus to 
compress the data in such a way that it is efficient to generate 
directly from native data on a given machine. The author proposes 

a template based compressor where partially evaluated XML 
message templates can be referenced and fully instantiated with 
filling in the unknown parts—this is essentially a macro facility 
that produces the XML parsing events when evaluated. From this 
it is possible to either generate the canonical textual XML or 
directly the native data. 

Some templates can be automatically generated from a schema, 
e.g. corresponding to a method call or structure. Others can be 
generated at runtime and transmitted thus facilitating delta 
encoding. Furthermore, a given schema can be compiled into a 
pre-tokenized form, where numerical values are assigned to 
known element names and strings (QNames). By encoding a 
message in the pre-tokenized template form the message size can 
be reduced to only a template index and parameter values. Say an 
Add method call that in its textual representation is some 150 
bytes can be encoded to three bytes: One byte identifies that this is 
an add, and one byte each is the value of each addend. The cost 
here is that there is some connection state that needs to be 
negotiated, namely the mapping of indexes and known templates 
needs to be agreed on but this can also be by reference: point to an 
external location (by Uniform Resource Identifier or URI) that 
describes the encoding. 

The implementation of the serializer uses the same code to deal 
with either textual or compressed messages, showing that the 
compression feature can come at little overhead. 

While the author envisions the main use of the compression 
feature to be optimizing transmission and processing, it is also 
noted that some very small devices might only implement a small 
number of predefined compressed templates. This would allow 
essentially raw binary data to be mechanically treated as XML 
messages by other parties—given an extra discovery step that 
allows the client to resolve the templates the device knows. This 
can potentially be a solution to using XML Web Services on 
microcontrollers that are too weak to run even the very compact 
implementation stack presented in section 8. 

 

5. PRIVACY AND SECURITY 
While efficient implementations and compressed representations 
can make the web services perform on the tiniest computers, there 
will be some new challenges not yet addressed by the “big” web 
services. Those arise from where microcontrollers are used: 
interfacing with the real world and with humans living in the real 
world. 

Automating a home with smart devices and creating 
interoperating entertainment as well as medical electronics hold 
great promise in enabling elder people to live longer in their 
homes and making the lives more comfortable to all of us. But 
installing communicating sensor devices in a home is also a risk. 

64



The Resurrecting Duckling Protocol in a Smart Home 
1. A new device, e.g. a light switch, is purchased and turned on. 
2. On the way home an accelerometer is used to generate a new random RSA key pair using ambient vibrations. 
3. One device, e.g. a watch is picked to be the mother. It signs its own public key. 
4. The light switch touches the watch. Since the switch just came out of the egg it believes the first device it touches is its mother. The 
watch sends its own certificate and the switch sends its public key over a touch based channel (electrostatic, short range radio, USB). 
5. The mother signs the switch’s public key and sends the certificate over a public wireless link. The switch is now part of the family. 
6. When two members of the device family want to talk to each other for the first time, they exchange their certificates over the public 
radio and verify them using the mother’s certificate. 
7. A symmetric key encrypted by RSA is exchanged and cached on each device. 
8. The symmetric key is used to encrypt all the data exchange between the two devices using AES ensuring private trusted 
communication. Cryptographic hashing is used to ensure message integrity of large messages. 
9. If and when the switch is sold in a garage sale, the watch can instruct it to crawl back into the egg and invalidate its certificate. 

The devices are essentially surveillance equipment. Who will 
want to pay for surveillance on themselves? It seems that to create 
a viable market there must be strong assurances that the 
information is tightly controlled by the inhabitants of the home. 
Devices that control the physical world are similarly risky: Doors 
could be unlocked, stoves turned on, and health devices follow the 
wrong protocol if the control falls in the wrong hands. It is thus 
essential to have strong communications and data security. Since 
it is also essential that a home can be setup independently without 
an active network connection and that devices will work without 
outside facilities, an independent trust model is called for. 

The author shows in [1] how to use public key encryption and the 
resurrecting duckling protocol [4] to author independent trust 
domains and arrange key exchange. See also the text box below. 

Unlike WS-Security, that encrypts pieces of XML and tends to 
generate extremely large messages, the embedded web services 
encrypt entire messages. This means the content can be 
compressed before encryption and also requires less processing. 

The independently created trust domains (i.e. the family certified 
by the same mother device) can be federated using standard public 
key cryptography and simple trust exchange (e.g. write hash of 
public key on check, when the check clears, the bank trusts you). 
The federation enables internet scale trust, e.g. for e-business, 
while allowing completely independent home setup without 
external certification authorities or other connectivity. 

6. INTUITIVE SETUP 
The touch based trust setup has an interesting side effect: when 
multiple devices are touched and the time along with other known 
state (location, temperature, etc) is recorded, a context history is 
created. This context history can be data mined for possible 
human intent—a clustering algorithm is presented in [5]. For 
example first touching a light switch and then a torchier 
intuitively indicates that the light switch should control the 
torchier light. The context history analyzer makes the computer 
think the same. 

A smart home setup thus proceeds as follows: 1) bring one or 
more new devices home; 2) touch each one once with your watch; 
3) the home is now ready to go. The same simple interaction is 
used both to establish trust and security and to assign functional 
associations between the devices. The result of the heuristic is 
displayed by flashing LEDs on the devices, the light itself, or in 
other available ways. If the human is unhappy with the result or 
wants to change an old association, she can touch a new pairing to 
create a new association. No archaic menus or setup scripts are 
required. 

 

7. REAL-TIME 
Interacting with the real world implies interacting in real time. 
This means that the computers not only need to do the right thing 
but also do it at the right time. Adding temporal predictability in a 
heterogeneous distributed system, such as the one formed by 
interoperating devices, is not well addressed by traditional real-
time methods. Traditionally industrial processes, airplanes, and 
other real-time systems were analyzed in minute detail and all 
possible interactions enumerated. In the new environment where 
new devices can be introduced arbitrarily and the devices are all 
different the static analysis breaks down. Instead a self-adaptive 
approach is called for. 

A behavior pattern (see box above) describes a distributed activity 
in an abstract way in a domain specific language. This is 
expressed in XML so the same parser can be used. When a human 
presses “Play” on the remote control, this is mapped to a {when, 
what, how, importance} tuple, where how is the pattern, when is 
0.1 seconds from now, and what is the song “Yesterday”. The 
importance is expressed as a probability of success, a confidence. 

The instructions are fed into a planner software component. The 
planner instantiates the pattern spatially and temporally. The 
spatial instantiation is a normal device discovery that determines 
which devices are needed to do the work. The temporal 
instantiation determines what resources are needed when and for 
how long. The planner predicts resource needs based on 
performance monitoring, similar to industrial quality control, with 
sampling schedules and stochastic modeling. 

<behavior name="PlaySong"> 
<action name="RemoteControl" 
             endpoint="node:instigator/music.cob"> 

<message destination="MusicProducer/*"/> 
</action> 
<action name="MusicProducer" 
            endpoint="node:cdplayer/music.cob"/> 

      <repeat count="10000" Period="P0.1S"/> 
      <message destination="MusicConsumer"/> 
   </action> 
   <action name="MusicConsumer" 
               endpoint="node:speaker/music.cob" 
               tolerance=”P0.0001S”/> 
      <repeat count="10000" period=”P0.1S”/> 
    </action> 
    <sampling destination="node:instigator" 
                     interval="20" number="2"/> 
</behavior> 
 

65



The instantiated pattern is a specific schedule, a task for each 
participating device. The planner sends the task as XML over to 
the worker node, which next compares it to its prior commitments 
and answers either yes or no. If all the workers are affirmative, the 
planner sends a go message and the audio streaming is started. 
The time consumed at each stage of the processing is recorded 
and measured. Samples of the measurements are sent back to the 
planner, which uses the feedback to adapt the schedules. The 
adaptation is driven by the samples: the stochastic model is 
updated and more accurate predictions are produced. One 
stochastic process is presented in [6]. A possible adaptation is 
visualized below. 

 

It is interesting to note that the stochastic approach allows running 
distributed tasks on platforms with variable levels of real-
timeliness. The predictability of a given platform is determined by 
the variance in the observed time to process tasks and is reflected 
in the amount of time needed to achieve a given level of 
confidence. 

Another interesting consequence of pre-declaring task schedules 
across multiple machines is that a receiver of messages knows 
when to expect (within tolerances) a message. It consequently 
knows when it is not expecting messages, and can turn off its 
radio receiver during that time enabling potentially significant 
power savings. 

8. IMPLEMENTATION 
How can we be sure XML Web Services actually work on a 
microcontroller? The only real proof is to implement a stack. Our 
implementation follows a component design. The base component 

is a small real-time operating system that supports the other 
components and includes a low-level constraint based scheduler 
(an extension of earliest deadline first, see [7] for an explanation). 

The RTOS supports a TCP/IP stack, an XML processor, 
cryptographic primitives, various service handlers and 
applications, and a table driven serialization engine that matches 
the parsed XML with native data representations (stacks and 
structs) to each other based on a metadata table that is compiled 
from interface description schemas. 

The distributed real-time scheduler builds on top of the base 
constraint scheduler and adds admission control and scheduling of 
tentative, repetitive, and inter-dependent work items. 

The component design allows a pay-as-you-go approach to 
composition. While interfaces are reused and the same code can 
be utilized by multiple components, there is no general purpose 
compromise. Instead precisely the features required by the given 
application are included. This means that features need to be 
selectively used in low-budget hardware. 

 The entire system is written in the C language and works on 
multiple processors and microcontrollers. The following section 
presents specific numbers for one configuration on one popular 
microcontroller. 

9. RESULTS 
The performance was evaluated on an ARM7 microcontroller 
development board [8]. We observe that the secure XML software 
can run on a computer that has 256KB ROM and 32KB RAM. 
This amount of memory is available on many modern 
microcontrollers of interest. 

Files ROM Static 
RAM 

Heap 
RAM 

Stack 
RAM 

Total 
RAM 

BASE 24,676 1,940 2,837  2,777 

DRIVERS 11,464 332 896 2,288 3,516 

TCP/IP 77,024 3,424 2,648 3,400 9,472 

XML 7,860 16 88  104 

SOAP 29,504 280 996 4,320 5,596 

SECProto 14,180 604 1,848 2,648 5,100 

AES 16,532 8   8 

RSA 9,784 28 24  52 

SHA1 5,436 8   8 

C-Library 7,620 12   12 

TOTAL 204,080 6,652 9,337 12,656 28,645 

Footprint (arm - in bytes) at peak usage 
 We evaluate whether the solid cryptography is feasible on low-

cost devices. The table below reveals that the two significant costs 
are key generation and RSA private key operations. The former 
only needs to be done once, and can be primed on the way home. 
RSA private key operations are needed for certificate signing and 
key exchange. Each need to be done only once but cannot be done 
before the device was touched. Luckily the certificate does not 
have to be signed while touching so the interaction itself is quick. 

The working of the stochastic planner was estimated through 
sampling. A simple test method does 20000 multiplications. 
Starting with no information the planner uses an application 
provided guess. 

Planner 

Producer 

Consumer 

Audio data 

Scheduling 

Scheduling 

Sampling 

k·t0 k·t2 k·t1 

1 

 

Period k Fixed deadline 

Steady State 

66



Algorithm Operation Latency on a 25 MHz ARM 7 
  Average Standard deviation  Per KB 
1024-bit RSA  Generate a key pair 290 s 56% N/A 
 Private key Encrypt/decrypt a block (128 bytes) 12.9 s <1% 103 s 
 Public key Encrypt/decrypt a block (128 bytes) 0.667 s <1% 5.34 s 
128-bit AES Encrypt/decrypt a block (16 bytes) 0.254 ms <1% 16.3 ms 
SHA1-HMAC 1024 bytes 79.6 ms <1% 79.6 ms 

Speed of cryptographic primitives 

Once the planner gets real samples it uses them with smoothing 
between each step. The calculation times include formatting and 
sending the reply message. The table below has the numbers. The 
estimate is produced by the live planner, while the mean and 
deviation have been calculated offline for reference from the raw 
measurements. 

Step 
Estimate 
95% conf 

Measured 
mean 

Standard 
deviation 

Confidence 
95%  99% 

1 339 337 1.7% 1.0 1.4 

2 341 337 1.6% 1.0 1.4 

3 346 337 1.8% 1.0 1.4 

Time measurement and prediction of a CPU intensive task – 
times in milliseconds, 32 samples per iteration on embedded 
microcontroller board. The confidence number indicates the 
extra time allocated for jitter. Fixed point integer arithmetic 
rounds the number up slightly. 

Since the low-level RTOS scheduler did not produce much jitter, 
the test was also executed on a PC running WindowsXP with the 
SOAP middleware stack on top. Running without an underlying 
real-time scheduler introduces more uncertainty but the planner 
still deals with it correctly and produces a larger confidence 
allocation to cope with the increased jitter. As the CPU is faster a 
million multiplications is done each time. From a steady state the 
number of calculations is dropped to half. The table below shows 
how the planner adapts to the drop. The planner adapts to the 
larger jitter by padding the estimates. 

Step 
Estimate 
99% conf 

Measured 
mean 

Standard 
deviation 

Confidence 95%  
99% 

1 126 123 6.4% 1.9 2.5 

2 124 120 14% 4.2 5.5 

3 69 55 2.1% 2.8 3.7 

4 58 55 2.9% 3.9 5.2 

Figure 7, Time measurement on PC in milliseconds.  After the 
steady state at step 2, the workload is cut in half and the 
estimate adapts to the new load. 

Since the main point of XML is interoperation, we need to 
evaluate how well that promise is realized. The SOAP stack 
presented in this paper recently participated in a WS-Management 
interoperation workshop, with a dozen implementations from 
several major corporations. The embedded web service stack 
easily passed the interoperation test with only small problems 
with a couple of implementations due to it not supporting HTTP 
chunking on the client end. The stack has also proven to 
interoperate with commercial SOAP stacks with other load. It is 
easy to add new web methods and properties. 

10. CONCLUSION 
This paper argued that XML Web Services are desirable and 
feasible for embedded systems use. It described a number of 
techniques in how performance can match the strict resource 
constraints in modern microcontroller systems and how XML can 
be used to address challenges in interoperation, ease of use, 
security, and real-time. A prototype implementation offered proof 
by construction that using XML indeed makes sense. The result is 
a small, cost-effective implementation that supports a number of 
standard specifications, such as WS-Management. 

While XML and SOAP are useful in embedded systems, their 
specific needs require special consideration and not all WS-* 
standards can be adopted as is. Further work is required to create 
standards addressing the small systems requirements and tune 
existing standards. Performance refinements will further allow 
extending the scope of the seamless world. Finally, new 
interesting applications are needed to drive adoption. 

11. REFERENCES 
1. SOAP Version 1.2 Part 1: Messaging Framework—W3C® 

Recommendation 24 June 2003, 
http://www.w3.org/TR/soap12-part1/ 

2. Web Services Architecture—W3C® Working Draft 8 August 
2003, http://www.w3.org/TR/ws-arch/ 

3. Helander, J. and Xiong, Y.: Secure Web Services for Low-
cost Devices, 8th IEEE International Symposium on Object-
oriented Real-time distributed Computing, Seattle, May 2005. 

4. Stajano, F. and Anderson, R. The Resurrecting Duckling: 
Security Issues for Ad-hoc Wireless Networks LNCS 1796, 
Springer-Verlag, 1999. 

5. Helander, J.: Exploiting Context Histories in Setting up an e-
Home, First International Workshop on Exploiting Context 
Histories in Smart Environments, Munich, Germany, 2005. 

6. Helander, J. and Sigurdsson S.: Self-Tuning Planned Actions: 
Time to Make Real-Time SOAP Real, 8th IEEE International 
Symposium on Object-oriented Real-time distributed 
Computing, Seattle, May 2005. 

7. Jones, M. B., Roçu, D., Roçu, M.: CPU Reservations and 
Time Constraints: Efficient Predictable Scheduling of 
Independent Activities, in Symposium of Operating System 
Principles, St-Malo, France, 1997. 

8. AT91M63200 Summary, AT91 ARM Thumb MCU, 
http://www.atmel.com/dyn/resources/prod_documents/1028S.PDF 

9. The embedded web services implementation is available 
at http://research.microsoft.com/invisible/ 

67


