
Model-based Analysis of Distributed Real-time Embedded
System Composition ∗

Gabor Madl†
Center for Embedded Computer Systems
University of California, Irvine, CA 92697

gabe@uci.edu

Sherif Abdelwahed
Institute for Software Integrated Systems
Vanderbilt University, Nashville, TN 37205

sherif@isis.vanderbilt.edu

ABSTRACT
Key challenges in distributed real-time embedded (DRE)
system developments include safe composition of system com-
ponents and mapping the functional specifications onto the
target platform. Model-based verification techniques pro-
vide a way for the design-time analysis of DRE systems en-
abling rapid evaluation of design alternatives with respect
to given performance measures before committing to a spe-
cific platform. This paper introduces a semantic domain
for model-based analysis of a general class of DRE systems
capturing their key time-based performance measures. We
then utilize this semantic domain to develop a verification
strategy for preemptive schedulability using available model
checking tools. The proposed framework and verification
strategy is demonstrated on a mission-critical avionics DRE
system case study.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis

General Terms
design, verification

1. INTRODUCTION
When dealing with multiple Quality of Service (QoS) prop-

erties, DRE system designers often face a gap between de-
sign and implementation, since properties are specified in
declarative way such as worst case execution times, priori-
ties or in even broader range such as adaptible, fault-tolerant
etc. On the contrary, implementations typically follow an

∗This research was supported by the NSF ITR Grant CCR-
0225610 ”Foundations of Hybrid and Embedded Software
Systems.”
†Work done while at the Institute for Software Integrated
Systems, Vanderbilt University, Nashville, TN 37205

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

imperative approach which makes hard to reconstruct sys-
tem structure and behavior from the source code. To address
these challenges, it is useful to analyze system behavior at
design-time, thereby enabling developers to select suitable
design alternatives before committing to specific platforms.
Model-based verification techniques [2] provide a way for the
design-time analysis of many engineering systems includ-
ing DRE systems and allow, through abstraction, to over-
come accidental complexities associated with third genera-
tion programming languages such as memory management
and pointers. Furthermore, they provide a way to observe
and prove properties specified in a declarative way by ana-
lyzing the composition of imperative component implemen-
tations.

In this paper, we extend the earlier works [12, 11] into the
generalized DRE Semantic Domain – the basis for the next
generation Open-Source Dream [7] – using a formal model
of computation (MoC) that captures detailed operation set-
tings, such as asynchronous event channels, as well as essen-
tial time-based QoS properties of DRE systems. Based on
the proposed extensions, we show how the DRE Semantic
Domain can be used to verify the preemptive scheduling of
distributed multiprocess real-time embedded systems using
a novel conservative discrete approximation scheme. The
proposed method and case study are explained in greater
detail in [10].

2. THE DRE SEMANTIC DOMAIN
In this section we introduce a computational model that

can express the event-driven nature of DRE systems. The
detailed formal model is presented in [10]. We define a model
on a distributed platform with possible execution preemp-
tions. DRE system models can be built by the composition
of these components.

2.1 The Timer
The timer is a simple periodic event generator which re-

leases task initiation events at a specified rate. Timers may
represent sensors sampled at a predefined rate and are mod-
eled by a generic timed automaton model shown in Figure 1.

2.2 The Task
Tasks are the main components which describe actors in

DRE systems. In addition to the states specifying the exe-
cution of the task (idle, enabled, executing, preempted),
we also introduce a timeout state which can be used to ex-
press undesired behavior of the system such as when the task
cannot finish the execution before its respective deadline.

371

Figure 1: Generic Model of the DRE Semantic Domain

2.3 The Event Channel
Event propagations between tasks follow a non-blocking

broadcast semantics – events which are not received are lost.
We assume that this is the only case when events get lost.
Event channels provide the necessary mechanism to allow
reliable asynchronous communication – the publisher does
not have to block until the consumer is ready to receive the
event. Published events are stored in the event channel un-
til the consumer is ready to receive them. States denoted
with the C letter are committed states. This expresses time
constraints, an outgoing transition has to be taken instanta-
neously, otherwise the system will deadlock. Event channels
are generically represented by the timed automaton shown
in Figure 1. Note that this model takes into account possible
communication delay as represented by the channel depen-
dent maximum delay factor δc.

2.4 The Scheduler
To express the mapping of execution tasks to platform

processors we introduce the scheduler modeling construct
shown in Figure 1. The scheduler selects enabled tasks for
execution and triggers preemptions according to the schedul-
ing policy.The scheduler initially starts in the idle state. It
will move to the select state if any tasks become eligible for
execution. The selection is made instantaneously from the
of enabled tasks’ queue and the selected task will receive the
run event which triggers its execution. The scheduler moves
to the idle state if no task is ready for execution.

The scheduling policy is encoded in three functions: (1)
Add(w, i), which increases the current priority level when
taski becomes ready, (2) Sub(w, i), which decreases the cur-
rent priority level when taski becomes ready, and (3) Enable(w, i),
which evaluates to true if the ith task is eligible for execu-
tion. For example, in the case where priority is directly
proportional to the component index, Add(w, i) = w +2i−1,
Sub(w, i) = w − 2i−1, and Enable(w, i) = 2i−1 ≤ w < 2i.
Other scheduling schemes can be established by defining ap-
propriate formulas for the three functions outlined above.

2.5 Preemption Model Using Discretized Time
The proposed model of computation corresponds to the

stopwatch model due to assignments of variables to clocks.
Deciding the preemptive schedulability of the stopwatch model
has been shown to be undecidable using timed automata [9].

To address this issue, we implement a discretized preemption
scheme in which task interruption can only be granted at
specific intervals during the task execution. We implement
non-blocking preemptions – after the preemption the task re-
sumes the execution from the last discrete checkpoint. The
precision can be set independently for every Uppaal Task

model using the granularity parameter. Non-blocking pre-
emptions imply longer execution time than the parameter
WCET time in the preempted tasks. This method gives an
overapproximation of the safe states of the system, when
the schedulable discretized approximation implies a schedu-
lable system in continuous time.

3. PROBLEM FORMULATION
This paper considers the problem of deciding the schedu-

lability of a given set of tasks with event- and time-driven
interactions, on a distributed preemptive platform as de-
scribed in Section 2.

Definition 1. The system is schedulable if all tasks fin-
ish their execution before their respective deadlines. 2

We use a timed automata formulation of the problem
which translates the schedulability problem into a reacha-
bility problem in which the set of tasks are schedulable if a
predefined error state is not reachable in any of the tasks’
timed automata.

Definition 2. We define a frame period for a task t ∈ T ,
referred to as Period(t) as the period of the slowest timer on
which the task depends. 2

Tasks that are assigned to the same platform processor
and have the same frame period are in the same frame.
Therefore, the set of frames is a partition of the set of tasks
T . For a task t we write Frame(t) to identify the set of all
tasks in T belonging to the frame of t.

Theorem 1. If the system is schedulable using discretized
time preemptions it is also schedulable in continuous time if

(∀t ∈ T) D(t) ≥ Period(t)−
X

t′∈Frame(t)−t

WCET(t′)

where D(t) denotes the deadline of the task and WCET(t)
denotes the worst case execution time of the task.

372

Figure 2: Uppaal Timed Automata Models

Figure 3: Bold Stroke application deployed on a pre-
emptive multiprocessor platform

The proof, based on the formal specification of the DRE
Semantic Domain, is presented in [10].

4. CASE STUDY
In this section we show how we applied model-based veri-

fication to a case study of a representative DRE system from
the domain of avionics mission computing. Figure 3 shows
the component-based architecture of the system, which is
built on the Boeing Bold Stroke real-time middleware [14].

The application is deployed on a preemptive multiproces-
sor platform. The RateGen 4x, RADAR and TACTICAL STEERING

components are deployed on the same application server
(CPU1) and are scheduled nonpreemptively. The other ap-
plication server (CPU2) is a multi-threaded server, where
priorities are assigned to the threads. The RateGen 2x,
CURSOR DEVICE, SELECTED POINT and TACTICAL DISPLAY com-
ponents are executed within the context of the higher prior-
ity Thread2, the RateGen, INS, GPS, AIRFRAME and NAV DISPLAY

components are executed within the context of the lower pri-
ority Thread1. Event propagations are denoted with small
arrows in Figure 3 which represent the binding between
event sources and sinks. Facets are represented by circles
which connect to the receptacles.

4.1 Compositional Analysis Using Uppaal
We use the Uppaal model checker tool [13] for schedula-

bility analysis. Systems in Uppaal are modeled as a slightly
modified variant of timed automata and the specification is
expressed in a restricted version of the timed computational
tree logic (TCTL) [1], which is temporal logic that can for-
malize statements about system models.

Figure 2 shows how we modeled the system in the Uppaal
model checker tool. The application consits of 12 compo-
nents. RateGen components are modeled by Timers, the
other 9 components are modeled using Tasks in the DRE
Semantic Domain. We can abstract out some of the real-
time event channel threads as discussed in [12, 11], to reduce
the state space. We have to model event channels explicitly
(1) when we have to buffer events or (2) on remote event
channels which have measureable delays.

The scheduling policies are represented by Schedulers in
the DRE Semantic Domain. Since the Bold Stroke appli-
cation is deployed on a two-processor architecture we define
two schedulers as shown on Figure 2. The design models
(such as the model on Figure 3) can be used to generate the
scheduling policies as shown in [12, 11].

The analysis models for an application can be built by
composing the elements defined in Section 2. The composi-
tion is achieved by creating the dependencies using events.
Priorities follow dependencies and are therefore fixed. We
assign deadlines according to Theorem 1. Table 1 shows the
parameter values.

We assign the granularity parameters to 1 millisecond pre-
cision in the preempted tasks as shown in Table 1. This
analysis has shown that the system is schedulable with the
parameters given in 1. We have checked finite buffer sizes
with the following TCTL formula: A[] (Channel.bufferc

< Channel.lambdac). Uppaal produces a counter-example
for invalid properties, which helps identifying the source

373

Table 1: Parameter Values for the Application
Shown in Figure 3

Task P S WCET D G

RADAR HIGH HIGH 12 84 1
TACT ST... HIGH MEDIUM 16 88 1
CURS D... HIGH HIGH 18 155 1
SEL P... HIGH MEDIUM 24 161 1
TACT D... HIGH LOW 21 158 1

INS LOW HIGH 32 872 32
GPS LOW HIGH 29 869 29

AIRFRAME LOW MEDIUM 80 920 80
NAV D... LOW LOW 19 859 19

of undesired behavior. Finally, we checked that eventually
every task will execute with: E<> Task.executing.

5. RELATED WORK
A generic form to analyze scheduling behavior based on

the timed automata model was proposed in [4] for single
processor scheduling using the Immediate Ceiling Priority
protocol and the EDF algorithm. This model does not
have a component model and does not support asynchro-
nous event passing.

The Virginia Embedded Systems Toolkit (VEST) [8] is a
framework designed for the reliable and configurable compo-
sition and analysis of component-based embedded systems.
VEST applies key checks and analysis but does not support
formal proof of correctness.

The Automatic Integration of Reusable Embedded Sys-
tems (AIRES) tool extracts system-level dependency infor-
mation from the application models. It performs real-time
analysis [5] using Rate Monotonic Analysis techniques.

The Cadena [6] framework is an integrated environment
for building and analyzing CORBA Component Model (CCM)
based systems. The emphasis of verification in Cadena is on
software logical properties. The generated transition system
does not represent time explicitly and requires the modeling
of logical time that does not allow quantitative reasoning.

Time Weaver (Geodesic) [3] is a component-based frame-
work that supports the reusability of components across sys-
tems with different para-functional requirements. It sup-
ports code generation as well as automated analysis. It per-
forms model-based Rate-Monotonic Analysis by real-time
model checker tools such as TimeWiz R©.

6. CONCLUDING REMARKS
This paper presents the DRE Semantic Domain used in

the next generation Open-Source Dream [7] model-based
verification and analysis framework. We have shown how
to analyze and verify the preemptive scheduling and com-
position of real-time embedded systems on unsynchronized
distributed platforms and how model-based verification pro-
vides a way to bridge the gap between declarative specifica-
tion and imperative implementation. Our results show that
this approach captures delays and drifts which are common
in unsynchronized reactive real-time systems. The verifi-
cation is automatic, exhaustive, and capable of producing
counter-examples that helps pinpoint sources of undesired
behavior. The method is explained in greater detail in [10].

7. REFERENCES
[1] E. Clarke and E. Emerson. Design and synthesis of

synchronisation skeletons using branching time
temporal logic. Logic of Programs, Lecture Notes in
Computer Science, 131:52–71, 1981.

[2] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E.
Long, K. L. McMillan, and L. A. Ness. Verification of
the futurebus+ cache coherence protocol. In CHDL
’93: Proceedings of the 11th IFIP WG10.2 and in
cooperation with IEEE COMPSOC, pages 15–30.
North-Holland, 1993.

[3] D. de Niz and R. Rajkumar. Time Weaver: A
Software-Through-Models Framework for Real-Time
Systems. In Proceedings of LCTES, 2003.

[4] T. Gerdsmeier and R. Cardell-Oliver. Analysis of
Scheduling Behaviour using Generic Timed Automata.
42, 2001.

[5] Z. Gu, S. Wang, S. Kodase, and K. G. Shin. An
End-to-End Tool Chain for Multi-View Modeling and
Analysis of Avionics Mission Computing Software. In
Proceedings of Real-Time Systems Symposium, 2003.

[6] J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung, and V. P.
Ranganath. Cadena: An Integrated Development,
Analysis, and Verification Environment for
Component-based Systems. In Proceedings of
International Conference on Software Engineering,
2003.

[7] http://dre.sourceforge.net. Distributed Real-time
Embedded Analysis Method. 2005.

[8] J.A. Stankovic and R. Zhu and R. Poornalingham and
C. Lu and Z. Yu and M. Humphrey and B. Ellis.
VEST: An Aspect-based Composition Tool for
Real-time Systems. In Proceedings of the IEEE
Real-time Applications Symposium, 2003.

[9] P. Krčál and W. Yi. Decidable and Undecidable
Problems in Schedulability Analysis Using Timed
Automata. In K. Jensen and A. Podelski, editors,
Proc. of TACAS’04, Barcelona, Spain., volume 2988
of Lecture Notes in Computer Science, pages 236–250.
Springer–Verlag, 2004.

[10] G. Madl and S. Abdelwahed. Formal Verification of
Distributed Preemptive Real-time Scheduling.
Technical report, ISIS, Vanderbilt University,
http://www.isis.vanderbilt.edu/publications.asp, 2005.

[11] G. Madl, S. Abdelwahed, and G. Karsai. Automatic
Verification of Component-Based Real-Time CORBA
Applications. In Proceedings of the 25th IEEE
International Real-Time Systems Symposium, pages
231–240, December 2004.

[12] G. Madl, S. Abdelwahed, and D. C. Schmidt.
Verifying Distributed Real-time Properties of
Embedded Systems via Graph Transformations and
Model Checking (invited paper, submitted). The
International Journal of Time-Critical Computing,
2005.

[13] P. Pettersson and K. G. Larsen. Uppaal2k. Bulletin
of the European Association for Theoretical Computer
Science, 70:40–44, feb 2000.

[14] D. C. Sharp and W. C. Roll. Model-Based Integration
of Reusable Component-Based Avionics Systems. In
Proceedings of the Workshop on Model-Driven
Embedded Systems in RTAS 2003, May 2003.

374

