
����������	
�����
�������������
�����������
����������

������������

������������	
����	��
����	������
�������������	�����������	��

�	�����������������	���

����� ���	�����!"��
�����	��
�
��
�
�

ABSTRACT
Tasks in many real-time applications can be scheduled by
variations of rate monotonic or earliest deadline first algorithms.
When this is possible, it is satisfying to have formal analysis and
performance bounds underlying the use of these algorithms.
However, in many applications the simultaneous set of constraints
that must be satisfied makes these traditional solutions unsuitable.
Practical solutions for these more complicated applications are
important. In this paper we develop a novel integrated scheduling
and allocation heuristic for a dual face phased array radar system.
The realistic features of the radar system that must be
simultaneously addressed include timeliness (worst case execution
time, period, deadline), semantic importance, and physical
constraints such as beam selection and frequency harmonics. The
heuristic function we develop provides a very flexible way to
incorporate these requirements into one single equation. Since
scheduling high semantic importance tasks is paramount, we use
the highest semantic importance tasks’ success ratio as the major
performance metric. Based on simulation results, we show that
our static heuristic algorithm can schedule more than 91% of the
highest semantic importance tasks at high frequency conflict
degree even at heavy workloads. The result is 50% better than
EDF and 31% better than an importance (IMP) based static
priority scheduling algorithm where IMP is similar to various
current approaches. For the online scheduling algorithm, our
heuristic algorithm is 30% better than EDF and 20% better than
IMP in terms of highest semantic importance tasks’ success ratio
at heavy workloads.
�

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real
Time and Embedded System. D.4 [Operating System]: Processor
Management – scheduling. J.7 [Computers in Other Systems]:
Real Time.�

General Terms
Performance, Management, Design, Experimentations

Keywords
Dual Phased Array Radars Systems, Real Time Systems,
Scheduling, Resource Allocations, Heuristic Algorithms,
Performance.

1. INTRODUCTION
Modern phased array radars are very sophisticated systems subject
to an extremely difficult set of real-time resource requirements
and constraints. For example, the dual face phased array radar in
the ship-based application presented here has separate transmit
and receive arrays. For the transmit array there are 64 beams.
Beams may be scheduled individually, or in groups, or as
subarrays. The beams are also separated according to function.
The beams are classified according to their frequencies and
polarizations. The S-band beams’ frequencies are in the range
[950MHz, 10000MHz]. The frequencies of L-band beams are in
the range [1000MHz, 5000MHz]. 16 beams have S-band vertical
polarization, 16 beams have L-band dual polarization, 32 beams
have L-band vertical polarization and 2 of them have special
purpose filters. The physical locations of S-band and L-band
beams in the phased array radars are given in Figure 1 and Figure
2. The low band transmit aperture is composed of 8 by 8
subarrays. Each array is capable of supporting a single transmit
beam. There are four types of subarrays, each with slightly
different capabilities. The receiver aperture is also an array of 8 by
8 subarrays, each supporting reception in both the L-band and S-
band. Each subarray has three beam formers, each attached to a
separate receiver.

Figure 1: Transmit Array

Figure 2: Receiver Array

Similar to a bistatic radar system [6], the dual face phased array
radar system can perform the transmit function at one site and the
receive function at another. It needs a communication link
between the transmitter and the receiver. The timing signals and
the transmitter’s waveforms and frequencies are transferred over
the link. The radar range and bearing of a target can be deduced
from measurements of the time taken for the transmitted pulse to
travel from the transmitter to the target and on to the receiver. The
ambiguity of which received signal corresponds to which
transmitted signal is solved by the minimum time interval
requirements between two sequentially transmitted signals. The
critical advantage of this dual face phased array system is that
there is no need to schedule the receiver when scheduling the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009...$5.00.

361

transmitter. In other words, the more traditional radar scheduling
problem of scheduling dwells (both transmitter and receiver tasks)
is not necessary. For more detailed information, please refer to [6].
In this paper, we focus on the scheduling problem on the
transmitter side.

The scheduling problem for the dual face phased array radars is to
allocate (groups of) beams and schedule radar tasks so that as
many surveillance and tracking functions can occur and meet their
deadlines as possible. Each radar task may require multiple beams
to work together. This is a non-trivial and non-obvious problem
because all the radar tasks are subject to multiple constraints. The
constraints include execution time, period, deadline, energy (over
heating during a period of time), frequency harmonics, and
semantic importance (defined by the target’s threat level) for each
task as well as resource contention. The radar task must complete
by its deadline at every period in order to keep track of the target.
Losing track of the target leads to expensive overhead of
searching for the target in a large space before the system can
track the same target again. For this reason, it is costly to lose
high semantic importance tasks. This requires the scheduling
algorithm to meet as many high semantic importance tasks as
possible under the various constraints we defined above.

It is well known that tasks in many real-time applications can be
scheduled by variations of rate monotonic or earliest deadline first
algorithms. When this is possible, it is satisfying to have formal
analysis and performance bounds underlying the use of these
algorithms. However, for some important applications the
simultaneous set of constraints that must be satisfied make these
traditional solutions unsuitable. Practical solutions for these more
complicated applications are important even if there is no
underlying theory. In this paper we develop a novel integrated
scheduling and allocation heuristic for a dual face phased array
radar system. The realistic features of the dual face phased array
radar system discussed above must be addressed. It is not obvious
how to account for all these issues in an effective manner. For
example, current solutions use complicated runtime rules that are
inefficient and underutilize the system.

The remainder of this paper is organized as follows. Section 2
provides a brief discussion of the state of the art. Section 3
describes the dual face phased array radar scheduling problem and
challenges. In Section 4, the task model is presented. The heuristic
function solution is presented in Section 5. In Section 6, we show
the simulation results. We conclude in Section 7.

2. STATE OF THE ART
In the past three decades, many researchers have developed
diverse scheduling algorithms for soft and hard real-time
problems. The most frequently referenced scheduling algorithms
are rate monotonic [16] and earliest deadline first scheduling [16]
strategies. In [16], the authors show that rate monotonic is optimal
among all fixed priority assignments. Liu and Layland [16] and
Dertouzos [4] prove that EDF is optimal in a preemptive task
model for one processor without resource contention. These
algorithms, however, do not address the physical constraints such
as frequency harmonics and semantic importance of a dual face
phased array radar task. Buttazzo and Stankovic [3] propose a

robust EDF scheduling algorithm (RED) for sporadic tasks under
overloads in a hard real-time environment. RED accepts a task
based on the earliest deadline first scheduling policy and rejects a
task based on the task’s value (i.e. the relative importance of the
task with respect to the other tasks in the task set). However,
RED only considers CPU resource constraints.

Radar tasks are non-preemptive. It has been shown in [11] and [13]
that, in general, when preemption is not allowed and when tasks
can have arbitrary arrivals, finding a feasible schedule and
minimizing the maximum lateness is NP-hard. Branch-and-Bound
algorithms such as [21] and [15] are usually proposed to deal with
the case when arrival times are known a priori and when there is a
non-preemptive requirement. In the average case, branch and
bound performs well, but in the worst case it degrades to
exponential complexity, which is not suitable for online
scheduling.

In order to limit the search space and reduce the computational
complexity of scheduling algorithms, two approaches are often
used. One approach is to use additional information to prune the
tree such as in Bratley’s algorithm [2]. But this algorithm still has
complexity of)!(nnO ⋅ . So it is not suitable for online
scheduling. In the second approach, found in [22] and [23], the
authors proposed an algorithm to drive the search by a heuristic
function H, which actively directs the scheduling to a plausible
path. On each level of the search, an H function is applied to each
of the tasks that remain to be scheduled. The task with the
smallest value determined by the heuristic function H is selected
to extend the current schedule. The heuristic function approach is
a very flexible mechanism to define and modify a scheduling
policy. One novelty of this paper is showing how to extend the H
function approach by encoding the radar system constraints into a
suitable H function.

Other work such as [5], [9], [12], [17], [18] also use heuristic
approaches for related scheduling problems. However, none of the
work has addressed the complexity involved with the radar
scheduling problem presented in this paper.

There have also been a number of papers that explicitly deal with
scheduling radars. Some of the work treats the problem as an
abstract scheduling problem without considering all the realistic
constraints. For example, Baugh [1] describes a best effort
scheduling algorithm based on a radar task’s semantic importance
for a traditional multi-function phase array radar system. Shih et
al. [21] present a scheduling template for dwell tasks with energy
constraints. This template based dwell scheduling algorithm
divides itself into two phases: one is the design phase, and the
other is the scheduling phase. The design phase is conducted
offline, and the scheduling phase is performed online. The major
design phase uses a branch-and-bound algorithm. Gopalakrishman
et al. [10] develop an online template construction to support both
adaptive adjustment of the schedule and highly dynamic
workloads. However, both [21] and [10] do not consider the
frequency harmonics constraint and deal with single face radars.

Lee et al. [15] propose a concept of a scheduling envelope. This
scheduling envelope is designed offline. It hides the complexity of
the radar dwell scheduling and provides a simple measure for the

362

schedulability check. The authors of [15] improve the system
utilization by taking advantage of dwell interleaving.

Q-RAM [19] [20] present a novel analytical approach for
satisfying multiple quality-of-service dimensions such as
timeliness and reliable data delivery. They have also applied their
work [7] [8] to radar scheduling for single face phased array
radars. Ghosh et al. [7] [8] are based on the assumption that given
a set of tasks, each of which is capable of running at one of
several different QoS levels, the algorithms can select a QoS
operating point. Since Q-RAM is a general and valuable tool, with
suitable inventiveness it probably could be applied to the radar
scheduling problem described here. To date, it has been used on a
different radar problem from the dual face phased array radars
described above. A possible future research problem could be to
compare and contrast solutions like Q-RAM (an optimization
based solution) with heuristic based solutions for radars. Just as
RMA and EDF are suitable in different situations, we expect
optimization versus heuristic based solutions to each have
problems that they are most suited for.

Kuo et al. [14] propose a rate-based approach to schedule radar
dwells, but the reservation ratio is computed based on each task’s
timeliness property. It does not take physical constraints into
consideration for the algorithm design which is a very important
aspect of the dual face phased array scheduling problem we solve
in this paper.

3. THE CHALLENGES
In a dual face phased array radar system, radar tasks are periodic
and non-preemptive. Tasks include both surveillance tasks that
sweep across the sky to search for targets and tracking tasks. In
order to keep track of a suspicious target, the radar task has to run
to completion by a deadline without preemption. The nature of the
dual face phased array radar system imposes some additional
challenges to the real time scheduling algorithm to provide
predictable performance.

The major scheduling challenges are similar to [21]: (1) each
radar task has its own semantic importance defined by the level of
threat from the tracked target. A higher the threat from the tracked
target leads to a higher semantic importance of the corresponding
task. Whereas in traditional real-time scheduling algorithms such
as rate monotonic [16] and EDF [16], the priority or importance of
the task is assigned based on the timeliness properties, here it is
based on semantics. In a phased array radar system, the semantic
importance of the task is more important than the priority defined
by the timeliness property. So when the system is overloaded, we
cannot discard the higher semantic importance tasks even when
their timeliness requirement is lower. This property of a radar task
requires favoring the higher semantic importance tasks. Most of
the existing scheduling algorithms do not take the semantic
importance into account. Our heuristic algorithm takes the
semantic importance into consideration at the algorithm design
level. (2) There is a highly dynamic system workload. A tracking
task is generated whenever a new suspicious target appears in the
surveillance space. But the tracked target’s action is not
predictable so that the tracking tasks’ arrival is not known a priori.
This requires a scheduling algorithm with the capability to

determine whether a newly generated tracking task should be
admitted or declined. It must be performed with low overhead in
real-time. By contrast with offline scheduling algorithms proposed
for radar systems, our heuristic algorithm can perform an online
schedulability check with bounded overhead. (3) Physical
constraints such as frequency harmonics must be addressed in the
scheduling algorithm besides the execution time, deadline and
period as well as resource constraints. In the single face phased
array, every radar task is composed by two subtasks. One subtask
is the transmit task. The other subtask is the receive subtask which
performs signal processing upon receiving the returned signal.
The two subtasks need to be executed in order and separated by
enough physical time. In our dual face phased array radar system,
there are separate transmit and receive radars. The transmitter and
receiver can be scheduled separately.

All the challenges described above make it extremely difficult to
provide predictable performance by using traditional scheduling
algorithms. The contributions of this paper are:
1) A heuristic algorithm is defined such that it takes the most

important properties of a dual face phased array radar task
such as resources, timeliness, semantic importance and
frequency harmonics into consideration.

2) The heuristic algorithm can provide an online schedulability
check with bounded overhead.

3) The algorithm also makes resource allocation assignments.
4) The heuristic algorithm significantly improves performance.

4. TASK MODEL
Typically, in a dual face phased array radar system, the antenna of
the transmitter sends electromagnetic signals with a predefined
frequency. In order to avoid the frequency inference when
multiple radar antennas transmit electromagnetic signals
simultaneously, the frequencies assigned to the radar beams are
subject to frequency harmonics constraints.

When a dual phased array radar antenna sends a signal, it causes
heating of the radar panel. But the transmitting panel is
susceptible to overheating. The task model in [10] [15] [21]
captures the energy constraint due to possible overheating. This
paper considers another important physical constraint, i.e.,
frequency harmonics. As we discussed above, it is costly to lose
the high semantic importance tasks in dual face phased array radar
systems. In our task model, we take the semantic importance into
consideration. Radar tasks are non-preemptive periodic tasks as
discussed above. Each transmitting task can have multiple
instances. Each instance of a task is called a job as defined in [16].
The j-th instance of task Ti is referred to as job Ji,j. We define the
timeliness, frequency harmonics and semantic importance as
follows:

Definition 4.1. Timeliness Constraint: A transmitting task
completes in time if and only if every instance (job) of the task
meets its deadline.

Definition 4.2. Frequency Harmonics Constraint: In any time
interval [t0, t1], if any two overlapping execution array antennas
are transmitting electromagnetic signals with frequency f1 and f2
respectively, these two frequencies should satisfy equation

363

(2):
hsfff >− 21

, where
hsf is the lowest value needed to

avoid the frequency conflict. In this paper, we define fhs as the
frequency conflict degree. The frequency conflict degree will be
used to calculate the earliest available time of resources required
by a task. A task meets the frequency harmonics constraint if and
only if every instance (job) of the task can be scheduled under the
frequency harmonics constraint.

Definition 4.3. Semantic Importance: Higher threat level tasks
have higher semantic importance. The semantic importance of an
instance (job) of a task is defined by the task.

The notation used in the rest of the paper is:
ci: worst case execution time of task Ti
di: deadline of task Ti
ri: release time of task Ti
pi: period of task Ti
fi: transmitting frequency of task Ti
sii: semantic importance of task Ti
poli: the type (polarizaton) of beams that task Ti requires
jti: the number of special filters required by task Ti
ni: the number of beams required by task Ti
Rij: the resources required by task Ti which is tuple of (poli, jti, ni)

Each radar task may require multiple beams to work together with
specified semantic importance, frequency, worst case execution,
deadline, period, and resources required. Consequently, a task is
defined as a nine tuple TASK (ci,di,ri,pi,fi,sii,poli,jti,ni). In this new
task model, all of the constraints we addressed above are captured.

In our dual face phased array radar system, a radar task only
specifies what type of beams it requires. It does not specify which
particular beams to use. In fact, a radar task can be assigned to
any beams that have the same type as the task requires. And the
frequency of task Ti is also assigned to the beams to allocate this
task during the task Ti’s execution time.

We develop our heuristic algorithm presented in the following
section based on the task model proposed here.

5. HEURISTIC ALGORITHM
5.1 Heuristic Function Definition
In a manner similar to [23] our solution is to define a heuristic
function H. But our heuristic function defined here extends [23] in
two dimensions: semantic importance and frequency harmonics.

As discussed above, each task can have multiple instances (jobs).
The release time of each instance is defined by the period of the
task. We use the H function to create a system-wide schedule by
choosing the next job to be scheduled based on the output of the H
function. If it is feasible to schedule then we set that job in the
schedule and update the current resource allocations required by
that job. We then iterate until all jobs are scheduled or until the
remaining jobs cannot be scheduled. A task is schedulable if all of
its jobs are schedulable.

The function H is defined as follows:

(3):
jijijiji ESTsiDJH ,,,,)(⋅+⋅+⋅= γβα

where Ji,j is j-th instance (job) of task Ti, Di,j is the deadline of job
Ji,j. jpdrD iiiji ×++=,

, while ri, di, pi are as defined in section 4. sii,j

is the semantic importance of job Ji,j and it equals sii as in section
4. The parameters α,β,γ are tunable parameters which can be
adjusted to generate good performance. ESTi,j is the earliest start
time of job Ji,j after it is available. ESTi,j is defined as equation 4.
 (4):))((, ijji REATMAXEST = .

where)(ijREAT is the earliest available time for the set of

resources required by job Ji,j subject to the frequency harmonics
constraint defined by the conflict degree fhs given in definition 4.2.

One reason to choose the H function as a linear function of
deadline, semantic importance and earliest start time of a job is to
keep the heuristic function computationally simple to make it
more suitable for online scheduling.

By taking the frequency harmonics constraint into consideration,
we provide two ways to calculate the earliest available time for
the set of resources a job requires.

First we introduce how to decide whether a job Ji has any
frequency conflict with jobs already scheduled or not. Assume
jobs Jj, Jj+1, … , Jj+k have been scheduled when trying to schedule
job Ji. Job Ji has no frequency conflict with jobs Jj, Jj+1, … , Jj+k
if and only if),...,(kjjpfff hspi +=>− , while fhs is

defined in the above section.

Case 1: Job Ji does not have any frequency conflict with the jobs
already scheduled to execute during the same period of time.

Then the earliest available time of resources or beams a job
requires is decided by the minimum values of the set of the same
type of resources. Using 4 S-band beams as the example, let ∅{3,
5, 10, 8} be the set of the earliest available times of these 4 S-
band beams. If job J1 requires two S-band beams, then the earliest
available time of the resources job J1 is a subset with minimum
values {3, 5}. The earliest start time of job J1 is the maximum of
these subsets. In this example, it is 5. And if job J1 is scheduled,
beams with earliest available times 3 and 5 will be assigned to job
J1.

Case 2: Job Ji has any frequency conflict with jobs already
scheduled to execute during the same period of time.

Then the earliest available time of resources or beams a job
requires is not only decided by the minimum values of the set of
the same type of resources, but also by the resources (beams
assigned to a job will also be assigned the frequency of that job)
that have frequency conflicts with job Ji. We give an example in
Figure 3 to explain how to calculate the earliest available time of
the resources job Ji requires. In this example we assume the
frequency conflict degree fhs equals 0.

In Figure 3, we have six jobs and 3 S-band beams as the example
jobs and resources, respectively. Jobs J1, and J2 have been
scheduled to beam 1. Job J3 has been scheduled to beam 2. And

364

jobs J4 and J5 are allocated to beam 3. Job J6 requires two beams.
If there is no frequency conflict, as in case 1, then the earliest
available time of resources job J6 requires is decided by beam 2
and beam 3 as showed by the gray arrow pointing from job J6 to
these two beams. However, because job J6 has a frequency
conflict with job J2 which is scheduled on beam 1, the earliest
available time of resources needed by job J6 is decided by all three
beams as the three lines pointing from job J6 in Figure 3.

Figure 3: Earliest Available Time Example

The benefit of handling frequency conflicts at the same time as
computing the earliest available time of resources a job requires is
twofold:
1) Our heuristic algorithm remains a linear time complexity

algorithm. The algorithm only requires a frequency conflict
check while calculating the resources’ earliest available time.

2) When a job has any frequency conflict with jobs already
scheduled, it has no impact on the jobs already scheduled.

From the definition in equation (3), we can see that the following
is true:
1) Di,j takes the time requirements of a job into account,
2) sii,j takes the semantic importance of a job into consideration,

and
3) ESTi,j encodes the resource requirements of a job and the

frequency harmonic constraints.

We conclude that our heuristic function encapsulates the most
significant characteristics of the radar scheduling problem we
address in this paper.

5.2 Overview of the Heuristic Function
Definition

As Figure 4 demonstrates, the scheduler determines a full feasible
schedule for a given set of tasks in the following steps: (1) it
generates all the instances (jobs) of each task available, and all the
instances of each task available form a job set; (2) it starts with an
empty schedule and tries to extend it one job at a time.

At each level, we first calculate the earliest available time for the
resources each job requires. At this step, we take the frequency
harmonics constraint into consideration. Then we calculate the
earliest start time for each job. After that we compute the heuristic
value for each task using equation 3. The scheduler tries to
schedule a job with the minimum heuristic value in the job set
remaining to be scheduled. At any step, if the minimum heuristic
value holder cannot be scheduled, it is discarded from the job set.
A task is not schedulable if any instance (job) of this task is not
schedulable.

 T A S K S E T = {T 1, T 2, … , T k};

JO B S E T = ;
S C H E D U L E = ;
W hile(T A S K S E T){
 C alculate all jobs {J1,j, J2,j, … , Ji,j} of each task T j in T A S K S E T ;
 JO B S E T = JO B S E T all the jobs of task T j;
}
W hile (JO B S E T)
D o{
 F or each job Ji,j in JO B S E T
 C alculate E arliest A vailable T im e of each resources required by job Ji,j;

 C alculate E arliest S tart T im e of job Ji,j;
 C alculate H value of job Ji,j;

 C hoose the job Ji,j w ith m inim um H value;
 IF (F E A S IB L E (Ji,j)) T H E N
 add job Ji,j to S C H E D U L E ;
 update E arliest A vailable T im e of each resources allocated to job Ji,j;
 rem ove job Ji,j from JO B S E T ;
 E L S E
 rem ove job Ji,j from JO B S E T ;
 rem ove all jobs of task T j from T A S K S E T ;
 rem ove all jobs of task T j in S C H E D U L E ;
 release all resources allocated to all jobs of task T j;
}

Figure 4: Pseudo code for basic heuristic algorithm

5.3 Complexity
In the heuristic search space, the partial schedule of a task set
constructs a search tree as shown in Figure 5. The left side of the
Figure 5 shows the whole search space which is of exponential
complexity. An exhaustive search can find an optimal schedule
for a task set if one exists. This is not suitable for our dual face
phased array radar scheduling problem to have online
schedulability analysis. For this purpose, we only choose one of
the vertices at each level of the search tree to expand the schedule
to the next level. This enables our algorithm to execute in
polynomial time.

At each level of the search tree, an instance (job) of a task which
has the minimum heuristic value is chosen to be scheduled. This
minimum heuristic value is calculated by using equation 3. The
right hand side of Figure 5 shows our heuristic algorithm search
path by the gray nodes in the tree. For a set of periodic tasks
{T1,T2,…,Tk}, each task Ti (i=1,…,k) may have multiple instances.
Assume the scheduling period P equals the least common multiple
of all tasks’ periods in the task set. Then the number of instances
mi that a task Ti can have during the scheduling period P is P
divided by pi, where pi is the period of task Ti. Assume ∑

=

=
k

i
imm

1

 ,

then our heuristic algorithm’s complexity is)log(mm . Let the
minimum number of mi (i=1,...,k) be min(mi) and the maximum
number of mi (i=1,…,k) be max(mi). We know that both min(mi)
and max(mi) are finite constants. So equation (5) must be true
where n is the number of tasks to be scheduled.
(5):)max()min(ii mnmmn ×≤≤× .
From equation (5), we can infer that this algorithm executes in
polynomial time.

Figure 5: Heuristic Searching Space

365

6. PERFORMANCE EVALUATIONS
We evaluate our heuristic function through simulations. The
resources modeled in the simulation match the ship-based radar
system mentioned above, i.e., 16 beams are S-band vertical
polarization beams, 16 L-band dual polarization beams, and 32 L-
band vertical polarization beams with 2 of these beams having
special filters. Each task, either a searching or tracking task, may
require multiple beams simultaneously. Every task is non-
preemptive and is subject to the frequency harmonics constraint
defined in previous sections.

It is quite difficult to compare our solution to other known
solutions. No solutions in the literature (as far as we know)
address this same scheduling problem. Further, many current
solutions are based on a set of ad hoc scheduling rules which are
not available for comparison. Solutions using Q-RAM might be
appropriate, but a development of a solution using Q-RAM is
itself a research problem. The literature [1] does propose using a
static priority scheduling algorithm where the priority is set
according to semantic importance (we refer to this algorithm as
IMP). Hence, we compare to this simple approach. Since using
importance alone does not consider deadlines we also compare to
EDF. The robust EDF (RED) [3] is a possible comparison to our
heuristic algorithm since RED also considers task’s value when
rejecting a task. However, RED needs an efficient online load
calculator to detect the overload conditions. And RED is designed
for sporadic tasks. In this paper, we are considering periodic tasks.

We evaluate our algorithm using the total tasks’ success ratio and
the highest semantic importance tasks’ success ratio. The total
tasks’ success ratio for a task set defines the total number of
successfully scheduled tasks divided by the total number of tasks
in the task set. The highest semantic importance tasks’ success
ratio for a task set defines the total number of successfully
scheduled highest semantic importance tasks divided by the total
number of highest semantic importance tasks in the task set.

We use simulations to (i) set parameters α,β,γ in the heuristic
function formula, (ii) evaluate static scheduling and (iii) evaluate
online/dynamic scheduling. The simulation results demonstrate
that our heuristic scheduling algorithm has the best performance
over all the simulations.

6.1 Static Scheduling
The workload of some real-time systems can be considered as the
processor utilization factor. For a set of periodic tasks with only
CPU as a resource constraint, the utilization factor [16] can be

computed by ∑
=

=
n

i i

i

p
cU

1

, where ci, pi are as defined in section

4. For the radar transmitting tasks that we consider in this paper,
each task requires multiple resources such as CPU, beams and
each task is also subject to frequency harmonics and semantic
importance constraints. Because of these multiple constraints, it is
improper to compute workloads by a simple formula. We
illustrate the difficulty to quantitatively measure our system
workloads using any single resource’s utilization in the example
below. To simplify the example, we use only CPU, beam 1, and
beam 2 as the resources (note we have a total of 64 beams in the

system) and task sets S1 and S2 as the example task sets. The
utilizations of S1 and S2 are listed in Table 1. Let’s look at the
utilization of S1 first, if we use CPU utilization to measure the
workload, we think it is a light workload, but it is not true because
of the heavy load at beam 2. To make things more complicated, it
is very difficult to measure a workload that has frequency
harmonic constraints. For task set S2, if using any single resource
utilization, we can falsely think it is light workload. But it
possible because a task can not be scheduled on beam 1 due to a
frequency conflict. So we define the light, medium and heavy
workloads below for this paper by determining the combination of
utilizations on multiple resources through simulations.

Table 1: Resource Utilization
 CPU Beam 1 Beam 2
Utilization of S1 0.2 0.3 0.9
Utilization of S2 0.2 0.1 0.4

Workload Generator: We evaluate static scheduling based on
three types of workloads namely light, medium, and heavy
workloads. As discussed in previous sections our task model
captures multiple dimensional constraints such as timeliness and
resource constraints. We define the workloads from light to heavy
by adjusting the worst case execution time (timeliness property)
and the number of beams (resource requirements) a task requires.
In this paper, light workloads differ from medium and heavy
workloads in worst case execution time. And heavy workloads
differ from light and medium workloads in the number of beams a
task requires. The workload generator creates a task set based on a
set of task parameters. A task is represented as a nine tuple TASK
(ci,di,ri,pi,fi,sii,poli,jti,ni). Here, we try to mimic the real radar
tasks’ requirements. But we do not have the well-known task
specifications to follow. The worst case execution time ci is
uniformly distributed within the range [1, 5] for light workloads,
and [1, 10] for medium and heavy workloads. The relative
deadline di is equal to period pi. Each task is randomly assigned a
period pi from the set {10, 20, 50, 100}. The release time ri is set
to 0 for the static task sets for simplicity. For dynamic scheduling,
the release times of tasks are defined by a Poisson distribution as
disscussed in the online scheduling section. The frequency fi is
uniformly distributed within the range [950MHz, 1000MHz] for
S-band tasks, and [1000MHz, 5000MHz] for L-band tasks. The
semantic importance sii is uniformly distributed between 1 and 10.
So statistically, we have 10% of the tasks as highest semantic
importance tasks in a task set. The smaller value has higher
semantic importance. The polarization poli is uniformly
distributed within the range [1, 3] in which value 1 means a task
requires vertical polarization beams, value 2 requires dual
polarization beams and value 3 requires all polarization beams.
The number of special filters jti is uniformly distributed within the
range [0, 2]. The number of beams a task requires is uniformly
distributed between [1, 3] for light and medium workloads. The
number of beams a task requires is uniformly distributed within
the range [1, 5] for heavy workloads. For each light, medium and
heavy workload, we generate 10 sets of tasks and each task set has
200 tasks. Each task may have multiple instances. Each instance
of a task differs in its release time according to the task’s period.
The scheduling period P is 100.

366

6.1.1 Tuning the Parameters of H
From the definition of the heuristic function, we see that the
tunable coefficients α, β, γ are very important to the performance
of the algorithm. We determine the values of α, β, γ through
simulations.

To find the good α,β,γ values, we first generate a set of 200 tasks
for each light, medium and heavy workload. We do not consider
the frequency conflict while tuning the parameters. We run our
heuristic algorithm on each task set by varying each parameter α,
β, γ from 0.1 to 1.0 using steps of 0.2. This exhaustive search of
α,β,γ produces good values. The (α,β,γ) values generating the
highest semantic importance tasks’ success ratio for each
workload is chosen for the following performance evaluations.
We use (0.7,0.1,0.5), (0.5,0.3,09) and (0.9,0.3,0.7) for light,
medium, and heavy workloads, respectively. Figure 6 and Figure
7 give the relationship between α,β,γ values and the total tasks’
success ratio, and the highest semantic importance tasks’ success
ratio at medium workloads while setting α to 0.5. We can see
while fixing the α value, the variations of the highest semantic
importance tasks’ success ratio with the change of β and γ values
are within 5%. Similar results exist for the total tasks’ success
ratio. Figure 8 and Figure 9 give similar results while setting beta
to 0.3. This shows that the values chosen are not too sensitive.

Figure 6: ααααββββγγγγ values

Figure 7: ααααββββγγγγ values

Figure 8: ααααββββγγγγ values

Figure 9: ααααββββγγγγ values

6.1.2 Simulation Results

6.1.2.1 Vary Workloads
In this subsection, we evaluate our heuristic algorithm against
EDF and the static priority scheduling algorithm IMP at light,
medium and heavy workloads. All the figures are plotted with
95% confidence intervals as the error bar.

In Figure 10 and Figure 11, the frequency conflict degree fhs is set
to 3. In the following section, we discuss how the frequency
conflict degree affects performance. Figure 10 gives the
performance of all three algorithms with respect to the highest
semantic importance tasks’ success ratio. From Figure 10, we can
see that our heuristic algorithm achieves as high as 99%, 94%,
and 91% highest semantic importance tasks’ success ratios at light,
medium and heavy workloads, respectively. EDF results in 72%,
60%, and 41% success ratio at light, medium and heavy
workloads, respectively. IMP has 80%, 66%, and 60% success
ratio at light, medium and heavy workloads, respectively. These
results indicate that our heuristic algorithm is 50% better than
EDF and 31% better than IMP at heavy workloads. At medium
workloads, our heuristic algorithm is 34% better than EDF, 28%
better than IMP. Even at light workloads, our heuristic algorithm
performs 27% better than EDF and 19% better than IMP. Figure
11 shows the performance on total tasks’ success ratio. From
Figure 11, we know that our heuristic algorithm is 10% better than
EDF and 45% better than IMP even at heavy workloads in terms

367

of total tasks’ success ratio. At light workloads, our heuristic
algorithm is over 70% better than IMP and 20% better than EDF.

EDF gives better performance than IMP in terms of the total
tasks’ success ratio on all three workloads, but it gives worse
performance than IMP on highest semantic importance tasks’
success ratio. In all three workloads, our heuristic algorithm gives
best performance in terms of both highest semantic importance
tasks’ success ratio and total tasks’ success ratio. Non-preempitve
EDF is proven to be optimal if no idle times can be inserted in the
schedule for a single processor without overload as in [11].
However, the only resource constraint considered in [11] is the
CPU resource. Our system has multiple resource constraints such
as CPU, 64 beams and frequency harmonic constraints. Our
heuristic algorithm by taking the multiple constraints into
consideration results in better performance.

Figure 10: Heuristic Algorithm

Figure 11: Heuristic Algorithm

6.1.2.2 Vary Frequency Constraints
In this section, we discuss the effect of the frequency harmonics
constraint on our heuristic algorithm. The frequency conflict
degree fhs is as defined in section 4. We evaluate our heuristic
algorithm, EDF and IMP at frequency conflict degree fhs as 0, 1, 3,
5, and 7 on light, medium and heavy workloads. We only present
the heavy workloads as the study case, but similar results exist for
light and medium workloads. In Figure 12, we plot the highest
semantic importance tasks’ success ratio against the frequency
conflict degree. Figure 13 shows the relationship between the total
tasks’ success ratio and the frequency conflict degree.

From Figures 12 and 13, we can see that our heuristic algorithm is
very robust to the increase of the frequency conflict degree for
both success ratios. IMP saturates on both the highest semantic
importance tasks’ success ratio and the total tasks’ success ratio so
that it does not change dynamically with the frequency conflict
degree. EDF drops both the highest semantic importance tasks’
success ratio and the total tasks’ success ratio rapidly when the
frequency conflict degree increases. Our heuristic algorithm,
explicitly addressing frequency harmonics constraints via the
heuristic function, gives excellent performance.

Figure 12: Frequency constraint effect

Figure 13: Frequency constraint effect

6.2 Online Scheduling
In this section, we discuss the overhead and performance of our
online scheduling heuristic algorithm.

6.2.1 Online Scheduling Algorithm
The basic idea of the online scheduling algorithm is that whenever
a new task arrives, the scheduling algorithm reschedules all the
tasks which currently are not in execution plus the new arrivals.

368

Figure 14: Online Scheduling Control Flow

Figure 14 gives the control flow of the online scheduling
algorithm. The Taskq in Figure 14 is the queue to hold the tasks to
be scheduled and the new arrivals. The Schq is the queue to hold
the tasks already scheduled, but waiting to be executed.

6.2.2 Complexity
By comparing with the static scheduling algorithm, the overhead
of the online scheduling comes from the fact that all the tasks in
the schedule queue waiting to be executed are to be rescheduled
whenever there are new arrivals. Assume tasks arrive according to
a Poisson distribution with parameter λ. Then the tasks’ inter-
arrival time is exponentially distributed with parameter 1/λ. The
maximum number of times a task Ti rescheduled is equal to its
deadline di divided by 1/λ. A task will be deleted from the task
queue if it missed its deadline. We assume that the total
scheduling period is P. The total number of tasks S arriving during
period P is defined by λ×= PS . So we can equate the online
scheduling to be the static scheduling algorithm with total number
of tasks n satisfying equation (6), and (7):
(6): ndS ii ≤+×)))/1/(min(1(λ
(7):)))/1/(max(1(iidSn λ+×≤
As we can see the algorithm still executes in polynomial time.

6.2.3 Simulation Results
We also evaluate our online scheduling algorithm on three types
of workloads. Similar to the static scheduling algorithm, each task
is represented by a nine tuple TASK (ci,di,ri,pi,fi,sii,poli,jti,ni).
Different from the static scheduling workloads generator, the
distribution of release times of tasks is the major parameter to
vary from light to heavy workloads. The worst case execution
time ci is uniformly distributed in the range [1, 3] for all three
workloads. The deadline di is equal to period pi. The period pi is
uniformly randomly chosen from the set {10, 20, 50, 100}. The
release time is calculated based on the Poisson distribution with
parameter λ, the arrival rate. The parameter λ equals 5 for light
workloads, 10 for medium workloads, and 15 for heavy
workloads. The frequency fi is uniformly distributed within the
range [950MHz, 1000MHz] for S-band tasks, and [1000MHz,
5000MHz] for L-band tasks. The semantic importance sii is
uniformly distributed between 1 and 10. The polarization poli is
uniformly distributed within the range [1, 3]. The number of
special filters jti is uniformly distributed within the range [0, 2].
The number of beams ni is uniformly distributed in [1, 3] for all
three workloads. We use (0.5,0.1,0.7) as the α,β,γ values for the
heuristic algorithm for all three workloads. The parameters α,β,γ
are tuned through simulations similar to static scheduling. The
scheduling period P is 100. For all three workloads, we set the

frequency conflict degree fhs to 3. Each task may have multiple
instances during the scheduling period.

As Figure 15 shows, our heuristic algorithm can achieve 97%,
93% and 85% in terms of the highest semantic importance tasks’
success ratio at light, medium and heavy workloads, respectively.
At heavy workloads, our heuristic algorithm is 30% better than
EDF and 20% better than IMP in terms of the highest semantic
importance tasks’ success ratio. As shown in Figure 16, our
heuristic algorithm is 10% better than EDF and 20% better than
IMP on the total tasks’ success ratio for all three workloads. For
online scheduling, the results are similar to the static scheduling
algorithm for varying frequency conflict degrees. Due to space
limits, we do not present the figures here.

Figure 15: Online Scheduling

Figure 16: Online Scheduling

7. CONCLUSIONS
Many real-time applications such as dual face phased array radar
systems are complex and scheduling solutions based on rate
monotonic or EDF are not adequate. To handle the realistic and
multi-dimensional constraints of this application a heuristic
function solution was developed and evaluated. The heuristic
algorithm in this paper takes the timeliness, resource requirements,
semantic importance and physical constraints into consideration.
It is a very flexible algorithm that incorporates many aspects of a
dual face phased array radar task. Based on the simulation results,
we show that our heuristic algorithm provides excellent
performance. We also discuss the overhead and performance of
the use of the algorithm on-line.

369

8. ACKNOWLEDGEMENTS
This work was supported in part by the MURI award
N00014-01-1-0576 from ONR and DARPA.

9. REFERENCES
[1] R. Baugh. Computer Control of Modern Radars. New York:
RCA Corporation, 1973.

[2] P. Bratley, M. Florian, and P. Robillard. Scheduling with
Earliest Start and Due Date Constraints, Naval Research Quartery,
18(4), 1971.

[3] G. C. Buttazzo and John A. Stankovic. RED: Robust Earliest
Deadline Scheduling, Proceedings of The Third International
Workshop on Responsive Computing Systems, Austin, 1993.

[4] M. L. Dertouzos. Control Robotics: The Procedural Control of
Physical Processes, Information Processing, 74, 1974.

[5] K. Efe. Heuristic Models for Task Assignment Scheduling in
Distributed Systems, IEEE Computer, June 1982.

[6] N. Fourikis, Phased Array-Based Systems and Applications,
John Wiley & Sons, Inc. ISBN 0-471-01212-2, 1996.

[7] S. Ghosh, Ragunathan Rajkumar, Jeffery Hansen and John
Lehoczky. Scalable Resource Allocation for Multi-Processor QoS
Optimization, In Proceedings of the 8th International Conference
on Distributed Computing Systems (ICDCS 2003), May. 2003.

[8] S. Ghosh, Ragunnathan Rajkumar, Jeffery Hansen, and John
Lehoczky. Integrated Resource Management and Scheduling with
Multi-Resource Constraints, IEEE Real Time Systems Symposium,
2004.

[9] K. Gopalan, and T. Chiueh. Multi-resource Allocation and
Scheduling for Periodic Soft Real-Time Applications. In Proc. of
ACM/SPIE Multimedia Computing and Networking (MMCN2002),
San Jose, CA, Jan. 2002.

[10] S. Gopalakrishman, M. Caccamo, C. S. Shih, C. G. Lee, and
L. Sha, Finite-Horizon Scheduling of Radar Dwells with Online
Template Contruction, IEEE Real Time Systems Symposium, 2004.

[11] K. Jeffay, D. F. Stanat, and C. U.Martel. On Non-preemptive
Scheduling of Periodic and Sporadic Tasks with Varying
Execution Priority, In Proceedings of the IEEE Real-Time
Systems Symposium, pages 129-139, Dec. 1991.

[12] H. H. Johnson and M. S. Madison. Deadline Scheduling for a
Real-Time Multiprocessor, NTIS (N76-15843), Springfield, VA,
May, 1974.

[13] H. Kise, T. Ibaraki, and H. Mine. A Solvable Case of the One
Machine Scheduling Problem with Ready and Due Times,
Operations Research, 26(1):121-126, 1978.

[14] T. W. Kuo, Y. S. Chao, C. F. Kuo, C. Chang, and Y. L. Su.
Real-Time Dwell Scheduling of Component Oriented Phased
Array Radars. In Proceedings of IEEE Real Time Systems
Symposium, Dec. 1992.

[15] C. G. Lee, P. S. Kang, C. S. Shih, L. Sha. Radar Dwell
Scheduling Considering Physical Characteristics of Phased Array
Antenna, IEEE Real Time Systems Symposium, 2003.

[16] C. L. Liu and J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment, Journal of
the ACM, 20(1), 1973.

[17] R. P. Ma, Y. S. Lee, and M. Tsuchiya. A Task Allocation
Model for Distributed Computing Systems, IEEE Trans.
Computers, Vol. C-31, Jan. 1982.

[18] R. R. Muntz, and E. G. Coffman. Preemptive Scheduling of
Real-Time Tasks on Multiprocessor Systems, Journal of ACM,
Vol. 17, Apr. 1970.

[19] R. Rajkumar, C. Lee, J. P. Lehoczky and D. P. Siewiorek.
Practical Solution for QoS-based Resource Allocation Problems,
IEEE Real Time Systems Symposium, pages 296-306, 1998.

[20] R. Rajkumar, C. Lee, J. P. Lehoczky and D. P. Siewiorek. A
Resource Allocation Model for QoS Management, IEEE Real
Time Systems Symposium, pages 298-307, 1997.

[21] C. S. Shih, S. Gopalakrishnan, P. Ganti, M. Caccamo, and L.
Sha. Template-based Real-Time Dwell Scheduling with Energy
Constraints, IEEE Real-Time and Embedded Technology and
Applications Symposium, 2003

[22] J. Stankovic, and K. Ramamritham. The Design of the Spring
Kernel, In Proceedings of the IEEE Real Time Symposium, Dec.
1987.

[23] W. Zhao, K. Ramamritham, and J. A. Stankovic. Scheduling
Tasks with Resource Requirements in Hard Real-Time Systems,
IEEE Transactions on Software Engineering, Vol. SE-13, No.5,
May 1987.

370

