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ABSTRACT 
Tasks in many real-time applications can be scheduled by 
variations of rate monotonic or earliest deadline first algorithms. 
When this is possible, it is satisfying to have formal analysis and 
performance bounds underlying the use of these algorithms. 
However, in many applications the simultaneous set of constraints 
that must be satisfied makes these traditional solutions unsuitable. 
Practical solutions for these more complicated applications are 
important. In this paper we develop a novel integrated scheduling 
and allocation heuristic for a dual face phased array radar system. 
The realistic features of the radar system that must be 
simultaneously addressed include timeliness (worst case execution 
time, period, deadline), semantic importance, and physical 
constraints such as beam selection and frequency harmonics. The 
heuristic function we develop provides a very flexible way to 
incorporate these requirements into one single equation. Since 
scheduling high semantic importance tasks is paramount, we use 
the highest semantic importance tasks’ success ratio as the major 
performance metric. Based on simulation results, we show that 
our static heuristic algorithm can schedule more than 91% of the 
highest semantic importance tasks at high frequency conflict 
degree even at heavy workloads. The result is 50% better than 
EDF and 31% better than an importance (IMP) based static 
priority scheduling algorithm where IMP is similar to various 
current approaches. For the online scheduling algorithm, our 
heuristic algorithm is 30% better than EDF and 20% better than 
IMP in terms of highest semantic importance tasks’ success ratio 
at heavy workloads. 
�

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Real 
Time and Embedded System. D.4 [Operating System]: Processor 
Management – scheduling. J.7 [Computers in Other Systems]: 
Real Time.�

General Terms 
Performance, Management, Design, Experimentations 

Keywords 
Dual Phased Array Radars Systems, Real Time Systems, 
Scheduling, Resource Allocations, Heuristic Algorithms, 
Performance. 

 

1. INTRODUCTION 
Modern phased array radars are very sophisticated systems subject 
to an extremely difficult set of real-time resource requirements 
and constraints. For example, the dual face phased array radar in 
the ship-based application presented here has separate transmit 
and receive arrays. For the transmit array there are 64 beams. 
Beams may be scheduled individually, or in groups, or as 
subarrays. The beams are also separated according to function. 
The beams are classified according to their frequencies and 
polarizations. The S-band beams’ frequencies are in the range 
[950MHz, 10000MHz]. The frequencies of L-band beams are in 
the range [1000MHz, 5000MHz]. 16 beams have S-band vertical 
polarization, 16 beams have L-band dual polarization, 32 beams 
have L-band vertical polarization and 2 of them have special 
purpose filters. The physical locations of S-band and L-band 
beams in the phased array radars are given in Figure 1 and Figure 
2. The low band transmit aperture is composed of 8 by 8 
subarrays. Each array is capable of supporting a single transmit 
beam. There are four types of subarrays, each with slightly 
different capabilities. The receiver aperture is also an array of 8 by 
8 subarrays, each supporting reception in both the L-band and S-
band. Each subarray has three beam formers, each attached to a 
separate receiver.  
 

 
Figure 1: Transmit Array 

 

 
Figure 2: Receiver Array 

 
Similar to a bistatic radar system [6], the dual face phased array 
radar system can perform the transmit function at one site and the 
receive function at another. It needs a communication link 
between the transmitter and the receiver. The timing signals and 
the transmitter’s waveforms and frequencies are transferred over 
the link. The radar range and bearing of a target can be deduced 
from measurements of the time taken for the transmitted pulse to 
travel from the transmitter to the target and on to the receiver. The 
ambiguity of which received signal corresponds to which 
transmitted signal is solved by the minimum time interval 
requirements between two sequentially transmitted signals. The 
critical advantage of this dual face phased array system is that 
there is no need to schedule the receiver when scheduling the 
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transmitter. In other words, the more traditional radar scheduling 
problem of scheduling dwells (both transmitter and receiver tasks) 
is not necessary. For more detailed information, please refer to [6]. 
In this paper, we focus on the scheduling problem on the 
transmitter side. 
 
The scheduling problem for the dual face phased array radars is to 
allocate (groups of) beams and schedule radar tasks so that as 
many surveillance and tracking functions can occur and meet their 
deadlines as possible. Each radar task may require multiple beams 
to work together. This is a non-trivial and non-obvious problem 
because all the radar tasks are subject to multiple constraints. The 
constraints include execution time, period, deadline, energy (over 
heating during a period of time), frequency harmonics, and 
semantic importance (defined by the target’s threat level) for each 
task as well as resource contention. The radar task must complete 
by its deadline at every period in order to keep track of the target. 
Losing track of the target leads to expensive overhead of 
searching for the target in a large space before the system can 
track the same target again. For this reason, it is costly to lose 
high semantic importance tasks. This requires the scheduling 
algorithm to meet as many high semantic importance tasks as 
possible under the various constraints we defined above. 
 
It is well known that tasks in many real-time applications can be 
scheduled by variations of rate monotonic or earliest deadline first 
algorithms. When this is possible, it is satisfying to have formal 
analysis and performance bounds underlying the use of these 
algorithms. However, for some important applications the 
simultaneous set of constraints that must be satisfied make these 
traditional solutions unsuitable. Practical solutions for these more 
complicated applications are important even if there is no 
underlying theory. In this paper we develop a novel integrated 
scheduling and allocation heuristic for a dual face phased array 
radar system. The realistic features of the dual face phased array 
radar system discussed above must be addressed.  It is not obvious 
how to account for all these issues in an effective manner. For 
example, current solutions use complicated runtime rules that are 
inefficient and underutilize the system.  
 
The remainder of this paper is organized as follows. Section 2 
provides a brief discussion of the state of the art. Section 3 
describes the dual face phased array radar scheduling problem and 
challenges. In Section 4, the task model is presented. The heuristic 
function solution is presented in Section 5. In Section 6, we show 
the simulation results. We conclude in Section 7. 
 

2. STATE OF THE ART 
In the past three decades, many researchers have developed 
diverse scheduling algorithms for soft and hard real-time 
problems. The most frequently referenced scheduling algorithms 
are rate monotonic [16] and earliest deadline first scheduling [16] 
strategies. In [16], the authors show that rate monotonic is optimal 
among all fixed priority assignments. Liu and Layland [16] and 
Dertouzos [4] prove that EDF is optimal in a preemptive task 
model for one processor without resource contention. These 
algorithms, however, do not address the physical constraints such 
as frequency harmonics and semantic importance of a dual face 
phased array radar task.  Buttazzo and Stankovic [3] propose a 

robust EDF scheduling algorithm (RED) for sporadic tasks under 
overloads in a hard real-time environment. RED accepts a task 
based on the earliest deadline first scheduling policy and rejects a 
task based on the task’s value (i.e. the relative importance of the 
task with respect to the other tasks in the task set).  However, 
RED only considers CPU resource constraints. 
 
Radar tasks are non-preemptive. It has been shown in [11] and [13] 
that, in general, when preemption is not allowed and when tasks 
can have arbitrary arrivals, finding a feasible schedule and 
minimizing the maximum lateness is NP-hard. Branch-and-Bound 
algorithms such as [21] and [15] are usually proposed to deal with 
the case when arrival times are known a priori and when there is a 
non-preemptive requirement. In the average case, branch and 
bound performs well, but in the worst case it degrades to 
exponential complexity, which is not suitable for online 
scheduling. 
 
In order to limit the search space and reduce the computational 
complexity of scheduling algorithms, two approaches are often 
used. One approach is to use additional information to prune the 
tree such as in Bratley’s algorithm [2]. But this algorithm still has 
complexity of )!( nnO ⋅ . So it is not suitable for online 
scheduling. In the second approach, found in [22] and [23], the 
authors proposed an algorithm to drive the search by a heuristic 
function H, which actively directs the scheduling to a plausible 
path. On each level of the search, an H function is applied to each 
of the tasks that remain to be scheduled. The task with the 
smallest value determined by the heuristic function H is selected 
to extend the current schedule. The heuristic function approach is 
a very flexible mechanism to define and modify a scheduling 
policy.  One novelty of this paper is showing how to extend the H 
function approach by encoding the radar system constraints into a 
suitable H function. 
 
Other work such as [5], [9], [12], [17], [18] also use heuristic 
approaches for related scheduling problems. However, none of the 
work has addressed the complexity involved with the radar 
scheduling problem presented in this paper. 
 
There have also been a number of papers that explicitly deal with 
scheduling radars. Some of the work treats the problem as an 
abstract scheduling problem without considering all the realistic 
constraints. For example, Baugh [1] describes a best effort 
scheduling algorithm based on a radar task’s semantic importance 
for a traditional multi-function phase array radar system.  Shih et 
al. [21] present a scheduling template for dwell tasks with energy 
constraints. This template based dwell scheduling algorithm 
divides itself into two phases: one is the design phase, and the 
other is the scheduling phase. The design phase is conducted 
offline, and the scheduling phase is performed online. The major 
design phase uses a branch-and-bound algorithm. Gopalakrishman 
et al. [10] develop an online template construction to support both 
adaptive adjustment of the schedule and highly dynamic 
workloads. However, both [21] and [10] do not consider the 
frequency harmonics constraint and deal with single face radars. 
  
Lee et al. [15] propose a concept of a scheduling envelope. This 
scheduling envelope is designed offline. It hides the complexity of 
the radar dwell scheduling and provides a simple measure for the 
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schedulability check. The authors of [15] improve the system 
utilization by taking advantage of dwell interleaving.  
 
Q-RAM [19] [20] present a novel analytical approach for 
satisfying multiple quality-of-service dimensions such as 
timeliness and reliable data delivery. They have also applied their 
work [7] [8] to radar scheduling for single face phased array 
radars. Ghosh et al. [7] [8] are based on the assumption that given 
a set of tasks, each of which is capable of running at one of 
several different QoS levels, the algorithms can select a QoS 
operating point. Since Q-RAM is a general and valuable tool, with 
suitable inventiveness it probably could be applied to the radar 
scheduling problem described here. To date, it has been used on a 
different radar problem from the dual face phased array radars 
described above. A possible future research problem could be to 
compare and contrast solutions like Q-RAM (an optimization 
based solution) with heuristic based solutions for radars. Just as 
RMA and EDF are suitable in different situations, we expect 
optimization versus heuristic based solutions to each have 
problems that they are most suited for. 
 
Kuo et al. [14] propose a rate-based approach to schedule radar 
dwells, but the reservation ratio is computed based on each task’s 
timeliness property. It does not take physical constraints into 
consideration for the algorithm design which is a very important 
aspect of the dual face phased array scheduling problem we solve 
in this paper. 
 

3. THE CHALLENGES  
In a dual face phased array radar system, radar tasks are periodic 
and non-preemptive. Tasks include both surveillance tasks that 
sweep across the sky to search for targets and tracking tasks. In 
order to keep track of a suspicious target, the radar task has to run 
to completion by a deadline without preemption. The nature of the 
dual face phased array radar system imposes some additional 
challenges to the real time scheduling algorithm to provide 
predictable performance.  
 
The major scheduling challenges are similar to [21]: (1) each 
radar task has its own semantic importance defined by the level of 
threat from the tracked target. A higher the threat from the tracked 
target leads to a higher semantic importance of the corresponding 
task. Whereas in traditional real-time scheduling algorithms such 
as rate monotonic [16] and EDF [16], the priority or importance of 
the task is assigned based on the timeliness properties, here it is 
based on semantics. In a phased array radar system, the semantic 
importance of the task is more important than the priority defined 
by the timeliness property. So when the system is overloaded, we 
cannot discard the higher semantic importance tasks even when 
their timeliness requirement is lower. This property of a radar task 
requires favoring the higher semantic importance tasks. Most of 
the existing scheduling algorithms do not take the semantic 
importance into account. Our heuristic algorithm takes the 
semantic importance into consideration at the algorithm design 
level. (2) There is a highly dynamic system workload. A tracking 
task is generated whenever a new suspicious target appears in the 
surveillance space. But the tracked target’s action is not 
predictable so that the tracking tasks’ arrival is not known a priori. 
This requires a scheduling algorithm with the capability to 

determine whether a newly generated tracking task should be 
admitted or declined. It must be performed with low overhead in 
real-time. By contrast with offline scheduling algorithms proposed 
for radar systems, our heuristic algorithm can perform an online 
schedulability check with bounded overhead. (3) Physical 
constraints such as frequency harmonics must be addressed in the 
scheduling algorithm besides the execution time, deadline and 
period as well as resource constraints. In the single face phased 
array, every radar task is composed by two subtasks. One subtask 
is the transmit task. The other subtask is the receive subtask which 
performs signal processing upon receiving the returned signal. 
The two subtasks need to be executed in order and separated by 
enough physical time. In our dual face phased array radar system, 
there are separate transmit and receive radars. The transmitter and 
receiver can be scheduled separately. 
 
All the challenges described above make it extremely difficult to 
provide predictable performance by using traditional scheduling 
algorithms. The contributions of this paper are: 
1) A heuristic algorithm is defined such that it takes the most 

important properties of a dual face phased array radar task 
such as resources, timeliness, semantic importance and 
frequency harmonics into consideration. 

2) The heuristic algorithm can provide an online schedulability 
check with bounded overhead. 

3) The algorithm also makes resource allocation assignments. 
4) The heuristic algorithm significantly improves performance. 
 

4. TASK MODEL 
Typically, in a dual face phased array radar system, the antenna of 
the transmitter sends electromagnetic signals with a predefined 
frequency. In order to avoid the frequency inference when 
multiple radar antennas transmit electromagnetic signals 
simultaneously, the frequencies assigned to the radar beams are 
subject to frequency harmonics constraints. 
  
When a dual phased array radar antenna sends a signal, it causes 
heating of the radar panel. But the transmitting panel is 
susceptible to overheating. The task model in [10] [15] [21] 
captures the energy constraint due to possible overheating. This 
paper considers another important physical constraint, i.e., 
frequency harmonics. As we discussed above, it is costly to lose 
the high semantic importance tasks in dual face phased array radar 
systems. In our task model, we take the semantic importance into 
consideration. Radar tasks are non-preemptive periodic tasks as 
discussed above. Each transmitting task can have multiple 
instances. Each instance of a task is called a job as defined in [16]. 
The j-th instance of task Ti is referred to as job Ji,j. We define the 
timeliness, frequency harmonics and semantic importance as 
follows: 
 
Definition 4.1. Timeliness Constraint: A transmitting task 
completes in time if and only if every instance (job) of the task 
meets its deadline. 
 
Definition 4.2. Frequency Harmonics Constraint: In any time 
interval [t0, t1], if any two overlapping execution array antennas 
are transmitting electromagnetic signals with frequency f1 and f2 
respectively, these two frequencies should satisfy equation 
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(2):
hsfff >− 21

, where
hsf  is the lowest value needed to 

avoid the frequency conflict. In this paper, we define fhs as the 
frequency conflict degree. The frequency conflict degree will be 
used to calculate the earliest available time of resources required 
by a task. A task meets the frequency harmonics constraint if and 
only if every instance (job) of the task can be scheduled under the 
frequency harmonics constraint. 
 
Definition 4.3. Semantic Importance: Higher threat level tasks 
have higher semantic importance. The semantic importance of an 
instance (job) of a task is defined by the task. 
  
The notation used in the rest of the paper is: 
ci: worst case execution time of task Ti 
di: deadline of task Ti 
ri: release time of task Ti 
pi: period of task Ti 
fi: transmitting frequency of task Ti 
sii: semantic importance of task Ti 
poli: the type (polarizaton) of beams that task Ti requires 
jti: the number of special filters required by task Ti 
ni: the number of beams required by task Ti 
Rij: the resources required by task Ti which is tuple of (poli, jti, ni) 
 
Each radar task may require multiple beams to work together with 
specified semantic importance, frequency, worst case execution, 
deadline, period, and resources required. Consequently, a task is 
defined as a nine tuple TASK (ci,di,ri,pi,fi,sii,poli,jti,ni). In this new 
task model, all of the constraints we addressed above are captured.  
 
In our dual face phased array radar system, a radar task only 
specifies what type of beams it requires. It does not specify which 
particular beams to use. In fact, a radar task can be assigned to 
any beams that have the same type as the task requires. And the 
frequency of task Ti is also assigned to the beams to allocate this 
task during the task Ti’s execution time. 
 
We develop our heuristic algorithm presented in the following 
section based on the task model proposed here.  
 

5. HEURISTIC ALGORITHM 
5.1 Heuristic Function Definition 
In a manner similar to [23] our solution is to define a heuristic 
function H. But our heuristic function defined here extends [23] in 
two dimensions: semantic importance and frequency harmonics. 
 
As discussed above, each task can have multiple instances (jobs). 
The release time of each instance is defined by the period of the 
task. We use the H function to create a system-wide schedule by 
choosing the next job to be scheduled based on the output of the H 
function. If it is feasible to schedule then we set that job in the 
schedule and update the current resource allocations required by 
that job. We then iterate until all jobs are scheduled or until the 
remaining jobs cannot be scheduled. A task is schedulable if all of 
its jobs are schedulable. 
 
The function H is defined as follows: 

(3):
jijijiji ESTsiDJH ,,,, )( ⋅+⋅+⋅= γβα  

where Ji,j is j-th instance (job) of task Ti, Di,j is the deadline of job 
Ji,j. jpdrD iiiji ×++=,

, while ri, di, pi are as defined in section 4.  sii,j 

is the semantic importance of job Ji,j and it equals sii as in section 
4. The parameters α,β,γ are tunable parameters which can be 
adjusted to generate good performance. ESTi,j is the earliest start 
time of job Ji,j after it is available. ESTi,j is defined as equation 4. 
 (4): ))((, ijji REATMAXEST = .  

where )( ijREAT is the earliest available time for the set of 

resources required by job Ji,j subject to the frequency harmonics 
constraint defined by the conflict degree fhs  given in definition 4.2.   
 
One reason to choose the H function as a linear function of 
deadline, semantic importance and earliest start time of a job is to 
keep the heuristic function computationally simple to make it 
more suitable for online scheduling. 
 
By taking the frequency harmonics constraint into consideration, 
we provide two ways to calculate the earliest available time for 
the set of resources a job requires.  
 
First we introduce how to decide whether a job Ji has any 
frequency conflict with jobs already scheduled or not. Assume 
jobs Jj, Jj+1, … , Jj+k have been scheduled when trying to schedule 
job Ji.  Job Ji has no frequency conflict with jobs Jj, Jj+1, … , Jj+k 
if and only if ),...,( kjjpfff hspi +=>− , while fhs is 

defined in the above section. 
 
Case 1: Job Ji does not have any frequency conflict with the jobs 
already scheduled to execute during the same period of time. 
 
Then the earliest available time of resources or beams a job 
requires is decided by the minimum values of the set of the same 
type of resources. Using 4 S-band beams as the example, let ∅{3, 
5, 10, 8} be the set of the earliest available times of these 4 S-
band beams. If job J1 requires two S-band beams, then the earliest 
available time of the resources job J1 is a subset with minimum 
values {3, 5}. The earliest start time of job J1 is the maximum of 
these subsets. In this example, it is 5. And if job J1 is scheduled, 
beams with earliest available times 3 and 5 will be assigned to job 
J1.  
 
Case 2: Job Ji has any frequency conflict with jobs already 
scheduled to execute during the same period of time. 
 
Then the earliest available time of resources or beams a job 
requires is not only decided by the minimum values of the set of 
the same type of resources, but also by the resources (beams 
assigned to a job will also be assigned the frequency of that job) 
that have frequency conflicts with job Ji. We give an example in 
Figure 3 to explain how to calculate the earliest available time of 
the resources job Ji requires. In this example we assume the 
frequency conflict degree fhs equals 0. 
 
In Figure 3, we have six jobs and 3 S-band beams as the example 
jobs and resources, respectively. Jobs J1, and J2 have been 
scheduled to beam 1. Job J3 has been scheduled to beam 2. And 
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jobs J4 and J5 are allocated to beam 3. Job J6 requires two beams. 
If there is no frequency conflict, as in case 1, then the  earliest 
available time of resources job J6 requires is decided by beam 2 
and beam 3 as showed by the gray arrow pointing from job J6 to 
these two beams. However, because job J6 has a frequency 
conflict with job J2 which is scheduled on beam 1, the earliest 
available time of resources needed by job J6 is decided by all three 
beams as the three lines pointing from job J6 in Figure 3. 
 

 
 

Figure 3: Earliest Available Time Example 
 
The benefit of handling frequency conflicts at the same time as 
computing the earliest available time of resources a job requires is 
twofold:  
1) Our heuristic algorithm remains a linear time complexity 

algorithm. The algorithm only requires a frequency conflict 
check while calculating the resources’ earliest available time. 

2) When a job has any frequency conflict with jobs already 
scheduled, it has no impact on the jobs already scheduled. 

 
From the definition in equation (3), we can see that the following 
is true:  
1) Di,j takes the time requirements of a job into account, 
2) sii,j takes the semantic importance of a job into consideration, 

and 
3) ESTi,j encodes the resource requirements of a job and the 

frequency harmonic constraints. 
 
We conclude that our heuristic function encapsulates the most 
significant characteristics of the radar scheduling problem we 
address in this paper. 
 

5.2 Overview of the Heuristic Function 
Definition 

As Figure 4 demonstrates, the scheduler determines a full feasible 
schedule for a given set of tasks in the following steps: (1) it 
generates all the instances (jobs) of each task available, and all the 
instances of each task available form a job set; (2) it starts with an 
empty schedule and tries to extend it one job at a time. 
 
At each level, we first calculate the earliest available time for the 
resources each job requires. At this step, we take the frequency 
harmonics constraint into consideration. Then we calculate the 
earliest start time for each job. After that we compute the heuristic 
value for each task using equation 3. The scheduler tries to 
schedule a job with the minimum heuristic value in the job set 
remaining to be scheduled. At any step, if the minimum heuristic 
value holder cannot be scheduled, it is discarded from the job set. 
A task is not schedulable if any instance (job) of this task is not 
schedulable.  

 
 T A S K S E T  =  {T 1, T 2, …  , T k};  

JO B S E T  =  ;  
S C H E D U L E  =  ; 
W hile(T A S K S E T   ){ 
 C alculate all jobs {J1,j, J2,j, … , Ji,j} of each task T j in T A S K S E T ; 
 JO B S E T  =  JO B S E T   all the jobs of task T j; 
} 
W hile (JO B S E T    ) 
D o{ 
               F or each job Ji,j in JO B S E T   
  C alculate E arliest A vailable T im e of each resources required by job Ji,j; 

 C alculate E arliest S tart T im e of job Ji,j; 
 C alculate H  value of job Ji,j; 

               C hoose the job Ji,j w ith m inim um  H  value; 
               IF  (F E A S IB L E (Ji,j)) T H E N  
  add job Ji,j to S C H E D U L E ; 
  update E arliest A vailable T im e of each resources allocated to job Ji,j; 
  rem ove job Ji,j from  JO B S E T ; 
               E L S E  
  rem ove job Ji,j from  JO B S E T ;  
  rem ove all jobs of task T j from  T A S K S E T ; 
  rem ove all jobs of task T j in S C H E D U L E ; 
  release all resources allocated to all jobs of task T j; 
} 

 
Figure 4: Pseudo code for basic heuristic algorithm 

 

5.3 Complexity 
In the heuristic search space, the partial schedule of a task set 
constructs a search tree as shown in Figure 5. The left side of the 
Figure 5 shows the whole search space which is of exponential 
complexity. An exhaustive search can find an optimal schedule 
for a task set if one exists. This is not suitable for our dual face 
phased array radar scheduling problem to have online 
schedulability analysis. For this purpose, we only choose one of 
the vertices at each level of the search tree to expand the schedule 
to the next level. This enables our algorithm to execute in 
polynomial time. 
 
At each level of the search tree, an instance (job) of a task which 
has the minimum heuristic value is chosen to be scheduled. This 
minimum heuristic value is calculated by using equation 3. The 
right hand side of Figure 5 shows our heuristic algorithm search 
path by the gray nodes in the tree. For a set of periodic tasks 
{T1,T2,…,Tk}, each task Ti (i=1,…,k) may have multiple instances. 
Assume the scheduling period P equals the least common multiple 
of all tasks’ periods in the task set. Then the number of instances 
mi that a task Ti can have during the scheduling period P is P 
divided by pi, where pi is the period of task Ti. Assume ∑

=

=
k

i
imm

1

 , 

then our heuristic algorithm’s complexity is )log( mm . Let the 
minimum number of mi (i=1,...,k) be min(mi) and the maximum 
number of mi (i=1,…,k) be max(mi). We know that both min(mi) 
and max(mi) are finite constants. So equation (5) must be true 
where n is the number of tasks to be scheduled. 
(5): )max()min( ii mnmmn ×≤≤× . 
From equation (5), we can infer that this algorithm executes in 
polynomial time. 
 

 
Figure 5: Heuristic Searching Space 
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6. PERFORMANCE EVALUATIONS 
We evaluate our heuristic function through simulations. The 
resources modeled in the simulation match the ship-based radar 
system mentioned above, i.e., 16 beams are S-band vertical 
polarization beams, 16 L-band dual polarization beams, and 32 L-
band vertical polarization beams with 2 of these beams having 
special filters. Each task, either a searching or tracking task, may 
require multiple beams simultaneously. Every task is non-
preemptive and is subject to the frequency harmonics constraint 
defined in previous sections.  
 
It is quite difficult to compare our solution to other known 
solutions. No solutions in the literature (as far as we know) 
address this same scheduling problem. Further, many current 
solutions are based on a set of ad hoc scheduling rules which are 
not available for comparison. Solutions using Q-RAM might be 
appropriate, but a development of a solution using Q-RAM is 
itself a research problem. The literature [1] does propose using a 
static priority scheduling algorithm where the priority is set 
according to semantic importance (we refer to this algorithm as 
IMP). Hence, we compare to this simple approach. Since using 
importance alone does not consider deadlines we also compare to 
EDF. The robust EDF (RED) [3] is a possible comparison to our 
heuristic algorithm since RED also considers task’s value when 
rejecting a task. However, RED needs an efficient online load 
calculator to detect the overload conditions. And RED is designed 
for sporadic tasks. In this paper, we are considering periodic tasks. 
 
We evaluate our algorithm using the total tasks’ success ratio and 
the highest semantic importance tasks’ success ratio. The total 
tasks’ success ratio for a task set defines the total number of 
successfully scheduled tasks divided by the total number of tasks 
in the task set. The highest semantic importance tasks’ success 
ratio for a task set defines the total number of successfully 
scheduled highest semantic importance tasks divided by the total 
number of highest semantic importance tasks in the task set.   
 
We use simulations to (i) set parameters α,β,γ in the heuristic 
function formula, (ii) evaluate static scheduling and (iii) evaluate 
online/dynamic scheduling. The simulation results demonstrate 
that our heuristic scheduling algorithm has the best performance 
over all the simulations.  
 

6.1 Static Scheduling 
The workload of some real-time systems can be considered as the 
processor utilization factor. For a set of periodic tasks with only 
CPU as a resource constraint, the utilization factor [16] can be 

computed by ∑
=

=
n

i i

i

p
cU

1

, where ci, pi are as defined in section 

4. For the radar transmitting tasks that we consider in this paper, 
each task requires multiple resources such as CPU, beams and 
each task is also subject to frequency harmonics and semantic 
importance constraints. Because of these multiple constraints, it is 
improper to compute workloads by a simple formula. We 
illustrate the difficulty to quantitatively measure our system 
workloads using any single resource’s utilization in the example 
below. To simplify the example, we use only CPU, beam 1, and 
beam 2 as the resources (note we have a total of 64 beams in the 

system) and task sets S1 and S2 as the example task sets. The 
utilizations of S1 and S2 are listed in Table 1. Let’s look at the 
utilization of S1 first, if we use CPU utilization to measure the 
workload, we think it is a light workload, but it is not true because 
of the heavy load at beam 2. To make things more complicated, it 
is very difficult to measure a workload that has frequency 
harmonic constraints. For task set S2, if using any single resource 
utilization, we can falsely think it is light workload. But it 
possible because a task can not be scheduled on beam 1 due to a 
frequency conflict. So we define the light, medium and heavy 
workloads below for this paper by determining the combination of 
utilizations on multiple resources through simulations. 
 

Table 1: Resource Utilization 
 CPU Beam 1 Beam 2 
Utilization of S1 0.2 0.3 0.9 
Utilization of S2 0.2 0.1 0.4 

 
Workload Generator: We evaluate static scheduling based on 
three types of workloads namely light, medium, and heavy 
workloads. As discussed in previous sections our task model 
captures multiple dimensional constraints such as timeliness and 
resource constraints. We define the workloads from light to heavy 
by adjusting the worst case execution time (timeliness property) 
and the number of beams (resource requirements) a task requires. 
In this paper, light workloads differ from medium and heavy 
workloads in worst case execution time. And heavy workloads 
differ from light and medium workloads in the number of beams a 
task requires. The workload generator creates a task set based on a 
set of task parameters. A task is represented as a nine tuple TASK 
(ci,di,ri,pi,fi,sii,poli,jti,ni). Here, we try to mimic the real radar 
tasks’ requirements. But we do not have the well-known task 
specifications to follow. The worst case execution time ci is 
uniformly distributed within the range [1, 5] for light workloads, 
and [1, 10] for medium and heavy workloads. The relative 
deadline di is equal to period pi. Each task is randomly assigned a 
period pi from the set {10, 20, 50, 100}. The release time ri is set 
to 0 for the static task sets for simplicity. For dynamic scheduling, 
the release times of tasks are defined by a Poisson distribution as 
disscussed in the online scheduling section. The frequency fi is 
uniformly distributed within the range [950MHz, 1000MHz] for 
S-band tasks, and [1000MHz, 5000MHz] for L-band tasks. The 
semantic importance sii is uniformly distributed between 1 and 10. 
So statistically, we have 10% of the tasks as highest semantic 
importance tasks in a task set. The smaller value has higher 
semantic importance. The polarization poli is uniformly 
distributed within the range [1, 3] in which value 1 means a task 
requires vertical polarization beams, value 2 requires dual 
polarization beams and value 3 requires all polarization beams. 
The number of special filters jti is uniformly distributed within the 
range [0, 2]. The number of beams a task requires is uniformly 
distributed between [1, 3] for light and medium workloads. The 
number of beams a task requires is uniformly distributed within 
the range [1, 5] for heavy workloads. For each light, medium and 
heavy workload, we generate 10 sets of tasks and each task set has 
200 tasks. Each task may have multiple instances. Each instance 
of a task differs in its release time according to the task’s period. 
The scheduling period P is 100. 
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6.1.1 Tuning the Parameters of H 
From the definition of the heuristic function, we see that the 
tunable coefficients α, β, γ are very important to the performance 
of the algorithm. We determine the values of α, β, γ through 
simulations.   
 
To find the good α,β,γ values, we first generate a set of  200 tasks 
for each light, medium and heavy workload. We do not consider 
the frequency conflict while tuning the parameters. We run our 
heuristic algorithm on each task set by varying each parameter α, 
β, γ from 0.1 to 1.0 using steps of 0.2. This exhaustive search of 
α,β,γ produces good values. The (α,β,γ) values generating the 
highest semantic importance tasks’ success ratio for each 
workload is chosen for the following performance evaluations. 
We use (0.7,0.1,0.5), (0.5,0.3,09) and (0.9,0.3,0.7) for light, 
medium, and heavy workloads, respectively.  Figure 6 and Figure 
7 give the relationship between α,β,γ values and the total tasks’ 
success ratio,  and the highest semantic importance tasks’ success 
ratio at medium workloads while setting α to 0.5. We can see 
while fixing the α value, the variations of the highest semantic 
importance tasks’ success ratio with the change of β and γ values 
are within 5%. Similar results exist for the total tasks’ success 
ratio. Figure 8 and Figure 9 give similar results while setting beta 
to 0.3. This shows that the values chosen are not too sensitive.  
 

 
Figure 6:  ααααββββγγγγ values 

 

 
Figure 7:  ααααββββγγγγ values 

 

 
Figure 8:  ααααββββγγγγ values 

 
Figure 9:  ααααββββγγγγ values 

 

6.1.2 Simulation Results 

6.1.2.1 Vary Workloads 
In this subsection, we evaluate our heuristic algorithm against 
EDF and the static priority scheduling algorithm IMP at light, 
medium and heavy workloads. All the figures are plotted with 
95% confidence intervals as the error bar.  
 
In Figure 10 and Figure 11, the frequency conflict degree fhs is set 
to 3. In the following section, we discuss how the frequency 
conflict degree affects performance. Figure 10 gives the 
performance of all three algorithms with respect to the highest 
semantic importance tasks’ success ratio. From Figure 10, we can 
see that our heuristic algorithm achieves as high as 99%, 94%, 
and 91% highest semantic importance tasks’ success ratios at light, 
medium and heavy workloads, respectively. EDF results in 72%, 
60%, and 41% success ratio at light, medium and heavy 
workloads, respectively. IMP has 80%, 66%, and 60% success 
ratio at light, medium and heavy workloads, respectively. These 
results indicate that our heuristic algorithm is 50% better than 
EDF and 31% better than IMP at heavy workloads. At medium 
workloads, our heuristic algorithm is 34% better than EDF, 28% 
better than IMP. Even at light workloads, our heuristic algorithm 
performs 27% better than EDF and 19% better than IMP. Figure 
11 shows the performance on total tasks’ success ratio. From 
Figure 11, we know that our heuristic algorithm is 10% better than 
EDF and 45% better than IMP even at heavy workloads in terms 
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of total tasks’ success ratio. At light workloads, our heuristic 
algorithm is over 70% better than IMP and 20% better than EDF. 
 
EDF gives better performance than IMP in terms of the total 
tasks’ success ratio on all three workloads, but it gives worse 
performance than IMP on highest semantic importance tasks’ 
success ratio. In all three workloads, our heuristic algorithm gives 
best performance in terms of both highest semantic importance 
tasks’ success ratio and total tasks’ success ratio. Non-preempitve 
EDF is proven to be optimal if no idle times can be inserted in the 
schedule for a single processor without overload as in [11]. 
However, the only resource constraint considered in [11] is the 
CPU resource. Our system has multiple resource constraints such 
as CPU, 64 beams and frequency harmonic constraints. Our 
heuristic algorithm by taking the multiple constraints into 
consideration results in better performance. 
 

 
Figure 10: Heuristic Algorithm 

 

 
Figure 11: Heuristic Algorithm 

 

6.1.2.2 Vary Frequency Constraints 
In this section, we discuss the effect of the frequency harmonics 
constraint on our heuristic algorithm. The frequency conflict 
degree fhs is as defined in section 4. We evaluate our heuristic 
algorithm, EDF and IMP at frequency conflict degree fhs as 0, 1, 3, 
5, and 7 on light, medium and heavy workloads. We only present 
the heavy workloads as the study case, but similar results exist for 
light and medium workloads. In Figure 12, we plot the highest 
semantic importance tasks’ success ratio against the frequency 
conflict degree. Figure 13 shows the relationship between the total 
tasks’ success ratio and the frequency conflict degree.  
 

From Figures 12 and 13, we can see that our heuristic algorithm is 
very robust to the increase of the frequency conflict degree for 
both success ratios. IMP saturates on both the highest semantic 
importance tasks’ success ratio and the total tasks’ success ratio so 
that it does not change dynamically with the frequency conflict 
degree. EDF drops both the highest semantic importance tasks’ 
success ratio and the total tasks’ success ratio rapidly when the 
frequency conflict degree increases. Our heuristic algorithm, 
explicitly addressing frequency harmonics constraints via the 
heuristic function, gives excellent performance. 
 

 
Figure 12: Frequency constraint effect 

 

 
Figure 13: Frequency constraint effect 

 

6.2 Online Scheduling 
In this section, we discuss the overhead and performance of our 
online scheduling heuristic algorithm. 
 

6.2.1 Online Scheduling Algorithm 
The basic idea of the online scheduling algorithm is that whenever 
a new task arrives, the scheduling algorithm reschedules all the 
tasks which currently are not in execution plus the new arrivals.  
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Figure 14: Online Scheduling Control Flow 

 
Figure 14 gives the control flow of the online scheduling 
algorithm. The Taskq in Figure 14 is the queue to hold the tasks to 
be scheduled and the new arrivals. The Schq is the queue to hold 
the tasks already scheduled, but waiting to be executed. 
 

6.2.2 Complexity 
By comparing with the static scheduling algorithm, the overhead 
of the online scheduling comes from the fact that all the tasks in 
the schedule queue waiting to be executed are to be rescheduled 
whenever there are new arrivals. Assume tasks arrive according to 
a Poisson distribution with parameter λ. Then the tasks’ inter-
arrival time is exponentially distributed with parameter 1/λ. The 
maximum number of times a task Ti rescheduled is equal to its 
deadline di divided by 1/λ. A task will be deleted from the task 
queue if it missed its deadline. We assume that the total 
scheduling period is P. The total number of tasks S arriving during 
period P is defined by λ×= PS . So we can equate the online 
scheduling to be the static scheduling algorithm with total number 
of tasks n satisfying equation (6), and (7): 
(6): ndS ii ≤+× )))/1/(min(1( λ  
(7): )))/1/(max(1( iidSn λ+×≤  
As we can see the algorithm still executes in polynomial time. 
 

6.2.3 Simulation Results 
We also evaluate our online scheduling algorithm on three types 
of workloads. Similar to the static scheduling algorithm, each task 
is represented by a nine tuple TASK (ci,di,ri,pi,fi,sii,poli,jti,ni). 
Different from the static scheduling workloads generator, the 
distribution of release times of tasks is the major parameter to 
vary from light to heavy workloads. The worst case execution 
time ci is uniformly distributed in the range [1, 3] for all three 
workloads. The deadline di is equal to period pi. The period pi is 
uniformly randomly chosen from the set {10, 20, 50, 100}. The 
release time is calculated based on the Poisson distribution with 
parameter λ, the arrival rate. The parameter λ equals 5 for light 
workloads, 10 for medium workloads, and 15 for heavy 
workloads. The frequency fi is uniformly distributed within the 
range [950MHz, 1000MHz] for S-band tasks, and [1000MHz, 
5000MHz] for L-band tasks. The semantic importance sii is 
uniformly distributed between 1 and 10. The polarization poli is 
uniformly distributed within the range [1, 3]. The number of 
special filters jti is uniformly distributed within the range [0, 2]. 
The number of beams ni is uniformly distributed in [1, 3] for all 
three workloads. We use (0.5,0.1,0.7) as the α,β,γ values for the 
heuristic algorithm for all three workloads. The parameters α,β,γ 
are tuned through simulations similar to static scheduling. The 
scheduling period P is 100. For all three workloads, we set the 

frequency conflict degree fhs to 3. Each task may have multiple 
instances during the scheduling period. 
 
As Figure 15 shows, our heuristic algorithm can achieve 97%, 
93% and 85% in terms of the highest semantic importance tasks’ 
success ratio at light, medium and heavy workloads, respectively.  
At heavy workloads, our heuristic algorithm is 30% better than 
EDF and 20% better than IMP in terms of the highest semantic 
importance tasks’ success ratio. As shown in Figure 16, our 
heuristic algorithm is 10% better than EDF and 20% better than 
IMP on the total tasks’ success ratio for all three workloads. For 
online scheduling, the results are similar to the static scheduling 
algorithm for varying frequency conflict degrees. Due to space 
limits, we do not present the figures here.  
 

 
Figure 15: Online Scheduling 

 

 
Figure 16: Online Scheduling 

 

7. CONCLUSIONS 
Many real-time applications such as dual face phased array radar 
systems are complex and scheduling solutions based on rate 
monotonic or EDF are not adequate. To handle the realistic and 
multi-dimensional constraints of this application a heuristic 
function solution was developed and evaluated. The heuristic 
algorithm in this paper takes the timeliness, resource requirements, 
semantic importance and physical constraints into consideration. 
It is a very flexible algorithm that incorporates many aspects of a 
dual face phased array radar task. Based on the simulation results, 
we show that our heuristic algorithm provides excellent 
performance. We also discuss the overhead and performance of 
the use of the algorithm on-line.  
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