
Semantics-Preserving and Memory-Efficient
Implementation of Inter-Task Communication

on Static-Priority or EDF Schedulers ∗

S. Tripakis, C. Sofronis, N. Scaife and P. Caspi
Verimag laboratory, Centre Equation, 2, avenue de Vignate, 38610 Gières, France

ABSTRACT
In previous work, we have proposed a method of preserving
the functional semantics of model-based designs by the use
of static checks and a double-buffer protocol [12]. How-
ever, this is restricted to static, fixed-priority scheduling
and for high-priority to low-priority communications re-
quires a double buffer to be stored for each pair of com-
municating tasks. In this paper we extend the method to
dynamic-priority scheduling in the form of earliest-deadline-
first (EDF) scheduling and show that, although scheduling is
dynamic, a static buffering scheme can still be used. We also
suggest some memory optimizations of our protocol which
still preserve the original functional semantics. Finally, we
show how model checking can be used to prove correctness
of the scheme.

Categories and Subject Descriptors: D.2.2 [Design
Tools and Techniques], D.2.3 [Coding Tools and Tech-
niques].

General Terms: Design, Reliability, Verification.

Keywords: Model-based design, Embedded software, Se-
mantical preservation, Process communication, Scheduling.

1. INTRODUCTION
Model-based design is being established as an important

paradigm for modern embedded software development. The
main principle of the paradigm is to use models (with formal
semantics) all along the development cycle, from design, to
analysis, to implementation. Using models rather than, say,
building prototypes is essential for keeping the development
costs manageable. However, models alone are not enough.
They need to be accompanied by powerful tools for analysis
(e.g., model-checking) and implementation (e.g., code gener-
ation). Automation here is the key: high system complexity

∗This work has been partially supported by the Euro-
pean projects RISE (IST-2001-38117) and ARTIST2 (IST-
004527).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

and short time-to-market make model reasoning a hopeless
task, unless it is largely automatized.

Design is facilitated by high-level models, which allow
the designer to focus on essential functionality and algorith-
mic logic, while abstracting from implementation concerns.
This is also important in order to make designs platform-
independent. High-level models, therefore, often assume
“ideal” semantics, such as concurrent, zero-time execution
of an unlimited number of components. This is the case for
very popular tool-boxes like “Simulink/Stateflow”1, as well
as synchronous languages [2].

Naturally, these assumptions break down upon implemen-
tation. This often results in implementations which do not
preserve the original semantics. In turn, the results obtained
by analyzing the model (e.g., model satisfies a given prop-
erty) may not hold at the implementation level. In order
not to lose the benefits of using high-level models, then, the
following issue needs to be addressed: how can the seman-
tics of the high-level model be preserved while relaxing the
ideal semantical assumptions?

Related works.In the past, several answers have been
brought to this question:

• When time-triggered systems are derived from contin-
uous processes, the solution is usually based on numer-
ical analysis, stability and jitter considerations [1].

• In [5], the Esterel [4] programming language is coupled
with the Kronos timed-automaton model-checker [7]
so as to check whether the actual timing is compati-
ble with the synchronous hypothesis. The approach is
endowed with a compiler, a simulator and a debugger.

• In [8], a different approach is taken which departs
from the synchronous assumption by considering “log-
ical execution times”. This approach can be valuable
in some cases but requires mixing implementation de-
tails with the modelling process. It is also relatively
untested and its domain of interest needs to be assessed
more thoroughly.

• The Simulink/Stateflow documentation claims that
the RealTimeWorkshop code generator is able to pro-
vide implementations that reproduce the deterministic
behavior’ of the model.2 However, no references are
given in support of this claim.

1Simulink and Stateflow are trademarks of The Mathworks
Inc.: http://www.mathworks.com.
2 Quoting from Section “Mapping Model Execution to the

353

Our contributions.In previous work [12] we have partially
addressed the question, by proposing an inter-task commu-
nication scheme which preserves the ideal, zero-time seman-
tics of a set of tasks running under static-priority, preemp-
tive scheduling.

This paper continues this work, presenting two main con-
tributions. First, we extend the scheme to the case of EDF
(earliest-deadline first) scheduling. Second, we propose a set
of optimizations of the memory requirements of the scheme
for the frequent case of multi-periodic tasks.

More precisely, regarding the first point, we show that
a “static” buffering scheme like the one used under static-
priority scheduling can also be used under EDF schedul-
ing. By static we mean that the buffers are determined
at compile-time and do not change at run-time. This may
seem surprising, knowing that the buffering scheme used un-
der static-priority scheduling is different depending on the
relative priorities of the communicating tasks. Since, under
EDF, the relative priorities of two tasks can change dynam-
ically, one might conclude that the buffering needs to be
dynamic as well. We show that this is not the case. In par-
ticular, we show that, when task τi communicates data to
task τj , if the (relative) deadline of τi is smaller than the one
of τj then the high-to-low priority buffering scheme can be
used; otherwise, the low-to-high priority buffering scheme
can be used.

Concerning the optimizations, we note that for low-to-
high priority communications we need a double buffer for
each writer so there is no additional overhead for writes
to multiple readers. The opposite is true for high-to-low
communications, we need a double buffer for each reader
so one-to-many communications have a much higher space
complexity. In this paper, we consider various situations in
which we can ameliorate this problem for the popular multi-
periodic case, when static-priority, rate-monotonic schedul-
ing is used [9]. There are various special cases which we
could consider and there are also implementation “tricks”
which we could use to save space under these conditions but
we restrict ourselves to a small set of commonly-occurring
scenarios and retain the original abstract treatment of the
problem. We do, however, consider the atomicity of com-
munications which can have a significant impact upon the
overall space-complexity of our method.

We show that, in the general multi-periodic case, n + 1
single buffers are both sufficient and necessary, in the worst
case, for each writer task communicating with n reader
tasks. This is to be compared to the 2n requirement of
the general scheme. We also provide an algorithm which,
given a set of multi-periodic tasks, computes the minimal
number of buffers required by this set (this number is often
less than n + 1). The algorithm also computes the indexing
scheme, that is, which buffer a task should read from or write
to at any given time. We also consider the special case of
harmonic multi-periodic systems, those for which the peri-
ods are in consecutive powers-of-two, i.e., task τi has period
2i−1. We show that, without assumptions on the atomicity
of reads and writes, the requirement is reduced from n + 1

Target Environment” of [10]: “A correctly executing appli-
cation will generate deterministic results that are identical
to the results produced by the model in simulation. To
achieve correct execution, the model’s sample rates must
be mapped into corresponding tasks executing in the target
environment.”

to n buffers. Assuming atomicity, on the other hand, per-
mits to further reduce this to n/2. Such reductions can be
significant as the number of writers increases. In particular,
for n writers each communicating to all lower-priority tasks
(i.e., writer i communicates to tasks i + 1, ..., n), the opti-
mizations permit us to reduce the number of buffers from
the n(n−1) required by the generic scheme to n(n+1)/2−1,
to n(n−1)/2, to n(n−1)/4, in the multi-periodic, harmonic
and atomic-harmonic cases, respectively. Notice that these
are worst-case requirements which can be further optimized
using the algorithm discussed above.

The rest of the paper is organized as follows. Section 2
presents the task model with ideal semantics. Section 3 dis-
cusses the execution under static-priority of EDF scheduling
and issues of semantical preservation during implementa-
tion. Section 4 presents the semantics-preserving buffering
schemes in both scheduling cases. Section 5 presents the
buffer optimizations. Section 6 discusses a correctness proof
method based on model-checking. Section 7 presents the
conclusions and future work directions.

2. AN INTER-TASK COMMUNICATION
MODEL

We consider a set of tasks, T = {τ1, τ2, ...}. The set need
not be finite, which allows the modelling of, for example,
dynamic creation of tasks.

To model inter-task communication, we consider a set
of links of the form (i, j, p), with i, j ∈ {1, 2, ...} and p ∈
{−1, 0}. If p = 0 then we write τi → τj , otherwise, we write

τi
−1→ τj . A link (i, j, p) means that task τj receives data from

task τi. If p = 0 then τj receives the last value produced by
τi, otherwise, it receives the one-before-last value (i.e., there
is a “unit delay” in the link from τi to τj). In both cases,
it is possible that the first time that τj occurs3 there is no
value available from τi (either because τi has not occurred
yet, or because it has occurred only once and p = −1). To
cover such cases, we will assume that for each task τi there is
a default output value yi

0. Then, in cases such as the above,
τj uses this default value.

Zero-time semantics.We associate with this model an
“ideal”, zero-time semantics. For each task τi we associate a
set of occurrence times Ti = {ti

1, t
i
2, ...}, where ti

k ∈ R≥0 and
ti
k < ti

k+1 for all k. Because of the zero-time assumption, the
occurrence time captures the release, start and finish times
of a task. In the next section, we will distinguish these three
times. We make no assumption on the occurrence times of
a task. This allows us to capture all possible situations,
namely, where a task is periodic (i.e., released at multiples
of a given period) or where a task is aperiodic or sporadic.

We assume that Ti∩Tj = ∅ for all tasks such that τi → τj

and τj → τi. That is, if task τi receives data from task τj

and vice versa, without unit delay, then the two tasks cannot
occur at the same time.

Given time t ≥ 0, we define ni(t) to be the number of
times that τi has occurred before t, that is:

ni(t) = |{t′ ∈ Ti | t′ ≤ t}|.

3 As we shall see shortly, we define an “ideal” zero-time se-
mantics where a task executes and produces its result as the
same time it is released. We can thus say “task τi occurs”.

354

We denote inputs of tasks by x’s and outputs by y’s. Let
yi

k denote the output of the k-th occurrence of τi. Given a
link τi → τj , xi,j

k denotes the input that the k-th occurrence
of τj receives from τi. The ideal semantics specifies that
this input is equal to the output of the last occurrence of τi

before τj , that is:

xi,j
k = yi

l , where l = ni(t
j
k).

Notice that if τi has not occurred yet then l = 0 and the
default value yi

0 is used.

If the link has a unit delay, that is, τi
−1→ τj , then:

xi,j
k = yi

l , where l = max{0, ni(t
j
k)− 1}.

3. EXECUTION ON STATIC-PRIORITY
OR EDF SCHEDULERS

We consider the situation where tasks are implemented
as stand-alone processes executing on mono-processor exe-
cution platform equipped with an operating system. The
latter implements a given scheduling policy to determine
which of the ready tasks (i.e., tasks released but not yet
completed) is to be executed at a given point in time. We
consider two scheduling policies:

• Static-priority: each task is assigned a unique priority
(to avoid ambiguities, we assume no two tasks have
the same priority); the task with the highest priority
among the ready tasks executes.

• Earliest-deadline first or EDF: each task is assigned a
unique deadline (to avoid ambiguities, we assume no
two tasks have the same deadline); the task with the
earliest deadline among the ready tasks executes.

In the ideal semantics, task execution takes zero time.
In reality, this is obviously not true. A task is released
and becomes ready. At some later point it is chosen by
the scheduler to execute. Until it completes execution, it
may be preempted a number of times by other tasks. To
capture this, we distinguish the release time of a task τi

from the time τi begins execution and from the time τi ends
execution. For the k-th occurrence of τi, these three times
will be denoted ri

k, bi
k and ei

k, respectively.

Problems with a “naive” implementation.Our purpose
is to implement the set of tasks so that the ideal semantics
are preserved by the implementation. It is worth examin-
ing a few examples in order to see that a straightforward
implementation does not preserve the ideal semantics. Let
us then consider a simple implementation scheme where, for
each link τi → τj , there is a buffer Bi,j used to store the
data produced by τi and consumed by τj . A first concern is
data integrity: a task writing on this buffer might be pre-
empted before it finishes writing, leaving the buffer in an
inconsistent state. To avoid this, we will also assume that
the simple implementation scheme uses atomic reads and
writes, so that a task writing to or reading from a buffer
cannot be preempted before finishing. We will also assume
that all reads happen at the beginning and all writes at the
end of execution of a task.

Finally, we will assume that the set of tasks is schedu-
lable. This means that no task ever violates its (absolute)
deadline. In the static-priority case, we assume that the ab-
solute deadline is the next release time of the task, that is,

6 6 6 -

6 6 -6

a: ideal semantics

b: real implementation

ri
k rj

m yi
k+1ri

k+1yi
k

rj
mri

k+1ri
k

τi τiτi
τj

yi
k yi

k+1 xj
m = yi

k+1

xj
m = yi

k

Figure 1: In the semantics, xj
m = yi

k+1, whereas in
the implementation, xj

m = yi
k.

the absolute deadline of the k-th occurrence of τi is ri
k+1. In

the EDF case, if di is the (relative) deadline of τi, then the
absolute deadline of the k-th occurrence of τi is ri

k + di.
4

Even with the above provisions, the ideal semantics are
not always preserved. Consider, as a first example, the case
τi → τj , where static-priority scheduling is used and τi has
lower priority than τj . Consider the situation shown in Fig-
ure 1. We can see that, according to the semantics, the
input of the m-th occurrence of τj is equal to the output of
the (k + 1)-th occurrence of τi. However, this is not true
in the implementation, because τj preempts τi before the
latter has time to finish, thus, before it has time to write its
result.

In fact, there is no solution to this problem5 unless we
require that, whenever τi has lower priority than τj and τj

receives data from τi, a unit delay is used between the two

tasks, in other words, the link must be: τi
−1→ τj .

Even when the above requirement is satisfied, the simple
implementation scheme is not correct. An example which
shows this in the low-to-high priority case is given in [12].
Next, we give an example for the high-to-low priority case.

Consider again that τi → τj . Assume static-priority
scheduling and suppose that τi has higher priority than τj .
Consider also a third task τq with higher priority than both
τi and τj . Consider the situation shown in Figure 2. We
can see that, according to the semantics, the input of the
m-th occurrence of τj is equal to the output of the k-th
occurrence of τi. However, this is not true in the implemen-
tation, because τq “masks” the order of arrival of τj and τi

(rj
m < ri

k+1). As a result, the order of execution of τj and
τi is reversed.

These two examples show that a simple implementation
scheme like the one above will fail to respect the ideal se-
mantics. Note that the problems are not particular to static-
priority scheduling. Similar situations can happen with EDF
scheduling, depending on the deadlines of the tasks. In
particular, the situation shown in Figure 1 can occur un-

4 Obviously, schedulability depends on the assumptions
made on the release times and execution times of tasks. A
large amount of work exists on schedulability analysis tech-
niques for different sets of assumptions, see, for instance [9]
for the multi-periodic case. Notice, however, that our as-
sumption of schedulability is not related to a specific schedu-
lability analysis method: it cannot be, since we make no
assumptions on release times and execution times of tasks.
5 There are solutions where the receiving task “blocks” and
waits for the sending task to finish, even though the latter
has lower priority. In this work, we are interested in wait-free
solutions because they are easier to implement.

355

6 6 -

6 -6

66

6 6

a: ideal semantics

b: real implementation

ri
k

ri
k

yi
k

rj
mr

q
l

τi τi
τj

τq

rj
m

xj
m = yi

k yi
k+1

ri
k+1

ri
k+1r

q
l

yi
k yi

k+1
xj

m = yi
k+1

Figure 2: In the semantics, xj
m = yi

k, whereas in the
implementation, xj

m = yi
k+1.

Communication: τi
−1→ τj .

Priorities: τi lower than τj .
Task τi maintains a double buffer B[0,1] and two bits
current, previous.
Initially, current = 0 and B[0] = B[1] = yi

0.
During execution:

• When ri occurs, it sets current := not current.

• While τi executes it writes to B[current].

• When rj occurs, it sets previous := not current.

• While τj executes it reads from B[previous].

Figure 3: Low-to-high priority communication
scheme

der EDF scheduling if rj
m + dj < ri

k+1 + di. The situa-
tion shown in Figure 2 can occur under EDF scheduling if
rq

l + dq < ri
k+1 + di < rj

m + dj .

4. SEMANTICS-PRESERVING
IMPLEMENTATION

An implementation scheme which preserves the ideal se-
mantics under static-priority scheduling was first proposed
in [12]. In this section, we extend this scheme to deal with
EDF scheduling as well. The extensions rely on the original
scheme, thus, we first recall the latter.

4.1 Semantics-preserving implementation
under static-priority scheduling

The main feature of the inter-task communication scheme
is that, contrary to the “naive” implementation scheme of
the previous section, it relies on actions being taken not only
while tasks execute but also when they are released. These
actions are very simple (and inexpensive) bit manipulations.
They can therefore be provided as operating system support.

Assuming that τi is the writer and τj the reader, there are
two buffering schemes, depending on the relative priorities
of τi and τj . The two schemes are described in Figures 3
and 4. Notice that in the low-to-high case we assume a unit-
delay between writer and reader. In the low-to-high scheme,
a double buffer and two Boolean variables are maintained
by the writer. Note that the same buffer and variables can
be used for all possible readers of this writer. In the high-
to-low scheme, a double buffer and two Boolean variables

are maintained by the reader. In this case, the reader must
maintain one such triplet for each writer it reads from.

Communication: τi → τj .
Priorities: τi higher than τj .
Task τj maintains a double buffer B[0,1] and two bits
current, next.
Initially, current = next = 0 and B[0] = B[1] = yi

0.
During execution:

• When ri occurs, if current = next, then it sets
next := not next.

• While τi executes it writes to B[next].

• When rj occurs, it sets current := next.

• While τj executes it reads from B[current].

Figure 4: High-to-low priority communication
scheme

Typical execution scenarios are illustrated in Figures 5
and 6. One time axis is shown for each task: notice that the
low-priority task is preempted in both cases by the second
occurrence of the high-priority task.6 The double buffer is
shown in the middle. The arrows indicate where each task
writes to or reads from. It can be checked that the semantics
are preserved.

4.2 Semantics-preserving implementation
under EDF scheduling

From the previous section we see that, under static-
priority scheduling, two different buffering schemes are nec-
essary, one for the low-to-high and the other for the high-to-
low priority cases. On the other hand, we know that EDF is
a dynamic priority algorithm, where for two tasks τi and τj ,
it is possible that sometimes τi preempts τj and sometimes
τj preempts τi.

The above two facts could lead one to conclude that, un-
der EDF scheduling, the buffering scheme for a case τi → τj

6 It is worth noting that the beginning of execution of the
high-priority task does not coincide with its release. This
is because, in general, there may be other tasks with even
higher priority and they may delay the beginning of the task
in question (in fact, they may also preempt it, but this is
not shown in the figures).

Low

High

r
j
k

r
j
k+1 r

j
k+2

ri
m ri

m+1

preemption

Figure 5: A typical low-to-high communication sce-
nario

356

Low

High

ri
k ri

k+1 ri
k+2

rj
m r

j
m+1

preemption

Figure 6: A typical high-to-low communication sce-
nario

needs to be dynamic, “simulating” either the high-to-low
or the low-to-high case, depending on the release times and
deadlines of the involved tasks. We show that, fortunately,
this is not the case: the buffering scheme can be decided
statically. In particular, the buffering scheme depends on
the relative deadlines di and dj of tasks τi and τj , respec-
tively:

• if di > dj then the low-to-high buffering scheme is
used; here we assume a unit delay between τi and τj ,
as in the low-to-high static-priority case, in order to
avoid the problem of Figure 1;

• if di < dj then the high-to-low buffering scheme is
used.

In the discussion that follows, we explain the intuition be-
hind the correctness of this choice. The examples that are
provided below do not constitute a proof of correctness, they
merely aim at conveying an informal argument. A proof us-
ing model-checking is presented in Section 6.

The case di > dj implies that, if τj is released before
τi then τi cannot preempt τj , neither can it start before τi

ends. Indeed, rj
k ≤ ri

m and dj < di implies rj
k +dj < ri

m+di,
that is, the absolute deadline of τj is smaller than that of τi.
Therefore, we have a situation which is “almost the same”
as the low-to-high priority case. The difference is that in the
low-to-high priority case τj always preempts τi, whereas in
the EDF case this might not happen. Therefore, in order to
guarantee the correctness of the scheme, we must examine
this last possibility, to ensure that nothing goes wrong.

Figure 7 illustrates what might happen when τj does not
preempt τi as it normally would in the low-to-high static-
priority scenario. One can see that this poses no problems
for the buffering scheme. In fact, the situation is as if the
(k+1)-th instance of τj was released after the m-th instance
of τi finished.

Let us now turn to the case di < dj . This case implies
that, if τi is released before τj then τj cannot preempt τi,
neither can it start before τi ends. Indeed, ri

k ≤ rj
m and

di < dj implies ri
k + di < rj

m + dj , that is, the absolute
deadline of τi is smaller than that of τj . Therefore, we have
a situation which is “almost the same” as the high-to-low
priority case. The difference is that in the high-to-low pri-
ority case τi always preempts τj , whereas in the EDF case
this might not happen. As before, we must examine this
possibility.

Figure 8 illustrates what might happen when τi does not
preempt τj as it normally would in the high-to-low static-

r
j
k

r
j
k+1 r

j
k+2

ri
m ri

m+1

deadline

Large

deadline

Small

Figure 7: The scenario of Figure 5 possibly under
EDF: τi is not preempted

ri
k ri

k+1 ri
k+2

rj
m r

j
m+1

deadline

Small

deadline

Large

Figure 8: The scenario of Figure 6 possibly under
EDF: τj is not preempted

priority scenario. Again, this poses no problems to the
buffering scheme. The situation is as if the (k + 1)-th in-
stance of τi was released after the m-th instance of τj fin-
ished.

5. MEMORY OPTIMIZATIONS FOR THE
MULTI-PERIODIC CASE

In this section we consider some optimizations in buffer
usage for the special case where we have periodic tasks where
period equals deadline. We assume static-priority, rate-
monotonic scheduling. The optimizations we propose are
for the high-to-low priority scheme. This is the “expensive”
scheme, since it requires each reader to maintain a double
buffer for each writer. The low-to-high scheme, on the other
hand, only requires one double buffer per writer, which can
be used by all readers.

5.1 Periods in consecutive powers of two, non-
atomic case

Consider n tasks, τ1, ..., τn, such that task τi has period
Ti = 2i−1 and a priority which is in inverse order of period.
Suppose each task sends data to all lower-priority tasks. For
three tasks of periods T1 = 1, T2 = 2 and T3 = 4, this gives
the situation shown in Figure 9.

We assume that for simultaneous occurrences, the higher-
priority task takes precedence and thus transmits its data
to the co-incidentally occurring lower-priority task. Thus
the first emission of τ1 (r1a) is required by both τ2 and τ3.
Furthermore, the data is required to persist until the end of
the period of τ3, i.e. until r3a’. However, the same emission

357

T1=1

T2=2

r3a

r2a

r1a r1b r1c r1d

r2b

T3=4

r3a’

r2a’

r1a’

Figure 9: Multi-periodic events with consecutive pe-
riods in powers of 2

is required by τ2 and this buffer can be shared with τ3. Thus
we can implement this system using three single buffers (one
for r1a to r2a and r3a, one for r2a to r3a and one for r1c

to r2b). Our original scheme would require three double
buffers.

In fact, it is immediately apparent that for the highest-
priority task out of n tasks we require n − 1 single buffers.
Thus, for each writer task i, we require n− i single buffers,
one for each of the (lower-priority) reader tasks. When every
task is a writer, this gives a total of n(n−1)/2 single buffers.
If we used the general scheme of Section 4 we would require
n(n−1)/2 double buffers, that is, double the memory space.

To implement this scheme in practice requires a buffer in-
dexing mechanism. Generating the indexing pattern implied
by Figure 9 is quite simple. We must first observe that each
alternate emission of the top-level task is unused by lower-
priority tasks. Given this, for one writer and n reader tasks,
for emission i = {0, 2, 4, . . .} the writer utilizes buffer:

B(i) = min
n

j : 0 ≤ j ≤ n− 1, i mod 2n−j = 0
o

(1)

The writer at time i writes to buffer B(i), any reader oc-
curring at time i reads from buffer B(i). For example, for
n = 3 we need 3 buffers indexed 0, 1, 2 and used according
to the pattern B(0) = 0, B(2) = 2, B(4) = 1, B(6) = 2,
B(8) = 0, and so on. A potentially useful value is the resi-
dence time of the data in the buffer which can be computed
as: R(i) = 2n−B(i).

5.2 Periods in consecutive powers of two,
atomic case

In Section 5.1 we made no assumptions about the atomic-
ity of data transfers and we were constrained to allow buffers
to be occupied for the entire period of a given task. How-
ever, we know from the fixed-priority scheduling constraints
that a low-priority task τj must begin execution before the
mid-point of its period, i.e., 2j−2. If it has not managed
to do so, this means that the cumulative execution time of
higher-priority tasks is at least half the period of τj and,
since all these higher-priority tasks will also be executed at
the second half of τj ’s period, τj will never get to execute.
This contradicts our assumption that the system is schedu-
lable.

Now, we assume that tasks sample their data at the start
of execution so if we can arrange for reading of the data

T1=1

T2=2

r3a

r2a

r1a r1b r1c r1d

r2b

T3=4

r3a’

r2a’

r1a’

Figure 10: Multi-periodic events with consecutive
periods in powers of 2, atomic reads

to be completed prior to the period mid-point then the re-
lated buffer becomes free before the next emissions of higher-
priority tasks. If we have a fixed bound on communica-
tions we can simply add this time to the execution time for
each higher-priority task and the scheduler can then guar-
antee atomicity in the sense described here. Alternatively,
we could rely upon the operating system to provide atomic
data transfer. In any case, we can make further savings in
the number of required buffers.

Consider Figure 10 which illustrates the situation for three
tasks and atomic reads. We can now implement communi-
cations from τ1 to tasks τ2 and τ3 using only a single buffer
because we can use the same buffer for r1a to r2a and for
r1c to r2b. In fact, for writing task τi, we need b(n− i)/2c
buffers. The reason for the divide by two is that since only
every second emission from task τi is needed we do not need
a new buffer each time we add a new higher-priority task.
To see this consider the two processor case in Figure 10 (τ2

and τ3) which needs a single buffer (from r2a to r3a) and
compare with the three processor case in the same figure.
Since r2b is ignored, no further buffers are required. For n
tasks, with n even we need (n/2)2 buffers, and for n odd we
need (n/2)2 + (n/2) buffers in total.

The buffer indexing function for this situation is simply
B(i)/2 and the data residence time R(i)/2.

Non-consecutive powers of two do not pose any serious
problems since these are simply subsets of the current anal-
ysis. The only complication is that the buffer indexing may
require support in the form of index tables rather than ana-
lytical formulae as above. More general harmonic cases can
also be treated using the methods here, for example periods
of T1 = 1, T2 = 2 and T3 = 6 are almost the same as for the
1 − 2 − 4 case apart from the duplicate emissions from τ1

to τ2.

5.3 The general multi-periodic case
We finally consider the general multi-periodic case, where

each period Ti is a positive integer (as previously, we assume
static-priority, rate-monotonic scheduling). Our first result
is that, for one writer task communicating with n reader
tasks, n + 1 single buffers are both necessary and sufficient,
in the worst case. Second, we provide an algorithm which,
given a set of multi-periodic tasks, computes the minimal
number of buffers required by this set (this number is often
less than n + 1). The algorithm also computes the indexing

358

108 976543210

writer

reader 1

reader 2

Figure 11: An example of the general multi-periodic
case

scheme, that is, which buffer a task should read from or
write to at any given time.

The algorithm simulates the execution of all tasks up to
the hyper-period Th = lcm{T1, ..., Tn}. It allocates new
buffers as necessary, re-using buffers when they are not
needed anymore by any reader. As a first step towards ex-
plaining the algorithm, observe that if τw → τj then at cycle
k ∈ {0, 1, ..., Th−1}, the reader task τj needs the value writ-
ten by the writer task τw at cycle

l(j, k) = bbk/Tjc Tj

Tw
c Tw. (2)

bk/Tjc Tj gives the last activation of τj before k and l(j, k)
is the last activation of τw before that. In Figure 11 we see
an example where the writer has period Tw = 2 and the
readers T1 = 3 and T2 = 5. For instance, l(1, 7) = 6 and
l(2, 7) = 4.

The same example shows that n+1 buffers are necessary,
in the worst case. Here we have n = 2 readers and we need 3
buffers. The three buffers are used to store the outputs of the
first, second and third occurrences of τw, respectively. The
first output is needed by the first occurrence of both τ1 and
τ2. The second output is needed by the second occurrence
of τ1. The third buffer is necessary in order because when
τw starts writing, after time 4, τ2 may not have released the
first buffer yet.

The algorithm is shown in Figure 12. The algorithm is
run for each writer task, with the corresponding set of reader
tasks. Constant Th is the hyper-period and n is the number
of readers. Variable buff no counts the number of buffers
that are needed. W[0..Th-1] is the indexing array of the
writer: W[k] is the buffer where the writer must write to at
cycle k. No such array is needed for the readers: at cycle
k, reader j reads from buffer W[l(j,k)]. LW[1..buff no] is
a temporary array: LW[b] is equal to the last time that the
writer wrote in buffer b. The predicate needed(k) “filters”
the cycles where the output of the writer is not used by
any reader: it is defined formally as k mod Tw = 0 ∧ ∃j ∈
{1, ..., n},∃k ≤ k′ < Th, k = l(j, k′). The worst-case time
complexity of the algorithm is O(T 2

h · n). The amount of
memory needed to store the indexing arrays is O(Th ·(n+1)).
However, this can be optimized, since the value W[k] only
changes at the beginnings of the periods.

In order to show that not more than n + 1 single buffers
are needed in the general multi-periodic case, we will prove

buff_no := 0 ;

for k := 0..Th-1 such that needed(k) do

if (exists b in [1..buff_no] such that

for all j in [1..n]: LW[b] <> l(j,k)) then

W[k] := b ; /* re-use buffer b */

LW[b] := k ;

else

buff_no++ ; /* add new buffer */

W[k] := buff_no ;

LW[buff_no] := k ;

end if ;

end for ;

Figure 12: Buffer optimization algorithm for the
general multi-periodic case

that buff no≤ n + 1 is an invariant of the loop of the pro-
gram of Figure 12. The invariant holds after initialization.
Since buff no is incremented only in the else part, it suf-
fices to prove that, when buff no= n + 1, the else part
will not be executed, that is, the condition of the if part
holds. To prove this, observe that for any b 6= b′, we have
LW[b] 6=LW[b’]: this is because each k is only assigned once
in some element of LW. Thus, when buff no= n+1, LW holds
n+1 distinct elements. On the other hand, there are at most
n distinct elements in the set L = {l(j, k) | j = 1, ..., n}.
Thus, by the pigeon-hole principle, there must exist a b such
that LW[b] 6∈ L.

6. PROOF OF CORRECTNESS BY
MODEL-CHECKING

6.1 Proof of the general buffering schemes
We can use model-checking to prove the correctness of the

(non-optimized) buffering schemes presented in Section 4.
A formalization and detailed discussion of the proof for the
static-priority case can be found in the technical-report ver-
sion of [12], available from Verimag’s web site7. Here, we
summarize the main principles of the proof and show how
it can be extended to the EDF case as well.

In order for model-checking to be applicable, the model
to be checked must be finite-state. On the other hand, the
scheme must be able to deal with an arbitrary number of
tasks, which gives rise to an a priori infinite model. The
solution is based on the following claim: if the buffering
scheme is correct for any pair of writer-reader tasks, then
it is correct for any set of tasks. This claim is correct pro-
vided the execution semantics of the writer-reader pair is
abstracted in an appropriate way, in order to take into ac-
count the effects of the other tasks, which are not modeled.

In particular, the idea is to model each task τi by three
events, ri, bi and ei, corresponding to the release, beginning
and end of an instance of a task, respectively. Then, the
execution semantics are captured by placing restrictions on
the possible orders of the above events. One restriction is
the cyclic order of the above events for each task, namely,
ri → bi → ei → ri → · · · . Other restrictions are placed in
order to model the scheduling algorithm.

Let us first show how to model static-priority scheduling.
Let τ1 be the high-priority task and τ2 be the low-priority

7 http://www-verimag.imag.fr

359

task. Then, we know that neither b2 nor e2 can occur be-
tween r1 and e1. Indeed, τ2 cannot start before τ1 finishes.
Also, if τ2 has already started when r1 occurs then it is pre-
empted, thus, will not finish before τ1 finishes. These order-
ing restrictions can be modeled using a finite-state automa-
ton, or some other finite-state model. In our case, where we
use the model-checker Lesar developed for the synchronous
language Lustre, they are modeled as Lustre assertions [11].

false

1 then 2

only 1 only 2

2 then 1

none

r2

e1

r1

e2

r2

r1e1

e2

e1

b2

Figure 13: Assumptions modeling EDF scheduling

EDF scheduling can be modeled in a similar way. Let τ1

be the task with the smaller deadline and τ2 be the task
with the larger deadline. Figure 13 shows the restrictions
modeled as an automaton: if the state “false” is reached
then the restrictions are violated. This happens when r1

occurs before r2, yet b2 occurs before e1: this means that τ2

begins before τ1 finishes, which cannot happen under EDF.
Note that these restrictions are weaker than those imposed
for the static-priority case discussed above.

To prove correctness using model-checking, we modeled
the high-to-low and low-to-high buffering schemes in Lus-
tre. A data-independence property [13] permits to abstract
data values using booleans. The above ordering restrictions
are used as assertions to model execution semantics under
static-priority or EDF schedulers. Finally, we also modeled
the ideal semantics and used Lesar to prove that the ideal
semantics are preserved by the implementation.

6.2 Proof of correctness of the optimized
buffering schemes, harmonic case

Model-checking can also be used to prove correctness of
the optimized versions, however, this can be done a priori
only for a given, rather than arbitrary, set of tasks. We have
followed this approach and modeled the buffering schemes
for the harmonic multi-periodic case (Sections 5.1 and 5.2).
In both cases, we have managed to model-check completely
only systems of n = 3 tasks. The model gets too large for
Lesar to handle for n = 4. We did manage, however, to par-
tially verify the n = 4 case, selecting various subsets of the
model and proving them correct. Since there are no irregu-
larities in these schemes (each case is built by extending the
previous one in a regular way) we can expect the scheme to
be correct for all n.

7. CONCLUSIONS AND PERSPECTIVES
We have studied the problem of semantics-preserving im-

plementations of inter-task communication. We have ex-
tended our previous work which proposed a semantics-
preserving buffering scheme for static-priority scheduling to
EDF scheduling. We also showed that buffer requirements
can be optimized in the multi-periodic case. Finally, we
discussed how model-checking can be used to prove the cor-
rectness of the buffering scheme.

Our current objective is to extend this work further to
multi-processor execution platforms. This has been partly
done in [6] for synchronous distributed architectures and
multi-periodic tasks, where static, non-preemptive schedul-
ing was assumed. We still need to cover loosely syn-
chronous [3] or asynchronous architectures with preemptive
scheduling for more general task arrival patterns.

8. REFERENCES
[1] Aström, K., and Wittenmark, B. Computer

Controlled Systems. Prentice-Hall, 1984.

[2] Benveniste, A., and Berry, G. The synchronous
approach to reactive and real-time systems. Proceeding
of the IEEE 79, 9 (September 1991), 1270–1282.

[3] Benveniste, A., Caspi, P., Guernic, P. L.,
Marchand, H., Talpin, J., and Tripakis, S. A
protocol for loosely time-triggered architectures. In
EMSOFT’02 (2002), vol. 2491 of LNCS, Springer.

[4] Berry, G. The foundations of Esterel. MIT Press,
2000, pp. 425–454.

[5] Bertin, V., Closse, E., Poize, M., Pulou, J.,
Sifakis, J., Venier, P., Weil, D., and Yovine, S.
Taxys = Esterel + Kronos. A tool for verifying
real-time properties of embedded systems. In CDC’01
(2001), IEEE.

[6] Caspi, P., Curic, A., Maignan, A., Sofronis, C.,
Tripakis, S., and Niebert, P. From Simulink to
SCADE/Lustre to TTA: a layered approach for
distributed embedded applications. In LCTES’03
(2003), ACM.

[7] Daws, C., Olivero, A., Tripakis, S., and Yovine,
S. The tool Kronos. In Hybrid Systems III (1996),
vol. 1066 of LNCS, Springer.

[8] Henzinger, T., Kirsch, C., Sanvido, M., and
Pree, W. From control models to real-time code
using Giotto. IEEE Contr. Sys. Mag. 23, 1 (2003).

[9] Liu, C., and Layland, J. Scheduling algorithms for
multiprogramming in a hard real-time environment.
Journal of the ACM 20, 1 (Jan. 1973), 46–61.

[10] The Mathworks Inc. Developing Embedded Targets
for Real-Time Workshop Embedded Coder (R13).

[11] Ratel, C., Halbwachs, N., and Raymond, P.
Programming and verifying critical systems by means
of the synchronous data-flow programming language
Lustre. In ACM-SIGSOFT Conference on Software
for Critical Systems (1991).

[12] Scaife, N., and Caspi, P. Integrating model-based
design and preemptive scheduling in mixed time- and
event-triggered systems. In ECRTS’04 (2004), IEEE.

[13] Wolper, P. Expressing interesting properties of
programs in propositional temporal logic. In Proc.
13th ACM Symp. POPL (1986), pp. 184–192.

360

	Introduction
	An inter-task communication model
	Execution on static-priority or EDF schedulers
	Semantics-preserving implementation
	Semantics-preserving implementation under static-priority scheduling
	Semantics-preserving implementation under EDF scheduling

	Memory optimizations for the multi-periodic case
	Periods in consecutive powers of two, non-atomic case
	Periods in consecutive powers of two, atomic case
	The general multi-periodic case

	Proof of correctness by model-checking
	Proof of the general buffering schemes
	Proof of correctness of the optimized buffering schemes, harmonic case

	Conclusions and perspectives
	REFERENCES -9pt

