
Toward a Semantic Anchoring Infrastructure for
Domain-Specific Modeling Languages ∗

Kai Chen
Institute for Software
Integrated Systems

Vanderbilt University,
Nashville, TN, 37205

chenk@isis.vanderbilt.edu

Janos Sztipanovits
Institute for Software
Integrated Systems

Vanderbilt University,
Nashville, TN, 37205

janos@isis.vanderbilt.edu

Sandeep Neema
Institute for Software
Integrated Systems

Vanderbilt University,
Nashville, TN, 37205

sandeep@isis.vanderbilt.edu

ABSTRACT
Metamodeling facilitates the rapid, inexpensive development
of domain-specific modeling languages (DSML-s). However,
there are still challenges hindering the wide-scale industrial
application of model-based design. One of these unsolved
problems is the lack of a practical, effective method for the
formal specification of DSML semantics. This problem has
negative impact on reusability of DSML-s and analysis tools
in domain specific tool chains. To address these issues, we
propose a formal well founded methodology with supporting
tools to anchor the semantics of DSML-s to precisely defined
and validated “semantic units”. In our methodology, each
of the syntactic and semantic DSML components is defined
precisely and completely. The main contribution of our ap-
proach is that it moves toward an infrastructure for DSML
design that integrates formal methods with practical engi-
neering tools. In this paper we use a mathematical model,
Abstract State Machines, a common semantic framework to
define the semantic domains of DSML-s.

Categories and Subject Descriptors
D.2.2 [Software]: Software Engineering—Design Tools and
Techniques; D.3.1 [Software]: Programming Language—
Formal Definitions and Theory

General Terms
Language, Design

Keywords
domain-specific modeling language, Model-Integrated Com-
puting, abstract syntax, semantic anchoring.

∗This research was supported by the NSF ITR Grant CCR-
0225610 “Foundations of Hybrid and Embedded Software
Systems”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

1. INTRODUCTION
Model-based design uses models, which are formal, com-

posable and manipulable during the design process [30]. The
modeling languages are domain-specific, offering designers
modeling concepts and notations that are tailored to charac-
teristics of their application domain. Domain-specific mod-
eling languages (DSML-s) represent the structural and be-
havioral aspects of embedded software and systems. Their
semantics capture concurrency, communication abstractions,
temporal and other physical properties. For example, a
DSML framework (i.e. a set of related modeling aspects)
for embedded systems might represent physical processes
using ordinary differential equations, signal processing using
dataflow models, decision logic using finite-state machines,
and resource management using synchronous models.

DSML-s are convenient tools for the design and imple-
mentation of embedded software and systems (ESSs). A
well-made DSML captures the concepts, relationships, in-
tegrity constraints, and semantics of the application domain
and allows users to program declaratively through model
construction. Domain experts can easily master a DSML,
since the domain concepts with which they are already fa-
miliar are incorporated in the modeling language . The ap-
plications of DSML-based tools, such as Simulink/Stateflow
[5], or metaprogrammable tool chains, such as the Model-
Integrated Computing (MIC) tools [4], range from non crit-
ical systems (e.g. cell phones) to safety critical systems
(e.g. medical systems and drive-by-wire controllers for cars).
However, adoption of DSML-s and model-based design has
been slowed down by the following concerns:

• The use of DSML-s with tightly integrated analysis
tool chains leads to the accumulation of design assets
as models defined in a DSML. Consequently, users run
high risk of being ”locked-in” a particular tool chain.

• Incomplete and informal specification of DSML-s makes
precise understanding of their syntax and semantics
difficult. While a tightly integrated tool chain seems
to relieve users from the need of fully understanding
the syntax and semantics of the DSML-s, the cost may
be high: the lack of in-depth understanding of created
models and analysis methods may prevent the organi-
zation from adopting new modeling and model analysis
methods.

• The lack of formally specified semantics of DSML-s
and analysis tools create major risk in safety critical

35

applications. Semantic mismatch between design mod-
els and modeling languages of analysis tools may re-
sult in ambiguity in safety analysis or may produce
conflicting results across different tools.

Some of these concerns have been alleviated by the appear-
ance of metamodeling languages [8] representing the ab-
stracts syntax of DSML-s, and metaprogrammable tools [25]
that can be adapted easily and inexpensively to different do-
mains. However, abstract syntax metamodeling - although
an essential step - does not solve the problem caused by the
lack of precise and explicit specification of DSML seman-
tics. There has been much effort in the research community
to define semantics of modeling languages by means of in-
formal mathematical text (see e.g. the specification of the
Hybrid Interchange Interchange Format, HSIF, [28]) or us-
ing formal mathematical notations (see e.g. the operational
semantics specification for StateFlow in [20]). In either case,
precise specification of semantics requires significant effort,
which increases the cost of the specification and adoption
of DSML-s. In addition, practical applications of DSML-s
require their evolution as the users’ understanding of the
domain changes.

In this paper we argue that we can reach a reliable, safe
and affordable technology for model-based design by devel-
oping an infrastructure for semantic anchoring of DSML-s
via completing the following agenda:

1. Development of precise specification for a set of well-
defined “semantic units” that capture the semantics of
basic models of computations in a formal framework.

2. Development of modeling language front-end for the
semantic units and specification of their abstract syn-
tax by using metamodeling.

3. Development of an infrastructure for the transforma-
tional specification of DSML semantics by defining the
mapping between the abstract syntax metamodels of
DSML-s and that of the semantic units.

The proposed approach has direct relationship to and builds
on the following model-based design concepts:

1. In platform-based design [29] the concept of common
semantic domain plays essential role in mapping func-
tional models to architecture platforms. A semantic
unit (or an integrated group of semantic units) forms
a common semantic domain for those DSML-s, which
are anchored to it.

2. Abstract semantics [6] represents the common seman-
tic features of families of models of computation, and
realize models of computation through specialization
of this abstract semantics. We define semantic units
such that they can be concretized into a family related
models of computations.

3. Multiple-aspect modeling [23] enables the managing of
complexity of DSML-s by composing them into inter-
related aspects. Semantic anchoring is used for the
transformational specification of different DSML as-
pects.

The primary contribution of this paper is the description
of key steps of the semantic anchoring process using finite

state automata modeling as an example. We use in the
process existing MIC tools: the Generic Model Environ-
ment (GME) [4] for metamodeling, the Graph Rewriting
and Transformation (GReAT) tool [2] for model transfor-
mation, the Abstract State Machines (ASM) [11, 18], as a
common semantic framework to define the semantic domain
of DSML-s, and AsmL [1] - a high-level executable specifi-
cation language based on the concepts of ASM.

The organization of this paper proceeds as follows: Sec-
tion 2 describes our methodology to support the DSML de-
sign process. The concept of Semantic units and semantic
anchoring are defined in Section 3. In Section 4, we use
a simple DSML capturing the finite state machine domain
from Ptolemy [6] as a case study to demonstrate key steps in
the semantic anchoring process. Our conclusions and future
work appear in Section 5.

2. BACKGROUND: DSML SPECIFICATION
Formally, a DSML is a five-tuple of concrete syntax (C),

abstract syntax (A), semantic domain (S) and semantic and
syntactic mappings (MS , and MC):

L = {C, A, S, MS , MC}

The concrete syntax C defines the specific notation used to
express models, which may be graphical, textual or mixed.
The abstract syntax A defines the concepts, relationships,
and integrity constraints available in the language. The se-
mantic domain S is usually defined in some formal frame-
work in terms of which the meaning of the models is ex-
plained. The syntactic mapping MC : C → A mapping
assigns syntactic constructs (graphical, textual or both) to
the elements of the abstract syntax. The semantic mapping
MS : A → S semantic mapping relates syntactic concepts
to those of the semantic domain.

The languages that are used for defining components of
DSML-s are called metalanguages and the formal specifica-
tions of DSML-s are called metamodels. The specification
of the abstract syntax of DSML-s requires a meta-language
that can express concepts, relationships, and integrity con-
straints. The specification of the semantic domain and se-
mantic mapping is more complicated, because models might
have different interesting interpretations; therefore DSML-s
might have several semantic domains and semantic map-
pings associated with them. For example, the structural
semantics of a modeling language describes the meaning of
the models in terms of the structure of model instances:
all of the possible sets of components and their relation-
ships, which are consistent with the well-formedness rules is
defined by the abstract syntax. Accordingly, the semantic
domain for structural semantics is defined by a set-valued
semantics. The behavioral semantics may describe the evo-
lution of the state of the modeled artifact along some time
model. Hence, the behavioral semantics is formally captured
by a mathematical framework representing the appropriate
form of dynamics. (It is interesting to note that since DSML-
s specify structural and behavioral invariants, which will be
satisfied by all domain-specific models (DSMs), the concept
of DSML - or more accurately its metamodel - is equivalent
to the concept of domain architecture.)

The fact that DSML-s may have several semantic domains
underlines the differences between defining semantics for
programming languages and for DSML-s. Still, approach-
ing the issues in the conceptual framework of “languages”

36

instead of the conceptual framework “domain architectures”
has the advantage of drawing from the rich theoretical and
engineering background of language design and specifica-
tion.

3. SEMANTIC ANCHORING
Our approach to the construction of an infrastructure for

semantic anchoring of DSML-s is based on the following ob-
servations:

1. DSML-s are opportunistically created according to the
needs of domains.

2. There is a well-defined, finite set of Models of Compu-
tations (MoCs) [29], which describe canonical interac-
tion patterns among physical and computational com-
ponents of embedded systems. These MoCs can be de-
fined by a set of : Li = {Ci, Ai, Si, MSi, MCi} of min-
imal languages, where the intuitive meaning of ”mini-
mality” is the simplest modeling language required to
describe a selected type of behavior.

Semantic anchoring of an arbitrary L = {C, A, S, MS , MC}
modeling language to an Li = {Ci, Ai, Si, MSi, MCi} model
of computation means specifying the MA : A → Ai map-
ping. The MS : A → S semantic mapping of L is defined
by the MS = MSi ◦MA composition, which means that the
semantics of L is anchored to the Si semantic domain of the
Li model of computation.

To develop an infrastructure for semantic anchoring re-
quires the completion of the following tasks:

1. Selection of formal framework(s) for the mathemati-
cally precise specification of the ingredients of the lan-
guages (abstract syntax, etc.).

2. Selection of the canonic MoC-s and their specifications
in the formal frameworks.

3. Development of methods and tools for specifying map-
ping between modeling languages.

Figure 1 shows our experimental tool architecture that
supports the semantic anchoring of DSML-s. The GME
tool suit is used to define the abstract syntax, A, for a L =
{C, A, S, MS , MC} DSML using UML Class Diagrams and
OCL as metalanguage [9]. The Li = {Ci, Ai, Si, MSi, MCi}
MoC is defined as an AsmL specification. In order to em-
phasize the central role of these fully specified modeling lan-
guages capturing fundamental MoC-s, we will call them se-
mantic units. In this paper we specify their operational
semantics: the semantic unit is defined in terms of (a) an
AsmL Abstract Data Model (which corresponds to the Ai,
abstract syntax specification of the modeling language defin-
ing the semantic unit in the AsmL framework), (b) the Si,
semantic domain (which is implicitly defined by the ASM
mathematical framework), and (c) the MSi, semantic map-
ping, defined as a model interpreter written in AsmL.

The MA : A → Ai semantic anchoring of L to Li is
defined as a model transformation using the GReAT tool
suite. The abstract syntax A and Ai are expressed as meta-
models. Connection between the GME-based metamodel-
ing environment and the AsmL environment is provided by
a syntax conversion. Since the GReAT tool suit generates
a model translator from the metalevel specification of the

model transformation, any domain model written in the
DSML can be directly translated into AsmL and can be
simulated using the AsmL simulator. In the followings, we
give detailed explanation about our methodology and the
involved tools.

3.1 Abstract Syntax Modeling
The Generic Modeling Environment (GME) [4, 25] is a

meta-programmable tool that supports the OMG four-layer
metamodeling architecture. GME allows users both to de-
sign and to model with domain-specific modeling environ-
ments. The GME modeling environments may be created by
using GME itself through a process of metamodeling. The
GME metamodel is based on UML class diagrams [8] and
OCL.

3.2 Specification of Semantic Units
Semantic anchoring requires the specification of seman-

tic units in a formal framework using a formal language,
which not only precise but also manipulable. The formal
framework must be general enough to represent all three
components of the MS : A → S specification; the abstract
syntax, A, with set-valued semantics, the S semantic do-
main to represent the dynamic behavior and the mapping
between them. Examples for possible formal frameworks are
the following:

• TLA+ is a formal specification language developed by
Lamport, which is based on the Temporal Logic of Ac-
tions [24]. TLA was designed to specify a wide class
of systems, ranging from discrete to hybrid dynam-
ics. Because of this generality and because TLA+ is
a complete language with a precise syntax and formal
semantics, it is a good candidate for our purpose.

• The tagged signal model [27] developed by Lee and
Sangiovanni-Vincentelli represents behavioral proper-
ties of concurrent systems using set-valued semantics.
It clarifies, for example, the relationship between the
synchronous models of computation used in synchronous
languages and asynchronous models such as process
networks and dataflow. It has been applied to con-
struct a formal semantics for discrete-event systems.

• Reactive Modules are a formal model developed by
Alur and Henzinger [10] for concurrent systems. The
model is able to represent synchronous and asynchronous
component interactions in a unified framework and
supports compositional verification.

• Abstract State Machine (ASM), formerly called Evolv-
ing Algebras [18], is a general, flexible and executable
modeling structure with well-defined semantics. Gen-
eral forms of behavioral semantics can be encoded as
(and simulated by) an abstract state machine [11].
ASM is able to cover a wide variety of domains: se-
quential, parallel, and distributed systems, abstract-
time and real-time systems, and finite- and infinite-
state domains. ASM has been successfully used to
specify the semantics of numerous languages, such as C
[19], Java [13], SDL [16] and VHDL [12]. In particular,
the International Telecommunication Union adopted
an ASM-based formal semantics definition of SDL as
part of SDL language definition [7].

37

Figure 1: Experimental Tool Suite for Semantic Anchoring

Based on practical considerations, we decided to use ASM as
a formal framework for the specification of semantic units.
One reason for the decision was the Abstract State Machine
Language, AsmL [1], developed by Microsoft Research that
makes writing ASM specifications easy within the .NET en-
vironment. AsmL specifications look like pseudo-code oper-
ating on abstract data structures. As such, they are easy for
programmers to read and understand. A set of tools is also
provided to support the compilation, simulation, test case
generation and verification of AsmL specifications. A de-
tailed introduction to ASM and AsmL is beyond the scope of
this paper, but readers can refer to other papers [1,11,17,18].

3.3 Semantic Anchoring Using Model Trans-
formation

We use model transformation techniques as formal ap-
proach for specifying the MA : A → Ai mapping between the
abstract syntax of a DSML and the abstract syntax of the
modeling language used as semantic unit. Based on our dis-
cussion above, the A abstract syntax of the DSML is defined
as a metamodel using UML class diagrams and OCL, and
the Ai abstract syntax of the semantic unit is as an Abstract
Data Model expressed using AsmL data structure. How-
ever, specification of the MA transformation between the
two abstract syntax specifications requires using the same
language. In our tool architecture, this common language
is the abstract syntax metamodeling language (UML class
diagrams and OCL), since the GReAT tool suite is based
on this formalism. Accordingly, we defined using UML class
diagrams and OCL the AsmL data structures. In Figure
2, we present a simplified version of this metamodel. Model
transformation techniques can now be applied to specify the
mapping between a DSML abstract syntax and these AsmL
Abstract Data Models.

The MA : A → Ai semantic anchoring is specified by using
the Unified Model Transformation (UMT) language of the
GReAT tool suite [2]. UMT is defined as a DSML and the
MA transformation can be specified graphically using the
GME tool. The transformation rules between the source
and the target metamodels form the semantic anchoring of
a DSML. The GReAT tool can execute these transforma-
tion rules and transform any allowed domain model to an
AsmL model. The generated AsmL model is then parsed to
generate data model in the native AsmL syntax.

4. CASE STUDY: SEMANTIC ANCHORING
FOR THE FSM DOMAIN IN PTOLEMY

We tested our semantic anchoring method and experimen-
tal tool suite using several DSML-s, including one patterned
after the finite state machine (FSM) domain in Ptolemy,
the MATLAB Stateflow and the IF timed automata based
modeling language [14]. The detailed implementation can
be downloaded from [3]. We use the FSM domain from
Ptolemy as a case study to illustrate how to use our DSML
design methodology in general.

4.1 The FSM domain in Ptolemy
Finite State Machines (FSMs) have long been used to

model the control logic of reactive systems. However, con-
ventional FSM models lack hierarchy and thus have a key
weakness: the complexity of the model increases dramati-
cally as the number of states increases. In 1987, David Harel
proposed the Statecharts model [21], which extends the con-
ventional FSM by supporting the hierarchical composition
of states and concurrency. In 1999, Edward Lee proposed
*charts [15,26], which allows the composition of hierarchical
FSMs with a variety of concurrency models.

For simplicity, we define a DSML called the FSM Mod-
eling Language (FML) which only supports Ptolemy-style
hierarchical FSMs. For a detailed description of the hierar-
chical FSMs in Ptolemy, readers may refer to [26].

4.2 The Abstract Syntax Definition for FML
Figure 3 shows a UML class diagram for the FML meta-

model as represented in GME. The classes in the UML class
diagram define the domain modeling concepts. For exam-
ple, the State class denotes the FSM domain concept of
state. Instances of the State class can be created in a do-
main model to represent the states of a specific FSM. Note
that the State class is hierarchical - each State object can
contain an entire child machine. The LocalEvent class and
the ModelEvent class represent respectively the local event
and model event concepts in Ptolemy FSM domain. Local
events are only visible within a single FSM model, whereas
model events are globally visible.

A set of OCL constraints is added to the UML class di-
agram to specify well-formedness rules. For example, the
constraint,
Self.parts(State)→size>0 implies

Self.parts(State)→select(s:State|s.initial)→size=1,
is attached to the State class. It specifies that if a State

38

Figure 2: Metamodel for a Set of AsmL Data Structures

object has slaves (hierarchically-contained child states), ex-
actly one slave should be the initial state.

4.3 A Semantic Unit Specification for FML
An appropriate semantic unit for FML should be generic

enough to express the behavior of FML models. Since our
purpose in this paper is restricted to demonstrate the key
steps in semantic anchoring, we do not investigate the prob-
lem of identifying a generic semantic unit for hierarchical
state machines. We simply define a semantic unit, which is
rich enough for FML, but neglects the semantically mean-
ingless elements to reach minimality.

The semantic unit specification includes two parts: an
Abstract Data Model and a Model Interpreter defined as
operational rules on the data structures. The AsmL Ab-
stract Data Model captures the abstract syntax of the se-
mantic unit data models, and the operational rules specify
the operational semantics of the semantic unit. Whenever
we have a domain model in AsmL (which is a specific in-
stance of the Abstract Data Model), this domain model and
the operational rules compose an abstract state machine,
which gives the model semantics. The AsmL tools can sim-
ulate its behavior, perform the test case generation or per-
form model checking. Since the size of the full semantic unit
specification is substantial, we can only show a part of the
specification together with some short explanations.

4.3.1 AsmL Abstract Data Model for FML
In this step, we specify an Abstract Data Model using

AsmL data structures, which will correspond to the seman-
tically meaningful modeling constructs in FML. As we men-
tioned above, the Abstract Data Model does not need to
capture every details of the FML modeling constructs, since
some of them are only semantically-redundant syntactic sugar.
The semantic anchoring (i.e. the mapping between the FML
metamodel and the Abstract Data Model) will map the FML
abstract syntax onto the AsmL data structures that we spec-
ify below.

Event is defined as an AsmL abstract data type interface.
ModelEvent and LocalEvent are AsmL structures. They
implement the Event interface and may consist of one or

more fields via the AsmL case construct. These fields are
model-dependent specializations of the semantic unit, which
give meaning to different types of events. The AsmL class
FSM captures the top-level of the hierarchical state ma-
chine. The field outputEvents is an AsmL sequence record-
ing the chronologically-ordered model events generated by
the FSM. If a generated event is a local event, its generation
order does not need to be recorded. So, it will be recorded in
the field localEvents which is an unordered AsmL set. The
field initialState records the start state of a machine. The
children field is an AsmL set that records all state objects
which are the top-level children of the machine.

State and Transition are defined as first-class types. Note
that the variable field initalState of the State class records
the start state of any child machine contained within a given
State object. The initalState will be undefined whenever a
state has no child states. This possibility forces us to add
the ? modifier to express that the value of the field may
be either a State instance or the AsmL undef value. For
the similar reason, we add the ? modifier after several other
types of variable fields.

4.3.2 Behavioral Semantics for FML
We are now ready to specify the behavioral semantics for

FML as operational rules, which manipulate the AsmL data
structures defined above. The specifications start from the
top-level machine, and proceeds toward the lower levels.

4.3.2.1 Top-level FSM Operations.
A FSM instance waits for input events. Whenever an al-

lowed input event arrives, the FSM instance reacts in a well-

39

Figure 3: A Class Diagram for the FML Metamodel

defined manner by updating its data fields and activating en-
abled transitions. To avoid non-determinism, the Ptolemy
FSM domain defined its own priority policy for transitions,
which supports both the hierarchical priority concept and
preemptive interrupt. The operational rule fsmReact spec-
ifies this reaction step-by-step. Note that the AsmL key-
word step introduces the next atomic step of the abstract
state machine in sequence. The operations specified within
a given step all occur simultaneously.

First, the rule determines the current state, which might
be an initial state. Next, it checks for enabled preemptive
transitions from the current state. If one exists, then the
machine will take this transition and end the reaction. Oth-
erwise, the rule will first determine if the current state has
any child states. If it does, the rule will invoke the slaves
(child states) of the current state. Next, it checks for en-
abled non-preemptive transitions from the current state. If
one exists, then the rule will take this transition and end
this reaction. Otherwise, it will do nothing and end this
reaction.

4.3.2.2 Do Transition.
The operational rule doTransition specifies the steps through

which a machine takes an enabled transition. We use the
AsmL require construct to assert that the source state of
the transition must be the current active state. First, exit
the source state of the transition. Next, if the current tran-
sition mandates an output event, perform an emit event op-
eration. Finally, make the destination state of the transition
an active state.

4.3.2.3 Activate State.
The operational rule activateState describes the opera-

tions required to activate a state. The rule first sets the
active field of the state. Then, it determines whether the
state is a hierarchical state. If it is not, then the rule at-
tempts to find an enabled instantaneous transition out of

40

the current state. In Ptolemy, an instantaneous transition
is defined as any transition that is outgoing from an atomic
state and lacks a trigger event. An instantaneous transition
must be taken immediately after entering its source state.
If such a transition exists, the rule forces this transition and
returns.

4.3.2.4 Get Instantaneous Transition.
The operational rule getInstantaneousTransition finds all

the enabled instantaneous transitions from an atomic state.
The AsmL construct require is used here to assert that this
state should be an atomic state. Since the Ptolemy FSM do-
main does not support non-determinism, the rule will report
a non-deterministic error when more than one transition is
enabled. If exactly one is enabled, return the enabled in-
stantaneous transition. Otherwise, return null.

4.4 The Semantic Anchoring of FML to the
Semantic Unit

Having the abstract syntax of FML and an appropriate
semantic unit specified, we are now ready to define the map-
ping, which provides the semantic anchoring for FML. We
use UMT, which is supported by the GReAT tool, to specify
the mapping rules between the metamodel for FML (Fig-
ure 3) and the metamodel previously defined for a subset
of AsmL data structures (Figure 2). In the transformation
process, the GReAT engine takes a FML model, executes
the mapping rules and generates an AsmL data model.

The mapping specifications in UMT consist of a sequence
of mapping rules. Each mapping rule is specified using pat-
tern graphs. A pattern graph is defined using associated
instances of the modeling constructs defined in the source
and destination metamodels. Objects in a pattern graph
can play three different roles as follows: bind, delete and
new.

The execution of a mapping rule involves matching each
of its constituent pattern objects having the roles bind or
delete with objects in the input and output domain model.

If the pattern matching is successful, then for each combina-
tion of matching objects from the domain models, those cor-
responding to the pattern objects marked delete are deleted
and new domain objects which correspond to the pattern
objects marked new are created.

We give an overview of the model transformation algo-
rithm with a short explanation below. The transformation
rule-set consists of the following steps:

1. Handle Events: Match the model event and local event
definitions in the input FML model and create the
corresponding variants through the Case construct in
Event.

2. Handel State Machine: Locate the top-level state ma-
chine in the input FML model; create an AsmL FSM
object and set its attribute values appropriately.

3. Handle States: Navigate through the FML FSM ob-
ject; map its child State objects into instances of AsmL
State class, and set their attribute values appropri-
ately.

4. Handle Transition: Navigate the hierarchy of the in-
put model; create an AsmL Transition object for each
matched FML Transition object and set its attribute
values appropriately.

Figure 4 shows the hierarchical structure of the model
transformation rules. The top-level rule consists of a se-
quence of sub-rules. Each of these sub-rules maps entities
from FML to the corresponding entity in the semantic unit
data structures. A sub-rule may be further decomposed into
a sequence of sub-rules. The four key steps in the transfor-
mation algorithm, as described above, are corresponding to
the four sub-rules contained in the top level rule. The final
contents of these rules are pattern graphs that are specified
in UML class diagrams. A pattern graph may also include
AttributeMapping code block that includes code for reading
and writing object attributes. For more information about
GME and GReAT, please refer to [2, 4, 22,25].

After we have specified the semantic mapping rules, the
GReAT engine can execute these mapping rules and trans-
form any legal FSM domain model directly into an AsmL
data model. Figure 5 shows an example hierarchical FSM
model which performs checksum calculations.

A XML file storing the AsmL data model is generated
through the semantic mapping process. Our AsmL specifi-
cation generator can parse this XML file and generate data
model in native AsmL syntax as shown in Figure 6. The
newly created AsmL data model plus the previously-defined
AsmL semantic domain specifications compose an abstract
state machine that gives the semantics for the FSM Check-
sum Machine model. With the specifications, the AsmL
tools can simulate the behavior, do the test case generation
and model checks. For more information about the AsmL
supported analysis, readers can refer to [1].

5. CONCLUSION AND FUTURE WORK
The work on establishing a semantic anchoring infrastruc-

ture for DSML-s is in early stage. As the example showed,
combining operational specification of semantic units with
the transformational specification of DSML-s has the poten-
tial for improving significantly the precision of DSML spec-

41

Figure 4: Top-level Mapping Rule for the FML Semantic Mapping specifications

Figure 5: Hierarchical FSM Model for Checksum
Machine

ifications. The admittedly ad-hoc “semantic unit” we de-
fined for the case study to show semantic anchoring for the
FML can be reused to anchor other dialects and variations
of hierarchical or flat state machines. The only component
which needs to be changed is the mapping, which anchors a
new DSML to the ”semantic unit”. We expect that substan-
tial further effort is required to identify the appropriate set
of semantic units and the best formal framework, which is

Figure 6: Part of the AsmL Data Model Generated
from the Checksum Machine Model

general enough to cover a broad range of models of compu-
tations and can integrate both operational and denotational
semantic specifications. An interesting area for further re-
search is use cases for semantic units, which include the
automatic generation of model translators that confirm the
operational semantics captured in the semantic unit and se-
mantically well founded tool integration and tool verification
technology.

42

6. ACKNOWLEDGMENT
The authors want to thank for the useful discussions with

Edward Lee, George Pappas, Alberto Sangiovanni-Vincentelly
and Tom Henzinger in forming the semantic anchoring con-
cept.

7. ADDITIONAL AUTHORS
Matthew Emerson (Institute for Software Integrated Sys-

tems, Vanderbilt Univ.) and Sherif Abdelwahed (Institute
for Software Integrated Systems, Vanderbilt Univ.).

8. REFERENCES
[1] The abstract state machine language.

www.research.microsoft.com/fse/asml.

[2] Graph rewriting and transformation.
www.isis.vanderbilt.edu/Projects/mobies.

[3] Link for semantic anchoring tool suite.
www.isis.vanderbilt.edu/SAT.

[4] The Generic Modeling Environment: GME.
www.isis.vanderbilt.edu/Projects/gme.

[5] The MathWorks Simulink.
www.mathworks.com/products/simulink.

[6] The Ptolemy Project.
www.ptolemy.eecs.berkeley.edu.

[7] ITU-T recommendation Z.100 annex F: SDL formal
semantics definition. International Telecommunication
Union, Geneva, 2000.

[8] OMG unified modeling language specification version
1.5. Object Management Group document, 2003.
formal/03-03-01.

[9] UML 2.0 OCL final adopted specification. Object
Management Group document, 2003. ptc/03-10-14.

[10] R. Alur and T. A. Henzinger. Reactive modules.
Form. Methods Syst. Des., 15(1):7–48, 1999.

[11] E. Boerger and R. Staerk. Abstract State Machines: A
Method for High-Level System Design and Analysis.
Springer, 2003.

[12] E. Borger, U. Glasser, and W. Muller. Formal
Semantics for VHDL, chapter Formal Definition of an
Abstract VHDL’93 Simulator by EA-Machines, pages
107–139. Kluwer Academic Publishers, 1995.

[13] E. Borger and W. Schulte. A programmer friendly
modular definition of the semantics of java. In Formal
Syntax and Semantics of Java, LNCS, volume 1523,
pages 353–404. Springer-Verlag, 1999.

[14] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis.
Tools and applications II: The IF toolset. In
Proceedings of SFM’04, LNCS, volume 3185.
Springer-Verlag, 2004.

[15] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite
state machines with multiple concurrency models.
IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems, 18(6):742–760, June
1999.

[16] U. Glasser and R. Karges. Abstract state machines
semantics of SDL. Journal of University Computer
Science, 3(12):1382–1414, 1997.

[17] Y. Gurevich. Asm guide 97. CSE Technical Report
CSE-TR-336-97.

[18] Y. Gurevich. Specification and Validation Methods,
chapter Evolving Algebras 1993: Lipari Guide, pages
9–36. Oxford University Press.

[19] Y. Gurevich and J. Huggins. The semantics of the C
programming languages. In Computer Science
Logic’92, pages 274–308. Springer-Verlag, 1993.

[20] G. Hamon and J. Rushby. An operational semantics
for stateflow. In Fundamental Approaches to Software
Engineering: 7th International Conference, pages
229–243. Springer-Verlag, 2004.

[21] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming,
8(3):231–274, 1987.

[22] G. Karsai, A. Agrawal, and F. Shi. On the use of
graph transformations for the formal specification of
model interpreters. Journal of Universal Computer
Science, 9(11):1296–1321, 2003.

[23] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty.
Model-integrated development of embedded software.
In Proceedings of the IEEE, volume 91, pages 145–164,
2003.

[24] L. Lamport. Specifying Systems: The TLA+ Language
and Tools for Hardware and Software Engineers.
Addison-Wesley, 2002.

[25] A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi,
G. Nordstrom, J. Sprinkle, and G. Karsai. Composing
domain-specific design environments. IEEE Computer,
34(11):44–51, 2001.

[26] B. Lee. Specification and Design of Reactive Systems.
PhD thesis, University of California, Berkeley, 2000.

[27] E. Lee and A. Sangiovanni-Vincentelli. A denotational
framework for comparing models of computation.
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 17(12), 1998.

[28] MoBIES Group. HSIF semantics. Internal document,
The University of Pennsylvania, 2002.

[29] A. Sangiovanni-Vincentelli and G. Martin.
Platform-based design and software design
methodology for embedded systems. IEEE Des. Test,
18(6):23–33, 2001.

[30] J. Sztipanovits and G. Karsai. Model-integrated
computing. IEEE Computer, 30(4):110–111, 1997.

43

