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ABSTRACT
UPPAAL-TRON is a new tool for model based online black-box
conformance testing of real-time embedded systems specified as
timed automata. In this paper we present our experiences in apply-
ing our tool and technique on an industrial case study. We conclude
that the tool and technique is applicable to practical systems, and
that it has promising error detection potential and execution perfor-
mance.

Categories and Subject Descriptors
D.2 [Software Engineering]: Miscellaneous; D.2.5 [Software En-
gineering]: Testing and Debugging—symbolic execution, moni-
tors, testing tools

General Terms
Algorithms, Experimentation, Languages, Theory, Verification

Keywords
Black-box testing, online testing, embedded systems, control soft-
ware, real-time systems

1. INTRODUCTION
Model-based testing is a promising approach for improving the

testing of embedded systems. Given an abstract formalized model
(ideally developed as the design process) of the behaviour of as-
pects of the implementation under test (IUT), a test generation tool
automatically explores the state-space of the model to generate valid
and interesting test cases that can be executed against the IUT. The
model specifies the required and allowed behavior of the IUT.

UPPAAL is a mature integrated tool environment for modeling,
verification, simulation, and testing of real-time systems modeled
as networks of timed automata [8]. UPPAAL-TRON (TRON for
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short) is a recent addition to the UPPAAL environment. It per-
forms model-based black-box conformance testing of the real-time
constraints of embedded systems. TRON is an online testing tool
which means that it, at the same time, both generates and exe-
cutes tests event-by-event in real-time. TRON represents a novel
approach to testing real-time systems, and is based on recent ad-
vances in the analysis of timed automata. Applying TRON on small
examples has shown promising error detection capability and per-
formance.

In this paper we present our experiences in applying TRON on an
industrial case study. Danfoss is a Danish company known world-
wide for leadership in Refrigeration & Air Conditioning, Heating
& Water and Motion Controls [2]. The IUT, EKC 201/301, is an
advanced electronic thermostat regulator sold world-wide in high
volume. The goal of the case study is to evaluate the feasibility of
our technique on a practical example.

TRON replaces the environment of the IUT. It performs two log-
ical functions, stimulation and monitoring. Based on the timed se-
quence of input and output actions performed so far, it stimulates
the IUT with input that is deemed relevant by the model. At the
same time it monitors the outputs and checks the conformance of
these against the behavior specified in the model. Thus, TRON
implements a closed-loop testing system.

To perform these functions TRON computes the set of states that
the model can possibly occupy after the timed trace observed so far.
Thus, central to our approach is the idea of symbolically comput-
ing the current possible set of states. For timed automata this was
first proposed by Tripakis [16] in the context of failure diagnosis.
Later that work has been extended by Krichen and Tripakis [9] to
online testing from timed automata. The monitoring aspect of this
work has been applied to NASA’s Mars Rover Controller where ex-
isting traces are checked for conformance against given execution
plans translated into timed automata [15]. In contrast, the work
presented in this paper performs real-time online black-box test-
ing (both real-time stimulation and conformance checking) for a
real industrial embedded device consisting of hardware and soft-
ware. Online testing based on timed CSP specifications has been
proposed and applied in practice by Peleska [14].

Our approach, previously presented in [5, 13, 11]; an abstract
appeared in [12]), uses the mature UPPAAL language and model-
checking engine to perform relativized timed input/output confor-
mancetesting, meaning that we take environment assumptions ex-
plicitly into account.

Compared to current control engineering testing practices, our
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emphasis is on testing discrete mode switches (possibly non-deter-
ministic) and on real physical time constraints (deadlines) on ob-
servable input/output actions, and less on continuous state evolu-
tion characterized by differential equations. Also many engineer-
ing based approaches has no general formal correctness criteria,
and correctness is assessed manually (tool assisted) by correlating
a simulated-model with observed test data. In our case we have
an explicit correctness relation allowing us to automatically map
events and timings into model and assign verdicts to the observed
behavior online. It is also important to remark that our environment
models need not represent a single deterministic scenario, but rep-
resents all relevant environment behaviors/assumptions from which
samples are randomly chosen during test execution. On the other
hand, the strong focus and dependency on environment models
common in control engineering testing appear new to formal soft-
ware testing.

In Section 2 we introduce the concepts behind our testing frame-
work. Section 3 describes the case, Section 4 our modeling experi-
ences, and Section 5 performance results. Section 6 concludes the
paper.

2. TESTING FRAMEWORK
The most important ingredients in our framework is relativized

conformance, timed automata, environment modeling, and the test
generation algorithm.

2.1 Relativized Conformance Testing
An embedded system interacts closely with its environment which

typically consists of the controlled physical equipment (the plant)
accessible via sensors and actuators, other computer based systems
or digital devices accessible via communication networks using
dedicated protocols, and human users. A major development task
is to ensure that an embedded system works correctly in its real
operating environment.

The goal of (relativized) conformance testing is to check whether
the behavior of the IUT is correct according to its specification un-
der assumptions about the behavior of the actual environment in
which it is supposed to work. In general, only the correctness in
this environment needs to be established, or it may be too costly or
ineffective to achieve for the most general environment. Explicit
environment models have many other practical applications.

Figure 1 shows the test setup. The test specification is a network
of timed automata partitioned into a model of the environment of
the IUT and the IUT. TRON replaces the environment of the IUT,
and based on the timed sequence of input and output actions per-
formed so far, it stimulates the IUT with input that is deemed rel-
evant by the environment part of the model. Also in real-time it
checks the conformance of the produced timed input output se-
quence against the IUT part of the model. We assume that the
IUT is a black-box whose state is not directly observable. Only
input/output actions are observable. The adapter is an IUT specific
hardware/software component that connects TRON to the IUT. It
is responsible for translating abstract input test events into physical
stimuli and physical IUT output observations into abstract model
outputs. It is important to note that we currently assume that inputs
and outputs are discrete (or discretized) actions, and not continu-
ously evolving.

Depending on the construction of the adapter, TRON can be con-
nected to the hardware (possibly via sensors and actuators) with
embedded software forming hardware-in-the-loop testing, or it can
be connected directly to the software forming software-in-the-loop
testing.

We extended the input/output conformance relation ioco [17] be-
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Figure 1: TRON test setup.

tween a formal specification and its black-box implementation to
the timed setting and relatively to a given environment.

Intuitively i rtiocoe s means that after executing any timed in-
put/output trace σ that is possible in the composition of the system
specification s and environment specification e, the implementa-
tion i in environment e may only produce outputs and timed delays
which are included in the specification s under environment e. Rel-
ativized timed input/output conformance rtioco [6] is defined
formally in Equation 1.

i rtiocoe s = ∀σ ∈ TTr(s, e). out
`
(i, e) after σ

´ ⊆
out

`
(s, e) after σ

´ (1)

Here after σ denotes the set of states the specification system
(s, e) (resp. implementation system (i, e)) may possibly occupy
after executing the timed i/o trace σ. out

`´
denotes the possible

outputs (including permissible delays) the system can produce from
a given set of states.

The output inclusion in the relation guarantees both functional
and time-wise correctness. The IUT is not allowed produce any
output actions (including the special output of letting time pass and
not producing outputs in time) at a time they could not be done by
the specification.

2.2 Timed Automata
We assume that a formal specification can be modeled as a net-

work of timed automata. We explain timed automaton by example,
and refer to [1] for formal syntax and semantics. A timed automa-
ton is essentially a finite state machine with input/output actions
(distinguished respectively by ? and !) augmented with discrete
variables and a set of special real-valued clock variables which
models the time.

Clocks and discrete variables may be used in predicates on tran-
sitions (called guards) to define when the transitions may take place.
A location invariant is a clock predicate on an automaton location
that defines for how long the automaton is allowed to stay in that
location, thus forcing the automaton to make progress within the
specified time bounds. On transitions, the variables can be assigned
a value, and clocks may be reset to zero.

Figure 2(a) shows an UPPAAL automaton of a simple cooling
controller Cr where x is real-valued clock and r is an integer con-
stant. Its goal is to control and keep the room temperature in Med
range. The controller is required: 1) to turn On the cooling de-
vice within an allowed reaction time r when the room temperature
reaches High range, and 2) to turn it Off within r when the temper-
ature drops to Low range.

In the encircled initial location off, it forever awaits temperature
input samples Low, Medand High. When Cr receives High it resets
the clock x to zero and moves to location up, where the location
invariant x ≤ r allows it to remain for at most r time units. Edges
may also have guards which define when the transition is enabled
(see e.g. in Figure 2(d)). At latest when x reaches r time units
the output on is generated. If a Low is received in the mean time
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it must go back off. Transitions are taken instantaneously and time
only elapses in locations.

In location off the automaton reacts non-deterministically to in-
put Med: Cr may choose either to take a loop transition and stay in
location off or move to location up. When Cr is used as a specifi-
cation a relativized input/output conforming controller implemen-
tation may choose to perform either. Thus non-determinism gives
the implementation some freedom. There are two sources of non-
determinism in timed automata: 1) in the timing (tolerances) of
actions as allowed by location invariants and guards, and 2) in the
possible state after an action.

Timed automata may be composed in parallel, communicate via
shared variables and synchronize rendezvous-style on matching in-
put/output transitions. In a closedtimed automata network all out-
put action transitions have a corresponding input action transition.

UPPAAL is an model checker for real-time systems, and supports
timed automata networks with additional integer variable types,
broadcast (one-to-many) synchronizations and other extensions. UP-
PAAL provides an efficient set of symbolic model-checking algo-
rithms for performing symbolic reachability analysis of timed au-
tomata. Since clock values are real-valued, the state-space of the
model is infinite, and cannot be represented and computed explic-
itly. A symbolic state represents a (potentially infinite) set of con-
crete states and is implemented as particular set of linear inequa-
tions on clock variables. Thus the evaluation of guards and compu-
tation of successor symbolic states is done symbolically.

2.3 Environment Modeling
In this section we exemplify how our conformance relation dis-

criminates systems, and illustrate the potential power of environ-
ment assumptions and how this can help to increase the relevance
of the generated tests for a given environment.

Consider the simple cooling controller of Figure 2(a) and the
environment in Figure 2(c). Take C6 to be the specification and as-
sume that the implementation behaves like C8. Clearly, C8 rt✚iocoEM

C6 because the timed trace 0·Med ! ·7·On! is possible in the imple-
mentation, but not in the specification. Formally, out

`C8 after 0·
Med !·7´

= {On!}∪R≥0 
⊆ out
`C6 after 0·Med !·7´

= R≥0

(recall that Cr may remain in location off on input Med and not
produce any output). The implementation can thus perform an out-
put at a time not allowed by the specification.

Next, suppose Cr is implemented by a timed automaton C′r equal

to Cr, except the transition up
Low−−→ dn is missing, and replaced

by a self loop in location up . They are distinguishable by the timed
trace 0·Med?·0·High?·0· Low?·0· On! in the implementation that
is not in the specification (switches the compressor Off instead).

Figures 2(b) to 2(e) show four possible environment assump-
tions for Cr. Figure 2(c) shows the universal and completely un-
constrained environment EM where room temperature may change
unconstrained and may change (discretely) with any rate. This is
the most discriminating environment that can generate any input
output sequence and thus (in principle) detect all errors.

This may not be realistic in the given physical environment, and
there may be less need to test the controller in such an environ-
ment, as temperature normally evolves slowly and continuously,
e.g., it cannot change drastically from Low to High and back un-
less through Med. Similarly, most embedded and real-time systems
also interact with physical environments and other digital systems
that— depending on circumstances—can be assumed to be correct
and correctly communicate using well defined interfaces and pro-
tocols. The other extreme in Figure 2(c) is the least discriminating
environment; it merely passively consumes output actions.

Figure 2(d) shows the environment model Ed
1 where the temper-

ature changes through Med range and with a speed bounded by
d. Figure 2(e) shows an even more constrained environment E2
that assumes that the cooling device works, e.g., temperature never
increases when cooling is on. Notice that E2 and E1 have less dis-
criminating power and thus may not reveal faults found under more
discriminating environments. However, if the erroneous behavior
is impossible in the actual operating environment the error may
be irrelevant. Consider again the implementation C′r from above.
This error can be detected under E0 and E3d<r

1 via the timed trace
that respects the environments d·Med?·d·High?·d·Med?·d·Low?·ε·
On!, ε ≤ r. The specification would produce Off. The error cannot
be detected under E1 if it too slow 3d > r, and never under E2 for
no value of d.

In the extreme the environment behavior can be so restricted that
it only reflects a single test scenario that should be tested. In our
view, the environment assumptions should be specified explicitly
and separately.

2.4 Online Testing Algorithm.
Here we outline the algorithm behind TRON informally. The

precise formal definitions and algorithms behind TRON have been
documented in [12, 11, 6, 7] and we refer to these for further details.

The environment model functions as a (state-dependent) input-
stimuli (load) generator. The IUT-model functions as as a test ora-
cle, and is used to evaluate the correctness of the observed timed in-
put output sequence. In order to simulate the environment and mon-
itor the implementation, Algorithm 1 maintains the current reach-
able symbolic state set Z ⊆ S × E that the test specification can
possibly occupy after the timed trace observed so far.

Based on this symbolic state-set, TRON checks whether the ob-
served output actions and timed delays are permitted in the specifi-
cation. In addition TRON computes the set of possible inputs that
may be offered to the implementation.

ALG. 1. Test generation and execution:Z := {(s0, e0)}.

while Z 
= ∅ ∧ �iterations ≤ T do choose randomly:
offer input action:

if EnvOutput(Z) 
= ∅
randomly choosei ∈ EnvOutput(Z)
sendi to IUT,Z := Z after i

delay and wait for an output:
randomly choosed ∈ Delays(Z)
sleepd or wake up on outputo at d′ ≤ d
if o occursthen

Z := Z after d′

if o /∈ ImpOutput(Z) then return fail
else Z := Z after o

else Z := Z after d
reset and restart: Z := {(s0, e0)}, reset IUT

if Z = ∅ then return fail else return pass

TRON randomly chooses between one of three basic actions: ei-
ther send a randomly selected relevant input to the IUT, letting time
pass by some (random) amount and silently observe the IUT for
outputs, or reset the IUT and restart. The set of input actions that
are possible in the current state-set Z (enabled environment output)
is denoted by EnvOutput(Z). Similarly, ImpOutput(Z) denotes
the allowed set of implementation outputs, and Delays(Z) the pos-
sible delays before the tester must give an input to the IUT (as con-
strained by invariants the environment model). In the practical im-
plementation the probability of restarting is chosen comparatively
very low.

If the tester observes an output or a time delay it checks whether
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Figure 2: Timed automata of simple controller and various environments.

this is legal according to the state set. The state set is updated when-
ever an input is offered, an output or a delay is observed. Consider
the system (Cr, Ed

1 ). The initial state-set is the single symbolic
state: {〈off ,L, x = 0 ∧ y = 0〉}. After a delay of d or more,
{Med} is the set of possible inputs. Suppose that TRON issues
Med after δ ≥ d time units. The state-set now consists of two
states: {〈off ,M , x = δ ∧ y = 0〉, 〈up,M , x = 0 ∧ y = 0〉}. If
On is received later at time δ′ ≤ r the first element in the state-set
will be eliminated resulting in {〈on,M , x = 0 ∧ y = δ′〉}. Illegal
occurrence or absence of an output is detected if the state set be-
comes empty which is the result if the observed trace is not in the
specification.

TRON uses using the UPPAAL engine to traverse internal, de-
lay and observed action transitions, to evaluate clock and variable
guards, and to perform variable assignments. We use the efficient
reachability algorithm implementation [3] to implement the op-
erator after . It operates on bounded symbolic states, checks
for symbolic-state inclusions and thus always terminates even if
the model contains loops of internal actions. Further information
about the implementation of the required symbolic operations can
be found in [6].

Currently TRON is available to download via the Internet free of
charge for evaluation, research, education and other non-commercial
purposes [10]. TRON supports all UPPAAL modeling features in-
cluding non-determinism, provides timed traces as test log and a
verdict as the answer to rtioco relation, and features for model-
coverage measurements.

3. THE DANFOSS EKC-201 REFRIGERA-
TION CONTROLLER

We applied UPPAAL-TRON on a first industrial case study pro-
vided by Danfoss Refrigeration Controls Division. The EKC con-
trols and monitors the temperature of industrial cooling plants such
as cooling and freezer rooms and large supermarket refrigerators.

3.1 Control Objective
The main control objective is to keep the refrigerator room air

temperature at a user defined set-point by switching a compressor
on and off. It monitors the actual room temperature, and sounds
an alarm if the temperature is too high (or too low) for too long a
period. In addition it offers a myriad of features (e.g. defrosting
and safety modes in case of sensor errors) and approximately 40
configurable parameters.

The EKC obtains input from a room air temperature sensor, a
defrost temperature sensor, and a two-button keypad that controls
approximately 40 user configurable parameters. It delivers output
via a compressor relay, a defrost relay, an alarm relay, a fan re-
lay, and a LED display unit showing the currently calculated room
air temperature as well as indicators for alarm, error and operating
mode.

Figure 3 shows a simplified view of control objective, namely to
keep the temperature within setPointand setPoint+differentialde-
grees. The regulation is to be based on an weighted averaged room
temperature Tn calculated by the EKC by periodically sampling
(around 1.2 sec.) the air temperature sensor such that a new sample
T is weighted by 20% and the old average Tn−1 by 80%:

Tn =
Tn−1 ∗ 4 + T

5
(2)

A certain minimum duration must pass between restarts of the com-
pressor, and similarly the compressor must remain on for a mini-
mum duration. An alarm must sound if the temperature increases
(decreases) above (below) highAlarmLimit(lowAlarmLimit) for alar-
mDelaytime units. All time constants in the EKC specification are
in the order of seconds to minutes, and a few even in hours.

3.2 Test Adaptation.
A few comments are necessary about the test adapter for the

EKC since it determines what and how precise the IUT can be con-
trolled and observed.

Internally, the EKC is organized such that nearly every input,
output and important system parameter is stored in a so-called pa-
rameter database in the EKC that contains the value, type and per-
mitted range of each variable. The parameter database can be in-

302



Temperature

Time

setpoint

setpoint
+differential

highAlarm
Deviation

lowAlarm
Limit

highAlarm
Limit

lowAlarm
Deviation

differential

start 
compressor

stop
compressor

start 
compressor

stop
compressor

start
alarm

normal min restart 
time not elapsed

min cooling 
time not elapsed

alarm delay

Figure 3: EKC Main Control Objective.

directly accessed from a visual Basic API on a MS Windows XP
PC host via monitoring software provided by Danfoss. The EKC is
connected to a MS Windows XP PC host, first via a LON network
from the EKC to a EKC-gateway, and from the gateway to the PC
via a RS-232 serial connection. The required hardware and soft-
ware were provided by Danfoss. As recommended by Danfoss we
implemented the adaptation software by accessing the parameter
database using the provided interface. However, UPPAAL-TRON
only exists in UNIX versions, and thus it required a second UNIX-
host computer connected to the MS windows PC using a TCP/IP
connection properly configured to prevent unnecessary delaying of
small messages. The adaptation software thus consists of a “thin”
visualBasic part running on the MS windows host, and a C++ part
interfacing to the TRON native adaptation API running on a UNIX
host. It is important to note that this long chain (three network
hops) adds both latency and uncertainty to the timing of events.

More seriously it turned out that the parameters representing sen-
sor inputs are read-only, meaning that the test host cannot change
these to emulate changes in sensor-inputs. Therefore some func-
tionality (temperature based defrosting, sensor error handling, and
door open control) related to these is not modeled and tested. The
main sensor, the room temperature, is hardwired to a fixed setting
via a resistor, but the sensed room temperature can be changed indi-
rectly via a writable calibration parameter with the range ±20 ◦C.

It quickly became evident to us that the monitoring software was
meant for “coarse grained” event logging and supervision by an
operator, not as a (real-time) test interface. An important general
lesson learned is that an IUT should provide an test interface with
suitable means for control and observation. We are collaborating
with Danfoss to provide a better test interface for future versions of
the product.

3.3 Model Structure
We modeled a central subset of the functionality of the EKC as

a network of UPPAAL Timed Automata, namely basic temperature
regulation, alarm monitoring, and defrost modes with manual and
automatic controlled (fixed) periodical defrost (de)activation. The
allowed timing tolerances and timing uncertainties introduced by
the adaptation software is modeled explicitly by allowing output
events to be produced within a certain error envelope. For example,
a tolerance of 2 seconds is permitted on the compressor-relay. In
general, it may be necessary to model the adaptation layer as part
of the model for the system under test. The abstract input/output
actions are depicted in Figure 4.

From the beginning it was decided to challenge our tool. There-
fore we decided that the model should be responsible of tracking

EKC
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Figure 4: Model Inputs and Outputs.

the temperature as calculated by the EKC and base control actions
on this value. To make this work, the computation part of the model
and also its real-time execution must be quite precise. This part of
the model thus approximates the continuous evolution of a param-
eter, and almost approaches a model of a hybrid system, which is
on the limit of the capability of timed automata. An alternative
would be to monitor the precision of the calculated temperature in
the adaptation software and let that generate events (e.g., alarm-
LimitReached!) to the model as threshold values are crossed. This
would yield a simple and more abstract “pure” event driven model.

The model consists of 18 concurrent components (timed automata),
14 clock variables, and 14 discrete integer variables, and is thus
quite large. The main components and their dependencies are de-
picted in Figure 5 and explained below.
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Figure 5: Main Model Components

The Temperature Measurement component periodically sam-
ples the temperature sensor and calculates a new estimated room
air temperature. The Compressor component controls the com-
pressor relay based on the estimated room temperature, alarm and
defrost status. The High Temperature Alarm component moni-
tors the alarm state of the EKC, and triggers the alarm relay if the
temperature is too high for too long. The Defrost component con-
trols the events that must take place during a defrost cycle. When
defrosting the compressor must be disengaged, and alarms must
be suppressed until delayAfterDefrosttime units after completion.
Defrosting may be started manually by the user, and is engaged
automatically with a certain period. It stops when the defrosting
time has elapsed, or when stopped manually by the user. The Auto
Defrost component implements automatic periodic time based de-
frosting. It automatically engages the defrost mode periodically.
The Relay component models a digital physical output (compres-
sor relay, defrost relay, alarm relay, alarm display) that when given
a command switches on (respectively off) within a certain time
bound. The Temperature Generator is a part of the environment
that simulates the variation in room temperature, currently alter-
natingly increases the temperature linearly between minimum and
maximum temperature, and the reverse. Finally, the Defrost Event
Generator environment component randomly issues user initiated
defrost start and stop commands.
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4. COMPONENT MODELING AND
REVERSE ENGINEERING

The modeling effort was carried out by computer scientists with-
out knowledge of that problem domain based on the EKC docu-
mentation provided by Danfoss. It only consisted of the internal
requirements specification and the users manual, both in informal
prose. In addition we had access to questioning the Danfoss En-
gineers via email and two meetings, but no design documents or
source code were available. In addition we were given documen-
tation about the EKC PC-monitoring software and associated API
allowing us to write the adaptation software.

In general the documentation was insufficient to build the model.
In part this was due to a lack of a detailed understanding of the
implicit engineering knowledge of the problem domain and how
previous generations of controllers worked. But more importantly
much functional behavior and especially timing constraints were
not explicitly defined. In general the requirements specification did
not state any timing tolerances, e.g, the allowed latency on com-
pressor start and stop when the calculated temperature crosses the
lower or higher thresholds.

Therefore the modeling involved a lot of experimentation to de-
duce the right model and time constraints, which to some extent
best can be characterized as reverse engineering or model-learning
[4]. Typically the work proceeded by formulating a hypothesis of
the behavior and timing tolerances as a model (of the selected as-
pect/sub functionality), and then executing TRON to check whether
or not the EKC conformed to the model. If TRON gave a fail-
verdict the model was revised (either functionally, or by loosening
time tolerances). If it passed the timing tolerances were tightened
until it failed. The process was then iterated a few times, and the
Danfoss engineers were consulted to check whether the behavior of
the determined model was acceptable.

In the following we give a few examples of this procedure.

4.1 Room Temperature Tracking.
The EKC estimates the room temperature from Equation 2 based

on periodically samples of the room temperature sensor, and bases
most control actions like switching the compressor on or off on this
value. However, the requirements only requires a certain precision
on the sampling accuracy of the temperature sensors (±0.5◦C) and
a sensor sampling period of at most 2 seconds, and nothing about
how frequently the temperature should be reevaluated. This led to a
series of tests where the temperature change rate, the sampling pe-
riod, and temperature tolerance were changed to determine the best
matching configuration. The model now uses a period of 1.2 sec-
onds, and allows ± 2 seconds tolerance on compressor start/stop.

4.2 Alarm Monitoring
Executing TRON using our first version of the high temperature

alarm monitor caused TRON to give a fail-verdict: The EKC did
not raise alarms as expected. The model shown in Figure 6 as-
sumed that the user’s clearing of the alarm would reset the alarm
state of the EKC completely. The consequence of this is that the
EKC should raise a new alarm within alarmDelayif the temper-
ature remained above the critical limit. However, it did not, and
closer inspection showed that the EKC was still indicating high
temperature alarm in its display, even though the alarm was cleared
by the user. The explanation given by Danfoss was that clearing the
alarm only clears the alarm relay (stopping the alarm noise), not the
alarm state which remains in effect until the temperature drops be-
low the critical limit. The model was then refined, and includes the
noSoundDisplayinglocation in Figure 7.

4.3 Defrosting and Alarm Handling.
A similar discrepancy between expected and actual behavior de-

tected by TRON was in the way that the alarm and defrost functions
interacts. After a defrost the room temperature naturally risks being
higher than the alarm limit, because cooling has been switched off
during the defrost activity for an extended period of time. There-
fore a high temperature alarm should be suppressed in this situation
which can be done by configuring the EKC parameter alarmDe-
layAfterDefrost. However, reading different sections of the docu-
mentation gives several possible interpretations:

1. When defrosting stops and the temperature is high, alarms
must be postponed for alarmDelayAfterDefrostin addition to
the original alarmDelay, i.e., never alarms during a defrost.

2. Same as above (1) except it is measured from the time where
the high alarm temperature is detected, even during a defrost.

3. When defrosting stops and the temperature is high, alarms
must be suppressed for alarmDelayAfterDefrost, i.e., alar-
mDelayAfterDefrostreplaces the original alarmDelayafter a
defrost until the the temperature becomes below critical, af-
ter which the normal alarmDelayis used again.

The engineering department could not give an immediate answer
to this (without reluctantly consulting old source code), but based
on their experiences and requirements for other products they be-
lieved that 3 is the correct interpretation. Note that we are not sug-
gesting that the product was implemented without a clear under-
standing of the intended behavior, only that it was not clear from
its documentation.

4.4 Defrost Time Tolerance.
Another discrepancy TRON found was that defrosting started

earlier than expected or was disengaged later. It turned out that the
internal timer in the EKC responsible for controlling the defrost pe-
riod has a very low precision (probably because defrosting is rare
(e.g., once a day) and has along duration (lasts several hours)). The
default tolerance used in the model on the relays thus had to be
further relaxed.

5. QUANTITATIVE EVALUATION
During a test-run, the testing algorithm computes, on a per timed

event basis, the set of symbolic states in the model that can be
reached after the timed event trace observed so far, and generates
stimuli and checks the validity of IUT-outputs based on this state-
set.

Since we use a non-deterministic model to capture the timing
and threshold tolerances of the IUT and since internal events in
a concurrent model may be executed in (possibly combinatorially
many) different orders, this set will usually contain numerous pos-
sible states. The state-set reflects the allowed states and behavior of
the IUT, and intuitively, the larger the state-set, the more uncertain
the tester is about the state of the implementation.

Since we generate and execute tests in real-time the state-set
must also be updated in real-time. Obviously, the model and the
state-set size affects how much computation time this takes, and
one might question wheter doing this is feasible in practice. In the
following we investigate whether real-time online testing is realis-
tic for practical cases, like the Danfoss EKC.

Figure 8 plots the evolution of the state-set size (number of sym-
bolic states) for a sample test run. Also plotted in the graph is the
input temperature, temperature threshold value for high tempera-
ture (compressor must switch on) and high temperature alarm (the
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Figure 7: Second High Temperature Monitor

alarm must sound if it remains high for more than alarmDelay(120
sec) time units.

It is interesting to observe how the state-set size depends on the
model behavior. For instance, the first larger increase in state-set
size occurs after 55 seconds. At this time the temperature crosses
the limit where the compressor should switch on. But due to the
timing tolerances, the model does not “know” if the compressor-
relay is in on-state or off-state, resulting in a larger state-set. The
state-set size then decreases again, only to increase again at 93 sec-
onds at which a manual defrost period is started. The next ma-
jor jump occurs at 120 seconds and correlates nicely with the time
where the temperature crosses high-alarm limit and the alarm mon-
itor component should switch into triggered state. Similarly, 260
second into the run, the temperature drops below the threshold, and
there is no uncertainty in the alarm state. The fluctuations inside
this period is caused by a manually started and stopped defrost ses-
sion. In fact 5 defrost cycles are started and stopped by the tester
in this test run. The largest state-set size (960 states) occurs at 450
seconds and correlates to the time-out of a defrost cycle. There is
a large tolerance on the timer controlling defrosting, and hence the
model can exhibit many behaviors in this duration.

The state-set contains most often less than a few hundred states.
Exploring these is unproblematic for a modern model-checking en-
gine employed by TRON. Figure 9 plots the the cpu-time used to
update the state-set for delay-actions (typically the most expensive
operation) for 5 test-runs of our model on a Dual Pentium Xeon 2.8
GHz CPU (one used). It can be seen that the far majority of state
set sizes are reasonably small. Updating medium sized state-sets
with around 100 states requires only a few milli-seconds (ms) of
cpu-time. The largest encountered state-sets (around 3000 states)
are very infrequent, and requires around 300 ms.

Real-time online testing thus appear feasible for a large range of
embedded systems, but also that very non-deterministic model such
as the EKC-model may limit the granularity of time constraints that
can be checked in real-time.

Figure 8: Evolution of State-set.

6. CONCLUSIONS AND FUTURE WORK
Our modeling effort shows that it is possible to accurately model

the behavior of EKC like devices as Timed Automata and use the
resulting model as a test specification for online testing.

It is possible to model only selected desired aspects of the system
behavior, i.e. a complete and detailed behavioral description is not
required for system testing. Thus, model based testing is feasible
even if a clear and complete formal model is not available from the
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Figure 9: Cost of State-set Update: Delay action

start, although it will clearly benefit from more explicit modeling
during requirements analysis and system design.

In the relative short testing time, we found many discrepancies
between our model and the implementation. Although many of
these were caused by a wrong model due to incomplete require-
ments or mis-interpretations of the documentation, and not actual
implementation errors, our work indicates that online testing seems
an effective technique to find discrepancies between the expected
model behavior and actual behavior of the implementation under
test. Thus there are also reasons to believe that it is effective in
detecting actual implementation errors.

It should be mentioned that the EKC is a mature product that
has been produced and sold for a number of years. Future work
includes testing a less mature version of a EKC like controller.

Performance-wise we conclude that real-time online testing ap-
pear feasible for a large range of embedded systems. To target
even faster real-time systems with even time constraints in the (sub)
milli-second range we plan to separate our tool into two parts, an
environment emulation part, and a IUT monitoring part. Monitor-
ing need not be performed in real-time, and may in the extreme be
done offline. The model that will need to be interpreted in real-time
is thus much smaller and can be done much faster.

We are extending our tool with coverage measurements, cover-
age based guiding, and features for error diagnosis. By import-
ing a trace collected during a test run into UPPAAL it can be run
against the IUT model. It can also be replayed against the ac-
tual IUT (within the limits of non-determinism). Future work also
includes extensions for testing hybrid systems, i.e., systems with
general continous state evolution besides progress of time, e.g. by
using hybrid automata, but analyzing such systems exactly and for-
mally is much more difficult and costly.

Acknowledgments
We would like to thank Danfoss for providing the case-study and
especially Finn Andersen, Peter Eriksen, and Søren Winkler Ras-
mussen from Danfoss for engagement and constructive information
and help during the project.

7. REFERENCES
[1] R. Alur and D. Dill. A Theory of Timed Automata.

Theoretical Comput. Sci., 126(2):183–235, Apr. 1994.

[2] D. A/S. Danfoss internet website, http://www.danfoss.dk.
[3] G. Behrmann, J. Bengtsson, A. David, K. Larsen,

P. Pettersson, and W. Yi. Uppaal implementation secrets. In
Formal Techniques in Real-Time and Fault-Tolerant Systems:
7th International Symposium, FTRTFT 2002, pages 3–22,
September 2002.

[4] T. Berg, B. Jonsson, M. Leucker, and M. S. August. Insights
to Angluin’s Learning. In International Workshop on
Software Verification and Validation (SVV 2003), 2003.

[5] E. Brinksma, K. Larsen, B. Nielsen, and J. Tretmans.
Systematic Testing of Realtime Embedded Software Systems
(STRESS), March 2002. Research proposal submitted and
accepted by the Dutch Research Council.

[6] K. Larsen, M. Mikucionis, and B. Nielsen. Online testing of
real-time systems using UPPAAL. In Formal Approaches to
Testing of Software, Linz, Austria, September 21 2004.
Lecture Notes in Computer Science.

[7] K. Larsen, M. Mikucionis, and B. Nielsen. Online Testing of
Real-time Systems using Uppaal: Status and Future Work. In
E. Brinksma, W. Grieskamp, J. Tretmans, and E. Weyuker,
editors, Dagstuhl Seminar Proceedings volume 04371:
Perspectives of Model-Based Tes ting, Schloss Dagstuhl,
D-66687 Wadern, Germany., September 2004. IBFI gem.
GmbH, Schloss Dagstuhl.

[8] K. Larsen, P. Pettersson, and W. Yi. UppAal in a Nutshell.
International Journal on Software Tools for Technology
Transfer, 1(1):134–152, 1997.

[9] M. Krichen and S. Tripakis. Black-box Conformance Testing
for Real-Time Systems. In Model Checking Software: 11th
International SPIN Workshop, volume LNCS 2989. Springer,
April 2004.

[10] M. Mikucionis. Uppaal tron internet page,
http://www.cs.aau.dk/˜marius/tron.

[11] M. Mikucionis, K. Larsen, and B. Nielsen. Online on-the-fly
testing of real-time systems. Technical Report RS-03-49,
Basic Research In Computer Science (BRICS), Dec. 2003.

[12] M. Mikucionis, B. Nielsen, and K. Larsen. Real-time system
testing on-the-fly. In the 15th Nordic Workshop on
Programming Theory, number 34 in B, pages 36–38, Turku,
Finland, October 29–31 2003. Åbo Akademi, Department of
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